servo/components/layout/traversal.rs
Bobby Holley 3f52052cf9 Do the sequential traversal breadth-first.
While we're at it, we also eliminate the 'unknown' dom depth for the
bloom filter. Computing depth has negligible cost relative to the
amount of work we do setting up the bloom filter at a given depth.
Doing it once per traversal should be totally fine.

I originally separated the elimination of unknown dom depth from the
traversal changes, but I got bloom filter crashes on the intermediate
patch, presumably because I didn't properly fix the sequential traversal
for this case. Given that the final state is green, I just decided to
squash and move on.
2017-04-09 14:52:49 +08:00

263 lines
9.1 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Traversals over the DOM and flow trees, running the layout computations.
use atomic_refcell::AtomicRefCell;
use construct::FlowConstructor;
use context::{LayoutContext, ScopedThreadLocalLayoutContext};
use display_list_builder::DisplayListBuildState;
use flow::{self, PreorderFlowTraversal};
use flow::{CAN_BE_FRAGMENTED, Flow, ImmutableFlowUtils, PostorderFlowTraversal};
use script_layout_interface::wrapper_traits::{LayoutNode, ThreadSafeLayoutNode};
use servo_config::opts;
use style::context::{SharedStyleContext, StyleContext};
use style::data::ElementData;
use style::dom::{NodeInfo, TElement, TNode};
use style::selector_parser::RestyleDamage;
use style::servo::restyle_damage::{BUBBLE_ISIZES, REFLOW, REFLOW_OUT_OF_FLOW, REPAINT};
use style::traversal::{DomTraversal, TraversalDriver, recalc_style_at};
use style::traversal::PerLevelTraversalData;
use wrapper::{GetRawData, LayoutNodeHelpers, LayoutNodeLayoutData};
use wrapper::ThreadSafeLayoutNodeHelpers;
pub struct RecalcStyleAndConstructFlows<'a> {
context: LayoutContext<'a>,
driver: TraversalDriver,
}
impl<'a> RecalcStyleAndConstructFlows<'a> {
pub fn layout_context(&self) -> &LayoutContext<'a> {
&self.context
}
}
impl<'a> RecalcStyleAndConstructFlows<'a> {
/// Creates a traversal context, taking ownership of the shared layout context.
pub fn new(context: LayoutContext<'a>, driver: TraversalDriver) -> Self {
RecalcStyleAndConstructFlows {
context: context,
driver: driver,
}
}
/// Consumes this traversal context, returning ownership of the shared layout
/// context to the caller.
pub fn destroy(self) -> LayoutContext<'a> {
self.context
}
}
#[allow(unsafe_code)]
impl<'a, E> DomTraversal<E> for RecalcStyleAndConstructFlows<'a>
where E: TElement,
E::ConcreteNode: LayoutNode,
{
type ThreadLocalContext = ScopedThreadLocalLayoutContext<E>;
fn process_preorder(&self, traversal_data: &PerLevelTraversalData,
thread_local: &mut Self::ThreadLocalContext, node: E::ConcreteNode) {
// FIXME(pcwalton): Stop allocating here. Ideally this should just be
// done by the HTML parser.
node.initialize_data();
if !node.is_text_node() {
let el = node.as_element().unwrap();
let mut data = el.mutate_data().unwrap();
let mut context = StyleContext {
shared: &self.context.shared_context(),
thread_local: &mut thread_local.style_context,
};
recalc_style_at(self, traversal_data, &mut context, el, &mut data);
}
}
fn process_postorder(&self, thread_local: &mut Self::ThreadLocalContext, node: E::ConcreteNode) {
construct_flows_at(&self.context, thread_local, node);
}
fn text_node_needs_traversal(node: E::ConcreteNode) -> bool {
// Text nodes never need styling. However, there are two cases they may need
// flow construction:
// (1) They child doesn't yet have layout data (preorder traversal initializes it).
// (2) The parent element has restyle damage (so the text flow also needs fixup).
node.get_raw_data().is_none() ||
node.parent_node().unwrap().to_threadsafe().restyle_damage() != RestyleDamage::empty()
}
unsafe fn ensure_element_data(element: &E) -> &AtomicRefCell<ElementData> {
element.as_node().initialize_data();
element.get_data().unwrap()
}
unsafe fn clear_element_data(element: &E) {
element.as_node().clear_data();
}
fn shared_context(&self) -> &SharedStyleContext {
&self.context.style_context
}
fn create_thread_local_context(&self) -> Self::ThreadLocalContext {
ScopedThreadLocalLayoutContext::new(&self.context)
}
fn is_parallel(&self) -> bool {
self.driver.is_parallel()
}
}
/// A bottom-up, parallelizable traversal.
pub trait PostorderNodeMutTraversal<ConcreteThreadSafeLayoutNode: ThreadSafeLayoutNode> {
/// The operation to perform. Return true to continue or false to stop.
fn process(&mut self, node: &ConcreteThreadSafeLayoutNode);
}
/// The flow construction traversal, which builds flows for styled nodes.
#[inline]
#[allow(unsafe_code)]
fn construct_flows_at<N>(context: &LayoutContext,
_thread_local: &mut ScopedThreadLocalLayoutContext<N::ConcreteElement>,
node: N)
where N: LayoutNode,
{
debug!("construct_flows_at: {:?}", node);
// Construct flows for this node.
{
let tnode = node.to_threadsafe();
// Always reconstruct if incremental layout is turned off.
let nonincremental_layout = opts::get().nonincremental_layout;
if nonincremental_layout || tnode.restyle_damage() != RestyleDamage::empty() ||
node.as_element().map_or(false, |el| el.has_dirty_descendants()) {
let mut flow_constructor = FlowConstructor::new(context);
if nonincremental_layout || !flow_constructor.repair_if_possible(&tnode) {
flow_constructor.process(&tnode);
debug!("Constructed flow for {:?}: {:x}",
tnode,
tnode.flow_debug_id());
}
}
tnode.mutate_layout_data().unwrap().flags.insert(::data::HAS_BEEN_TRAVERSED);
}
if let Some(el) = node.as_element() {
unsafe { el.unset_dirty_descendants(); }
}
}
/// The bubble-inline-sizes traversal, the first part of layout computation. This computes
/// preferred and intrinsic inline-sizes and bubbles them up the tree.
pub struct BubbleISizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for BubbleISizes<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
flow.bubble_inline_sizes();
flow::mut_base(flow).restyle_damage.remove(BUBBLE_ISIZES);
}
#[inline]
fn should_process(&self, flow: &mut Flow) -> bool {
flow::base(flow).restyle_damage.contains(BUBBLE_ISIZES)
}
}
/// The assign-inline-sizes traversal. In Gecko this corresponds to `Reflow`.
#[derive(Copy, Clone)]
pub struct AssignISizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PreorderFlowTraversal for AssignISizes<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
flow.assign_inline_sizes(self.layout_context);
}
#[inline]
fn should_process(&self, flow: &mut Flow) -> bool {
flow::base(flow).restyle_damage.intersects(REFLOW_OUT_OF_FLOW | REFLOW)
}
}
/// The assign-block-sizes-and-store-overflow traversal, the last (and most expensive) part of
/// layout computation. Determines the final block-sizes for all layout objects and computes
/// positions. In Gecko this corresponds to `Reflow`.
#[derive(Copy, Clone)]
pub struct AssignBSizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for AssignBSizes<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
// Can't do anything with anything that floats might flow through until we reach their
// inorder parent.
//
// NB: We must return without resetting the restyle bits for these, as we haven't actually
// reflowed anything!
if flow.floats_might_flow_through() {
return
}
flow.assign_block_size(self.layout_context);
}
#[inline]
fn should_process(&self, flow: &mut Flow) -> bool {
let base = flow::base(flow);
base.restyle_damage.intersects(REFLOW_OUT_OF_FLOW | REFLOW) &&
// The fragmentation countainer is responsible for calling Flow::fragment recursively
!base.flags.contains(CAN_BE_FRAGMENTED)
}
}
#[derive(Copy, Clone)]
pub struct ComputeAbsolutePositions<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PreorderFlowTraversal for ComputeAbsolutePositions<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
flow.compute_absolute_position(self.layout_context);
}
}
pub struct BuildDisplayList<'a> {
pub state: DisplayListBuildState<'a>,
}
impl<'a> BuildDisplayList<'a> {
#[inline]
pub fn traverse(&mut self, flow: &mut Flow) {
let parent_stacking_context_id = self.state.current_stacking_context_id;
self.state.current_stacking_context_id = flow::base(flow).stacking_context_id;
let parent_scroll_root_id = self.state.current_scroll_root_id;
self.state.current_scroll_root_id = flow::base(flow).scroll_root_id;
if self.should_process() {
flow.build_display_list(&mut self.state);
flow::mut_base(flow).restyle_damage.remove(REPAINT);
}
for kid in flow::child_iter_mut(flow) {
self.traverse(kid);
}
self.state.current_stacking_context_id = parent_stacking_context_id;
self.state.current_scroll_root_id = parent_scroll_root_id;
}
#[inline]
fn should_process(&self) -> bool {
true
}
}