servo/components/layout/flow.rs
Patrick Walton 287fe3b3ab layout: Implement the correct hypothetical box behavior for
absolutely-positioned elements declared with `display: inline`.

Although the computed `display` property of elements with `position:
absolute` is `block`, `position: absolute; display: inline` can still
behave differently from `position: absolute; display: block`. This is
because the hypothetical box for `position: absolute` can be at the
position it would have been if it had `display: inline`. CSS 2.1 §
10.3.7 describes this case in a parenthetical:

"The static-position containing block is the containing block of a
hypothetical box that would have been the first box of the element if
its specified 'position' value had been 'static' and its specified
'float' had been 'none'. (Note that due to the rules in section 9.7 this
hypothetical calculation might require also assuming a different
computed value for 'display'.)"

To handle this, I had to change both style computation and layout. For
the former, I added an internal property
`-servo-display-for-hypothetical-box`, which stores the `display` value
supplied by the author, before the computed value is calculated. Flow
construction now uses this value.

As for layout, implementing the proper behavior is tricky because the
position of an inline fragment in the inline direction cannot be
determined until height assignment, which is a parallelism hazard
because in parallel layout widths are computed before heights. However,
in this particular case we can avoid the parallelism hazard because the
inline direction of a hypothetical box only affects the layout if an
absolutely-positioned element is unconstrained in the inline direction.
Therefore, we can just lay out such absolutely-positioned elements with
a bogus inline position and fix it up once the true inline position of
the hypothetical box is computed. The name for this fix-up process is
"late computation of inline position" (and the corresponding fix-up for
the block position is called "late computation of block position").

This improves the header on /r/rust.
2014-10-01 18:34:53 -07:00

1243 lines
46 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Servo's experimental layout system builds a tree of `Flow` and `Fragment` objects and solves
//! layout constraints to obtain positions and display attributes of tree nodes. Positions are
//! computed in several tree traversals driven by the fundamental data dependencies required by
/// inline and block layout.
///
/// Flows are interior nodes in the layout tree and correspond closely to *flow contexts* in the
/// CSS specification. Flows are responsible for positioning their child flow contexts and
/// fragments. Flows have purpose-specific fields, such as auxiliary line structs, out-of-flow
/// child lists, and so on.
///
/// Currently, the important types of flows are:
///
/// * `BlockFlow`: A flow that establishes a block context. It has several child flows, each of
/// which are positioned according to block formatting context rules (CSS block boxes). Block
/// flows also contain a single box to represent their rendered borders, padding, etc.
/// The BlockFlow at the root of the tree has special behavior: it stretches to the boundaries of
/// the viewport.
///
/// * `InlineFlow`: A flow that establishes an inline context. It has a flat list of child
/// fragments/flows that are subject to inline layout and line breaking and structs to represent
/// line breaks and mapping to CSS boxes, for the purpose of handling `getClientRects()` and
/// similar methods.
use css::node_style::StyledNode;
use block::BlockFlow;
use context::LayoutContext;
use floats::Floats;
use flow_list::{FlowList, FlowListIterator, MutFlowListIterator};
use flow_ref::FlowRef;
use fragment::{Fragment, TableRowFragment, TableCellFragment};
use incremental::RestyleDamage;
use inline::InlineFlow;
use model::{CollapsibleMargins, IntrinsicISizes, MarginCollapseInfo};
use parallel::FlowParallelInfo;
use table::TableFlow;
use table_caption::TableCaptionFlow;
use table_cell::TableCellFlow;
use table_colgroup::TableColGroupFlow;
use table_row::TableRowFlow;
use table_rowgroup::TableRowGroupFlow;
use table_wrapper::TableWrapperFlow;
use wrapper::ThreadSafeLayoutNode;
use collections::dlist::DList;
use geom::Point2D;
use gfx::display_list::DisplayList;
use gfx::render_task::RenderLayer;
use serialize::{Encoder, Encodable};
use servo_msg::compositor_msg::LayerId;
use servo_util::geometry::Au;
use servo_util::logical_geometry::WritingMode;
use servo_util::logical_geometry::{LogicalRect, LogicalSize};
use std::mem;
use std::num::Zero;
use std::fmt;
use std::iter::Zip;
use std::raw;
use std::sync::atomics::{AtomicUint, Relaxed, SeqCst};
use std::slice::MutItems;
use style::computed_values::{clear, float, position, text_align};
/// Virtual methods that make up a float context.
///
/// Note that virtual methods have a cost; we should not overuse them in Servo. Consider adding
/// methods to `ImmutableFlowUtils` or `MutableFlowUtils` before adding more methods here.
pub trait Flow: fmt::Show + ToString + Sync {
// RTTI
//
// TODO(pcwalton): Use Rust's RTTI, once that works.
/// Returns the class of flow that this is.
fn class(&self) -> FlowClass;
/// If this is a block flow, returns the underlying object, borrowed immutably. Fails
/// otherwise.
fn as_immutable_block<'a>(&'a self) -> &'a BlockFlow {
fail!("called as_immutable_block() on a non-block flow")
}
/// If this is a block flow, returns the underlying object. Fails otherwise.
fn as_block<'a>(&'a mut self) -> &'a mut BlockFlow {
debug!("called as_block() on a flow of type {}", self.class());
fail!("called as_block() on a non-block flow")
}
/// If this is an inline flow, returns the underlying object, borrowed immutably. Fails
/// otherwise.
fn as_immutable_inline<'a>(&'a self) -> &'a InlineFlow {
fail!("called as_immutable_inline() on a non-inline flow")
}
/// If this is an inline flow, returns the underlying object. Fails otherwise.
fn as_inline<'a>(&'a mut self) -> &'a mut InlineFlow {
fail!("called as_inline() on a non-inline flow")
}
/// If this is a table wrapper flow, returns the underlying object. Fails otherwise.
fn as_table_wrapper<'a>(&'a mut self) -> &'a mut TableWrapperFlow {
fail!("called as_table_wrapper() on a non-tablewrapper flow")
}
/// If this is a table wrapper flow, returns the underlying object, borrowed immutably. Fails
/// otherwise.
fn as_immutable_table_wrapper<'a>(&'a self) -> &'a TableWrapperFlow {
fail!("called as_immutable_table_wrapper() on a non-tablewrapper flow")
}
/// If this is a table flow, returns the underlying object. Fails otherwise.
fn as_table<'a>(&'a mut self) -> &'a mut TableFlow {
fail!("called as_table() on a non-table flow")
}
/// If this is a table flow, returns the underlying object, borrowed immutably. Fails otherwise.
fn as_immutable_table<'a>(&'a self) -> &'a TableFlow {
fail!("called as_table() on a non-table flow")
}
/// If this is a table colgroup flow, returns the underlying object. Fails otherwise.
fn as_table_colgroup<'a>(&'a mut self) -> &'a mut TableColGroupFlow {
fail!("called as_table_colgroup() on a non-tablecolgroup flow")
}
/// If this is a table rowgroup flow, returns the underlying object. Fails otherwise.
fn as_table_rowgroup<'a>(&'a mut self) -> &'a mut TableRowGroupFlow {
fail!("called as_table_rowgroup() on a non-tablerowgroup flow")
}
/// If this is a table rowgroup flow, returns the underlying object, borrowed immutably. Fails
/// otherwise.
fn as_immutable_table_rowgroup<'a>(&'a self) -> &'a TableRowGroupFlow {
fail!("called as_table_rowgroup() on a non-tablerowgroup flow")
}
/// If this is a table row flow, returns the underlying object. Fails otherwise.
fn as_table_row<'a>(&'a mut self) -> &'a mut TableRowFlow {
fail!("called as_table_row() on a non-tablerow flow")
}
/// If this is a table row flow, returns the underlying object, borrowed immutably. Fails
/// otherwise.
fn as_immutable_table_row<'a>(&'a self) -> &'a TableRowFlow {
fail!("called as_table_row() on a non-tablerow flow")
}
/// If this is a table cell flow, returns the underlying object. Fails otherwise.
fn as_table_caption<'a>(&'a mut self) -> &'a mut TableCaptionFlow {
fail!("called as_table_caption() on a non-tablecaption flow")
}
/// If this is a table cell flow, returns the underlying object. Fails otherwise.
fn as_table_cell<'a>(&'a mut self) -> &'a mut TableCellFlow {
fail!("called as_table_cell() on a non-tablecell flow")
}
/// If this is a table cell flow, returns the underlying object, borrowed immutably. Fails
/// otherwise.
fn as_immutable_table_cell<'a>(&'a self) -> &'a TableCellFlow {
fail!("called as_table_cell() on a non-tablecell flow")
}
/// If this is a table row or table rowgroup or table flow, returns column inline-sizes.
/// Fails otherwise.
fn col_inline_sizes<'a>(&'a mut self) -> &'a mut Vec<Au> {
fail!("called col_inline_sizes() on an other flow than table-row/table-rowgroup/table")
}
/// If this is a table row flow or table rowgroup flow or table flow, returns column min inline-sizes.
/// Fails otherwise.
fn col_min_inline_sizes<'a>(&'a self) -> &'a Vec<Au> {
fail!("called col_min_inline_sizes() on an other flow than table-row/table-rowgroup/table")
}
/// If this is a table row flow or table rowgroup flow or table flow, returns column min inline-sizes.
/// Fails otherwise.
fn col_pref_inline_sizes<'a>(&'a self) -> &'a Vec<Au> {
fail!("called col_pref_inline_sizes() on an other flow than table-row/table-rowgroup/table")
}
// Main methods
/// Pass 1 of reflow: computes minimum and preferred inline-sizes.
///
/// Recursively (bottom-up) determine the flow's minimum and preferred inline-sizes. When called on
/// this flow, all child flows have had their minimum and preferred inline-sizes set. This function
/// must decide minimum/preferred inline-sizes based on its children's inline-sizes and the dimensions of
/// any boxes it is responsible for flowing.
fn bubble_inline_sizes(&mut self, _ctx: &LayoutContext) {
fail!("bubble_inline_sizes not yet implemented")
}
/// Pass 2 of reflow: computes inline-size.
fn assign_inline_sizes(&mut self, _ctx: &LayoutContext) {
fail!("assign_inline_sizes not yet implemented")
}
/// Pass 3a of reflow: computes block-size.
fn assign_block_size<'a>(&mut self, _ctx: &'a LayoutContext<'a>) {
fail!("assign_block_size not yet implemented")
}
/// Assigns block-sizes in-order; or, if this is a float, places the float. The default
/// implementation simply assigns block-sizes if this flow is impacted by floats. Returns true if
/// this child was impacted by floats or false otherwise.
fn assign_block_size_for_inorder_child_if_necessary<'a>(&mut self, layout_context: &'a LayoutContext<'a>)
-> bool {
let impacted = base(&*self).flags.impacted_by_floats();
if impacted {
self.assign_block_size(layout_context);
}
impacted
}
/// Phase 4 of reflow: computes absolute positions.
fn compute_absolute_position(&mut self) {
// The default implementation is a no-op.
}
/// Returns the direction that this flow clears floats in, if any.
fn float_clearance(&self) -> clear::T {
clear::none
}
fn float_kind(&self) -> float::T {
float::none
}
fn compute_collapsible_block_start_margin(&mut self,
_layout_context: &mut LayoutContext,
_margin_collapse_info: &mut MarginCollapseInfo) {
// The default implementation is a no-op.
}
/// Marks this flow as the root flow. The default implementation is a no-op.
fn mark_as_root(&mut self) {}
// Note that the following functions are mostly called using static method
// dispatch, so it's ok to have them in this trait. Plus, they have
// different behaviour for different types of Flow, so they can't go into
// the Immutable / Mutable Flow Utils traits without additional casts.
/// Return true if store overflow is delayed for this flow.
///
/// Currently happens only for absolutely positioned flows.
fn is_store_overflow_delayed(&mut self) -> bool {
false
}
fn is_root(&self) -> bool {
false
}
fn is_float(&self) -> bool {
false
}
/// The 'position' property of this flow.
fn positioning(&self) -> position::T {
position::static_
}
/// Return true if this flow has position 'fixed'.
fn is_fixed(&self) -> bool {
self.positioning() == position::fixed
}
fn is_positioned(&self) -> bool {
self.is_relatively_positioned() || self.is_absolutely_positioned()
}
fn is_relatively_positioned(&self) -> bool {
self.positioning() == position::relative
}
fn is_absolutely_positioned(&self) -> bool {
self.positioning() == position::absolute || self.is_fixed()
}
/// Return true if this is the root of an absolute flow tree.
fn is_root_of_absolute_flow_tree(&self) -> bool {
false
}
/// Returns true if this is an absolute containing block.
fn is_absolute_containing_block(&self) -> bool {
false
}
/// Updates the inline position of a child flow during the assign-height traversal. At present,
/// this is only used for absolutely-positioned inline-blocks.
fn update_late_computed_inline_position_if_necessary(&mut self, inline_position: Au);
/// Updates the block position of a child flow during the assign-height traversal. At present,
/// this is only used for absolutely-positioned inline-blocks.
fn update_late_computed_block_position_if_necessary(&mut self, block_position: Au);
/// Return the dimensions of the containing block generated by this flow for absolutely-
/// positioned descendants. For block flows, this is the padding box.
fn generated_containing_block_rect(&self) -> LogicalRect<Au> {
fail!("generated_containing_block_position not yet implemented for this flow")
}
/// Returns a layer ID for the given fragment.
fn layer_id(&self, fragment_id: uint) -> LayerId {
unsafe {
let pointer: uint = mem::transmute(self);
LayerId(pointer, fragment_id)
}
}
}
impl<'a, E, S: Encoder<E>> Encodable<S, E> for &'a Flow + 'a {
fn encode(&self, e: &mut S) -> Result<(), E> {
e.emit_struct("flow", 0, |e| {
try!(e.emit_struct_field("class", 0, |e| self.class().encode(e)))
e.emit_struct_field("data", 1, |e| {
match self.class() {
BlockFlowClass => self.as_immutable_block().encode(e),
InlineFlowClass => self.as_immutable_inline().encode(e),
TableFlowClass => self.as_immutable_table().encode(e),
TableWrapperFlowClass => self.as_immutable_table_wrapper().encode(e),
TableRowGroupFlowClass => self.as_immutable_table_rowgroup().encode(e),
TableRowFlowClass => self.as_immutable_table_row().encode(e),
TableCellFlowClass => self.as_immutable_table_cell().encode(e),
_ => { Ok(()) } // TODO: Support captions
}
})
})
}
}
// Base access
#[inline(always)]
pub fn base<'a>(this: &'a Flow) -> &'a BaseFlow {
unsafe {
let obj = mem::transmute::<&'a Flow, raw::TraitObject>(this);
mem::transmute::<*mut (), &'a BaseFlow>(obj.data)
}
}
/// Iterates over the children of this immutable flow.
pub fn imm_child_iter<'a>(flow: &'a Flow) -> FlowListIterator<'a> {
base(flow).children.iter()
}
#[inline(always)]
pub fn mut_base<'a>(this: &'a mut Flow) -> &'a mut BaseFlow {
unsafe {
let obj = mem::transmute::<&'a mut Flow, raw::TraitObject>(this);
mem::transmute::<*mut (), &'a mut BaseFlow>(obj.data)
}
}
/// Iterates over the children of this flow.
pub fn child_iter<'a>(flow: &'a mut Flow) -> MutFlowListIterator<'a> {
mut_base(flow).children.iter_mut()
}
pub trait ImmutableFlowUtils {
// Convenience functions
/// Returns true if this flow is a block or a float flow.
fn is_block_like(self) -> bool;
/// Returns true if this flow is a table flow.
fn is_table(self) -> bool;
/// Returns true if this flow is a table caption flow.
fn is_table_caption(self) -> bool;
/// Returns true if this flow is a proper table child.
fn is_proper_table_child(self) -> bool;
/// Returns true if this flow is a table row flow.
fn is_table_row(self) -> bool;
/// Returns true if this flow is a table cell flow.
fn is_table_cell(self) -> bool;
/// Returns true if this flow is a table colgroup flow.
fn is_table_colgroup(self) -> bool;
/// Returns true if this flow is a table rowgroup flow.
fn is_table_rowgroup(self) -> bool;
/// Returns true if this flow is one of table-related flows.
fn is_table_kind(self) -> bool;
/// Returns true if anonymous flow is needed between this flow and child flow.
fn need_anonymous_flow(self, child: &Flow) -> bool;
/// Generates missing child flow of this flow.
fn generate_missing_child_flow(self, node: &ThreadSafeLayoutNode) -> FlowRef;
/// Returns true if this flow has no children.
fn is_leaf(self) -> bool;
/// Returns the number of children that this flow possesses.
fn child_count(self) -> uint;
/// Return true if this flow is a Block Container.
fn is_block_container(self) -> bool;
/// Returns true if this flow is a block flow.
fn is_block_flow(self) -> bool;
/// Returns true if this flow is an inline flow.
fn is_inline_flow(self) -> bool;
/// Dumps the flow tree for debugging.
fn dump(self);
/// Dumps the flow tree for debugging, with a prefix to indicate that we're at the given level.
fn dump_with_level(self, level: uint);
}
pub trait MutableFlowUtils {
// Traversals
/// Traverses the tree in preorder.
fn traverse_preorder<T:PreorderFlowTraversal>(self, traversal: &mut T) -> bool;
/// Traverses the tree in postorder.
fn traverse_postorder<T:PostorderFlowTraversal>(self, traversal: &mut T) -> bool;
// Mutators
/// Computes the overflow region for this flow.
fn store_overflow(self, _: &LayoutContext);
/// Builds the display lists for this flow.
fn build_display_list(self, layout_context: &LayoutContext);
/// Gathers static block-offsets bubbled up by kids.
///
/// This essentially gives us offsets of all absolutely positioned direct descendants and all
/// fixed descendants, in tree order.
///
/// This is called in a bottom-up traversal (specifically, the assign-block-size traversal).
/// So, kids have their flow origin already set. In the case of absolute flow kids, they have
/// their hypothetical box position already set.
fn collect_static_block_offsets_from_children(&mut self);
}
pub trait MutableOwnedFlowUtils {
/// Set absolute descendants for this flow.
///
/// Set this flow as the Containing Block for all the absolute descendants.
fn set_absolute_descendants(&mut self, abs_descendants: AbsDescendants);
}
#[deriving(Encodable, PartialEq, Show)]
pub enum FlowClass {
BlockFlowClass,
InlineFlowClass,
TableWrapperFlowClass,
TableFlowClass,
TableColGroupFlowClass,
TableRowGroupFlowClass,
TableRowFlowClass,
TableCaptionFlowClass,
TableCellFlowClass,
}
/// A top-down traversal.
pub trait PreorderFlowTraversal {
/// The operation to perform. Return true to continue or false to stop.
fn process(&mut self, flow: &mut Flow) -> bool;
/// Returns true if this node should be pruned. If this returns true, we skip the operation
/// entirely and do not process any descendant nodes. This is called *before* child nodes are
/// visited. The default implementation never prunes any nodes.
fn should_prune(&mut self, _flow: &mut Flow) -> bool {
false
}
}
/// A bottom-up traversal, with a optional in-order pass.
pub trait PostorderFlowTraversal {
/// The operation to perform. Return true to continue or false to stop.
fn process(&mut self, flow: &mut Flow) -> bool;
/// Returns false if this node must be processed in-order. If this returns false, we skip the
/// operation for this node, but continue processing the ancestors. This is called *after*
/// child nodes are visited.
fn should_process(&mut self, _flow: &mut Flow) -> bool {
true
}
/// Returns true if this node should be pruned. If this returns true, we skip the operation
/// entirely and do not process any descendant nodes. This is called *before* child nodes are
/// visited. The default implementation never prunes any nodes.
fn should_prune(&mut self, _flow: &mut Flow) -> bool {
false
}
}
/// Flags used in flows, tightly packed to save space.
#[deriving(Clone, Encodable)]
pub struct FlowFlags(pub u8);
/// The bitmask of flags that represent the `has_left_floated_descendants` and
/// `has_right_floated_descendants` fields.
///
/// NB: If you update this field, you must update the bitfields below.
static HAS_FLOATED_DESCENDANTS_BITMASK: u8 = 0b0000_0011;
// Whether this flow has descendants that float left in the same block formatting context.
bitfield!(FlowFlags, has_left_floated_descendants, set_has_left_floated_descendants, 0b0000_0001)
// Whether this flow has descendants that float right in the same block formatting context.
bitfield!(FlowFlags, has_right_floated_descendants, set_has_right_floated_descendants, 0b0000_0010)
// Whether this flow is impacted by floats to the left in the same block formatting context (i.e.
// its block-size depends on some prior flows with `float: left`).
bitfield!(FlowFlags, impacted_by_left_floats, set_impacted_by_left_floats, 0b0000_0100)
// Whether this flow is impacted by floats to the right in the same block formatting context (i.e.
// its block-size depends on some prior flows with `float: right`).
bitfield!(FlowFlags, impacted_by_right_floats, set_impacted_by_right_floats, 0b0000_1000)
/// The bitmask of flags that represent the text alignment field.
///
/// NB: If you update this field, you must update the bitfields below.
static TEXT_ALIGN_BITMASK: u8 = 0b0011_0000;
/// The number of bits we must shift off to handle the text alignment field.
///
/// NB: If you update this field, you must update the bitfields below.
static TEXT_ALIGN_SHIFT: u8 = 4;
// Whether this flow contains a flow that has its own layer within the same absolute containing
// block.
bitfield!(FlowFlags,
layers_needed_for_descendants,
set_layers_needed_for_descendants,
0b0100_0000)
// Whether this flow must have its own layer. Even if this flag is not set, it might get its own
// layer if it's deemed to be likely to overlap flows with their own layer.
bitfield!(FlowFlags, needs_layer, set_needs_layer, 0b1000_0000)
impl FlowFlags {
/// Creates a new set of flow flags.
pub fn new() -> FlowFlags {
FlowFlags(0)
}
/// Propagates text alignment flags from an appropriate parent flow per CSS 2.1.
///
/// FIXME(#2265, pcwalton): It would be cleaner and faster to make this a derived CSS property
/// `-servo-text-align-in-effect`.
pub fn propagate_text_alignment_from_parent(&mut self, parent_flags: FlowFlags) {
self.set_text_align_override(parent_flags);
}
#[inline]
pub fn text_align(self) -> text_align::T {
let FlowFlags(ff) = self;
FromPrimitive::from_u8((ff & TEXT_ALIGN_BITMASK) >> TEXT_ALIGN_SHIFT as uint).unwrap()
}
#[inline]
pub fn set_text_align(&mut self, value: text_align::T) {
let FlowFlags(ff) = *self;
*self = FlowFlags((ff & !TEXT_ALIGN_BITMASK) | ((value as u8) << TEXT_ALIGN_SHIFT as uint))
}
#[inline]
pub fn set_text_align_override(&mut self, parent: FlowFlags) {
let FlowFlags(ff) = *self;
let FlowFlags(pff) = parent;
*self = FlowFlags(ff | (pff & TEXT_ALIGN_BITMASK))
}
#[inline]
pub fn union_floated_descendants_flags(&mut self, other: FlowFlags) {
let FlowFlags(my_flags) = *self;
let FlowFlags(other_flags) = other;
*self = FlowFlags(my_flags | (other_flags & HAS_FLOATED_DESCENDANTS_BITMASK))
}
#[inline]
pub fn impacted_by_floats(&self) -> bool {
self.impacted_by_left_floats() || self.impacted_by_right_floats()
}
}
/// The Descendants of a flow.
///
/// Also, details about their position wrt this flow.
pub struct Descendants {
/// Links to every descendant. This must be private because it is unsafe to leak `FlowRef`s to
/// layout.
descendant_links: Vec<FlowRef>,
/// Static block-direction offsets of all descendants from the start of this flow box.
pub static_block_offsets: Vec<Au>,
}
impl Descendants {
pub fn new() -> Descendants {
Descendants {
descendant_links: Vec::new(),
static_block_offsets: Vec::new(),
}
}
pub fn len(&self) -> uint {
self.descendant_links.len()
}
pub fn push(&mut self, given_descendant: FlowRef) {
self.descendant_links.push(given_descendant);
}
/// Push the given descendants on to the existing descendants.
///
/// Ignore any static y offsets, because they are None before layout.
pub fn push_descendants(&mut self, given_descendants: Descendants) {
for elem in given_descendants.descendant_links.into_iter() {
self.descendant_links.push(elem);
}
}
/// Return an iterator over the descendant flows.
pub fn iter<'a>(&'a mut self) -> DescendantIter<'a> {
DescendantIter {
iter: self.descendant_links.slice_from_mut(0).iter_mut(),
}
}
/// Return an iterator over (descendant, static y offset).
pub fn iter_with_offset<'a>(&'a mut self) -> DescendantOffsetIter<'a> {
let descendant_iter = DescendantIter {
iter: self.descendant_links.slice_from_mut(0).iter_mut(),
};
descendant_iter.zip(self.static_block_offsets.slice_from_mut(0).iter_mut())
}
}
pub type AbsDescendants = Descendants;
pub struct DescendantIter<'a> {
iter: MutItems<'a, FlowRef>,
}
impl<'a> Iterator<&'a mut Flow + 'a> for DescendantIter<'a> {
fn next(&mut self) -> Option<&'a mut Flow + 'a> {
match self.iter.next() {
None => None,
Some(ref mut flow) => {
unsafe {
let result: &'a mut Flow = mem::transmute(flow.get_mut());
Some(result)
}
}
}
}
}
pub type DescendantOffsetIter<'a> = Zip<DescendantIter<'a>, MutItems<'a, Au>>;
/// Information needed to compute absolute (i.e. viewport-relative) flow positions (not to be
/// confused with absolutely-positioned flows).
#[deriving(Encodable)]
pub struct AbsolutePositionInfo {
/// The size of the containing block for relatively-positioned descendants.
pub relative_containing_block_size: LogicalSize<Au>,
/// The position of the absolute containing block.
pub absolute_containing_block_position: Point2D<Au>,
/// Whether the absolute containing block forces positioned descendants to be layerized.
///
/// FIXME(pcwalton): Move into `FlowFlags`.
pub layers_needed_for_positioned_flows: bool,
}
impl AbsolutePositionInfo {
pub fn new(writing_mode: WritingMode) -> AbsolutePositionInfo {
// FIXME(pcwalton): The initial relative containing block-size should be equal to the size
// of the root layer.
AbsolutePositionInfo {
relative_containing_block_size: LogicalSize::zero(writing_mode),
absolute_containing_block_position: Zero::zero(),
layers_needed_for_positioned_flows: false,
}
}
}
/// Data common to all flows.
pub struct BaseFlow {
/// NB: Must be the first element.
///
/// The necessity of this will disappear once we have dynamically-sized types.
ref_count: AtomicUint,
pub restyle_damage: RestyleDamage,
/// The children of this flow.
pub children: FlowList,
/// Intrinsic inline sizes for this flow.
pub intrinsic_inline_sizes: IntrinsicISizes,
/// The upper left corner of the box representing this flow, relative to the box representing
/// its parent flow.
///
/// For absolute flows, this represents the position with respect to its *containing block*.
///
/// This does not include margins in the block flow direction, because those can collapse. So
/// for the block direction (usually vertical), this represents the *border box*. For the
/// inline direction (usually horizontal), this represents the *margin box*.
pub position: LogicalRect<Au>,
/// The amount of overflow of this flow, relative to the containing block. Must include all the
/// pixels of all the display list items for correct invalidation.
pub overflow: LogicalRect<Au>,
/// Data used during parallel traversals.
///
/// TODO(pcwalton): Group with other transient data to save space.
pub parallel: FlowParallelInfo,
/// The floats next to this flow.
pub floats: Floats,
/// The collapsible margins for this flow, if any.
pub collapsible_margins: CollapsibleMargins,
/// The position of this flow in page coordinates, computed during display list construction.
pub abs_position: Point2D<Au>,
/// Details about descendants with position 'absolute' or 'fixed' for which we are the
/// containing block. This is in tree order. This includes any direct children.
pub abs_descendants: AbsDescendants,
/// The block-size of the block container of this flow, if it is an explicit size (does not
/// depend on content heights). Used for computing percentage values for `height`.
pub block_container_explicit_block_size: Option<Au>,
/// Offset wrt the nearest positioned ancestor - aka the Containing Block
/// for any absolutely positioned elements.
pub absolute_static_i_offset: Au,
/// Offset wrt the Initial Containing Block.
pub fixed_static_i_offset: Au,
/// Reference to the Containing Block, if this flow is absolutely positioned.
pub absolute_cb: ContainingBlockLink,
/// Information needed to compute absolute (i.e. viewport-relative) flow positions (not to be
/// confused with absolutely-positioned flows).
///
/// FIXME(pcwalton): Merge with `absolute_static_i_offset` and `fixed_static_i_offset` above?
pub absolute_position_info: AbsolutePositionInfo,
/// The unflattened display items for this flow.
pub display_list: DisplayList,
/// Any layers that we're bubbling up, in a linked list.
pub layers: DList<RenderLayer>,
/// Various flags for flows, tightly packed to save space.
pub flags: FlowFlags,
pub writing_mode: WritingMode,
}
impl fmt::Show for BaseFlow {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f,
"CC {}, ADC {}, CADC {}",
self.parallel.children_count.load(SeqCst),
self.abs_descendants.len(),
self.parallel.children_and_absolute_descendant_count.load(SeqCst))
}
}
impl<E, S: Encoder<E>> Encodable<S, E> for BaseFlow {
fn encode(&self, e: &mut S) -> Result<(), E> {
e.emit_struct("base", 0, |e| {
try!(e.emit_struct_field("id", 0, |e| self.debug_id().encode(e)))
try!(e.emit_struct_field("abs_position", 1, |e| self.abs_position.encode(e)))
try!(e.emit_struct_field("intrinsic_inline_sizes", 2, |e| self.intrinsic_inline_sizes.encode(e)))
try!(e.emit_struct_field("position", 3, |e| self.position.encode(e)))
e.emit_struct_field("children", 4, |e| {
e.emit_seq(self.children.len(), |e| {
for (i, c) in self.children.iter().enumerate() {
try!(e.emit_seq_elt(i, |e| c.encode(e)))
}
Ok(())
})
})
})
}
}
#[unsafe_destructor]
impl Drop for BaseFlow {
fn drop(&mut self) {
if self.ref_count.load(SeqCst) != 0 {
fail!("Flow destroyed before its ref count hit zero—this is unsafe!")
}
}
}
impl BaseFlow {
#[inline]
pub fn new(node: ThreadSafeLayoutNode) -> BaseFlow {
let writing_mode = node.style().writing_mode;
BaseFlow {
ref_count: AtomicUint::new(1),
restyle_damage: node.restyle_damage(),
children: FlowList::new(),
intrinsic_inline_sizes: IntrinsicISizes::new(),
position: LogicalRect::zero(writing_mode),
overflow: LogicalRect::zero(writing_mode),
parallel: FlowParallelInfo::new(),
floats: Floats::new(writing_mode),
collapsible_margins: CollapsibleMargins::new(),
abs_position: Zero::zero(),
abs_descendants: Descendants::new(),
absolute_static_i_offset: Au::new(0),
fixed_static_i_offset: Au::new(0),
block_container_explicit_block_size: None,
absolute_cb: ContainingBlockLink::new(),
display_list: DisplayList::new(),
layers: DList::new(),
absolute_position_info: AbsolutePositionInfo::new(writing_mode),
flags: FlowFlags::new(),
writing_mode: writing_mode,
}
}
pub fn child_iter<'a>(&'a mut self) -> MutFlowListIterator<'a> {
self.children.iter_mut()
}
pub unsafe fn ref_count<'a>(&'a self) -> &'a AtomicUint {
&self.ref_count
}
pub fn debug_id(&self) -> String {
format!("{:p}", self as *const _)
}
}
impl<'a> ImmutableFlowUtils for &'a Flow + 'a {
/// Returns true if this flow is a block flow.
fn is_block_like(self) -> bool {
match self.class() {
BlockFlowClass => true,
_ => false,
}
}
/// Returns true if this flow is a proper table child.
/// 'Proper table child' is defined as table-row flow, table-rowgroup flow,
/// table-column-group flow, or table-caption flow.
fn is_proper_table_child(self) -> bool {
match self.class() {
TableRowFlowClass | TableRowGroupFlowClass |
TableColGroupFlowClass | TableCaptionFlowClass => true,
_ => false,
}
}
/// Returns true if this flow is a table row flow.
fn is_table_row(self) -> bool {
match self.class() {
TableRowFlowClass => true,
_ => false,
}
}
/// Returns true if this flow is a table cell flow.
fn is_table_cell(self) -> bool {
match self.class() {
TableCellFlowClass => true,
_ => false,
}
}
/// Returns true if this flow is a table colgroup flow.
fn is_table_colgroup(self) -> bool {
match self.class() {
TableColGroupFlowClass => true,
_ => false,
}
}
/// Returns true if this flow is a table flow.
fn is_table(self) -> bool {
match self.class() {
TableFlowClass => true,
_ => false,
}
}
/// Returns true if this flow is a table caption flow.
fn is_table_caption(self) -> bool {
match self.class() {
TableCaptionFlowClass => true,
_ => false,
}
}
/// Returns true if this flow is a table rowgroup flow.
fn is_table_rowgroup(self) -> bool {
match self.class() {
TableRowGroupFlowClass => true,
_ => false,
}
}
/// Returns true if this flow is one of table-related flows.
fn is_table_kind(self) -> bool {
match self.class() {
TableWrapperFlowClass | TableFlowClass |
TableColGroupFlowClass | TableRowGroupFlowClass |
TableRowFlowClass | TableCaptionFlowClass | TableCellFlowClass => true,
_ => false,
}
}
/// Returns true if anonymous flow is needed between this flow and child flow.
/// Spec: http://www.w3.org/TR/CSS21/tables.html#anonymous-boxes
fn need_anonymous_flow(self, child: &Flow) -> bool {
match self.class() {
TableFlowClass => !child.is_proper_table_child(),
TableRowGroupFlowClass => !child.is_table_row(),
TableRowFlowClass => !child.is_table_cell(),
_ => false
}
}
/// Generates missing child flow of this flow.
fn generate_missing_child_flow(self, node: &ThreadSafeLayoutNode) -> FlowRef {
let flow = match self.class() {
TableFlowClass | TableRowGroupFlowClass => {
let fragment = Fragment::new_anonymous_table_fragment(node, TableRowFragment);
box TableRowFlow::from_node_and_fragment(node, fragment) as Box<Flow>
},
TableRowFlowClass => {
let fragment = Fragment::new_anonymous_table_fragment(node, TableCellFragment);
box TableCellFlow::from_node_and_fragment(node, fragment) as Box<Flow>
},
_ => {
fail!("no need to generate a missing child")
}
};
FlowRef::new(flow)
}
/// Returns true if this flow has no children.
fn is_leaf(self) -> bool {
base(self).children.len() == 0
}
/// Returns the number of children that this flow possesses.
fn child_count(self) -> uint {
base(self).children.len()
}
/// Return true if this flow is a Block Container.
///
/// Except for table fragments and replaced elements, block-level fragments (`BlockFlow`) are
/// also block container fragments.
/// Non-replaced inline blocks and non-replaced table cells are also block
/// containers.
fn is_block_container(self) -> bool {
match self.class() {
// TODO: Change this when inline-blocks are supported.
BlockFlowClass | TableCaptionFlowClass | TableCellFlowClass => {
// FIXME: Actually check the type of the node
self.child_count() != 0
}
_ => false,
}
}
/// Returns true if this flow is a block flow.
fn is_block_flow(self) -> bool {
match self.class() {
BlockFlowClass => true,
_ => false,
}
}
/// Returns true if this flow is an inline flow.
fn is_inline_flow(self) -> bool {
match self.class() {
InlineFlowClass => true,
_ => false,
}
}
/// Dumps the flow tree for debugging.
fn dump(self) {
self.dump_with_level(0)
}
/// Dumps the flow tree for debugging, with a prefix to indicate that we're at the given level.
fn dump_with_level(self, level: uint) {
let mut indent = String::new();
for _ in range(0, level) {
indent.push_str("| ")
}
debug!("{}+ {}", indent, self.to_string());
for kid in imm_child_iter(self) {
kid.dump_with_level(level + 1)
}
}
}
impl<'a> MutableFlowUtils for &'a mut Flow + 'a {
/// Traverses the tree in preorder.
fn traverse_preorder<T:PreorderFlowTraversal>(self, traversal: &mut T) -> bool {
if traversal.should_prune(self) {
return true
}
if !traversal.process(self) {
return false
}
for kid in child_iter(self) {
if !kid.traverse_preorder(traversal) {
return false
}
}
true
}
/// Traverses the tree in postorder.
fn traverse_postorder<T:PostorderFlowTraversal>(self, traversal: &mut T) -> bool {
if traversal.should_prune(self) {
return true
}
for kid in child_iter(self) {
if !kid.traverse_postorder(traversal) {
return false
}
}
if !traversal.should_process(self) {
return true
}
traversal.process(self)
}
/// Calculate and set overflow for current flow.
///
/// CSS Section 11.1
/// This is the union of rectangles of the flows for which we define the
/// Containing Block.
///
/// Assumption: This is called in a bottom-up traversal, so kids' overflows have
/// already been set.
/// Assumption: Absolute descendants have had their overflow calculated.
fn store_overflow(self, _: &LayoutContext) {
let my_position = mut_base(self).position;
let mut overflow = my_position;
if self.is_block_container() {
for kid in child_iter(self) {
if kid.is_store_overflow_delayed() {
// Absolute flows will be handled by their CB. If we are
// their CB, they will show up in `abs_descendants`.
continue;
}
let mut kid_overflow = base(kid).overflow;
kid_overflow = kid_overflow.translate(&my_position.start);
overflow = overflow.union(&kid_overflow)
}
// FIXME(#2004, pcwalton): This is wrong for `position: fixed`.
for descendant_link in mut_base(self).abs_descendants.iter() {
let mut kid_overflow = base(descendant_link).overflow;
kid_overflow = kid_overflow.translate(&my_position.start);
overflow = overflow.union(&kid_overflow)
}
}
mut_base(self).overflow = overflow;
}
/// Push display items for current flow and its descendants onto the appropriate display lists
/// of the given stacking context.
///
/// Arguments:
///
/// * `builder`: The display list builder, which contains information used during the entire
/// display list building pass.
///
/// * `info`: Per-flow display list building information.
fn build_display_list(self, layout_context: &LayoutContext) {
debug!("Flow: building display list");
match self.class() {
BlockFlowClass => self.as_block().build_display_list_block(layout_context),
InlineFlowClass => self.as_inline().build_display_list_inline(layout_context),
TableWrapperFlowClass => {
self.as_table_wrapper().build_display_list_table_wrapper(layout_context)
}
TableFlowClass => self.as_table().build_display_list_table(layout_context),
TableRowGroupFlowClass => {
self.as_table_rowgroup().build_display_list_table_rowgroup(layout_context)
}
TableRowFlowClass => self.as_table_row().build_display_list_table_row(layout_context),
TableCaptionFlowClass => {
self.as_table_caption().build_display_list_table_caption(layout_context)
}
TableCellFlowClass => {
self.as_table_cell().build_display_list_table_cell(layout_context)
}
TableColGroupFlowClass => {
// Nothing to do here, as column groups don't render.
}
}
}
/// Collect and update static y-offsets bubbled up by kids.
///
/// This would essentially give us offsets of all absolutely positioned
/// direct descendants and all fixed descendants, in tree order.
///
/// Assume that this is called in a bottom-up traversal (specifically, the
/// assign-block-size traversal). So, kids have their flow origin already set.
/// In the case of absolute flow kids, they have their hypothetical box
/// position already set.
fn collect_static_block_offsets_from_children(&mut self) {
let mut absolute_descendant_block_offsets = Vec::new();
for kid in mut_base(*self).child_iter() {
let mut gives_absolute_offsets = true;
if kid.is_block_like() {
let kid_block = kid.as_block();
if kid_block.is_fixed() || kid_block.is_absolutely_positioned() {
// It won't contribute any offsets for descendants because it would be the
// containing block for them.
gives_absolute_offsets = false;
// Give the offset for the current absolute flow alone.
absolute_descendant_block_offsets.push(
kid_block.get_hypothetical_block_start_edge());
} else if kid_block.is_positioned() {
// It won't contribute any offsets because it would be the containing block
// for the descendants.
gives_absolute_offsets = false;
}
}
if gives_absolute_offsets {
let kid_base = mut_base(kid);
// Avoid copying the offset vector.
let offsets = mem::replace(&mut kid_base.abs_descendants.static_block_offsets,
Vec::new());
// Consume all the static block-offsets bubbled up by kids.
for block_offset in offsets.into_iter() {
// The offsets are with respect to the kid flow's fragment. Translate them to
// that of the current flow.
absolute_descendant_block_offsets.push(
block_offset + kid_base.position.start.b);
}
}
}
mut_base(*self).abs_descendants.static_block_offsets = absolute_descendant_block_offsets
}
}
impl MutableOwnedFlowUtils for FlowRef {
/// Set absolute descendants for this flow.
///
/// Set yourself as the Containing Block for all the absolute descendants.
///
/// This is called during flow construction, so nothing else can be accessing the descendant
/// flows. This is enforced by the fact that we have a mutable `FlowRef`, which only flow
/// construction is allowed to possess.
fn set_absolute_descendants(&mut self, abs_descendants: AbsDescendants) {
let this = self.clone();
let block = self.get_mut().as_block();
block.base.abs_descendants = abs_descendants;
block.base
.parallel
.children_and_absolute_descendant_count
.fetch_add(block.base.abs_descendants.len() as int, Relaxed);
for descendant_link in block.base.abs_descendants.iter() {
let base = mut_base(descendant_link);
base.absolute_cb.set(this.clone());
}
}
}
/// A link to a flow's containing block.
///
/// This cannot safely be a `Flow` pointer because this is a pointer *up* the tree, not *down* the
/// tree. A pointer up the tree is unsafe during layout because it can be used to access a node
/// with an immutable reference while that same node is being laid out, causing possible iterator
/// invalidation and use-after-free.
///
/// FIXME(pcwalton): I think this would be better with a borrow flag instead of `unsafe`.
pub struct ContainingBlockLink {
/// The pointer up to the containing block.
link: Option<FlowRef>,
}
impl ContainingBlockLink {
fn new() -> ContainingBlockLink {
ContainingBlockLink {
link: None,
}
}
fn set(&mut self, link: FlowRef) {
self.link = Some(link)
}
pub unsafe fn get<'a>(&'a mut self) -> &'a mut Option<FlowRef> {
&mut self.link
}
#[inline]
pub fn generated_containing_block_rect(&mut self) -> LogicalRect<Au> {
match self.link {
None => fail!("haven't done it"),
Some(ref mut link) => link.get_mut().generated_containing_block_rect(),
}
}
}