mirror of
https://github.com/servo/servo.git
synced 2025-07-11 01:13:41 +01:00
1529 lines
58 KiB
Rust
1529 lines
58 KiB
Rust
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
use app_units::Au;
|
|
use cssparser::{Color as CSSParserColor, Parser, RGBA, ToCss};
|
|
use euclid::{Point2D, Size2D};
|
|
use properties::PropertyDeclaration;
|
|
use properties::longhands;
|
|
use properties::longhands::background_position::computed_value::T as BackgroundPosition;
|
|
use properties::longhands::background_size::computed_value::T as BackgroundSize;
|
|
use properties::longhands::font_weight::computed_value::T as FontWeight;
|
|
use properties::longhands::line_height::computed_value::T as LineHeight;
|
|
use properties::longhands::text_shadow::computed_value::T as TextShadowList;
|
|
use properties::longhands::text_shadow::computed_value::TextShadow;
|
|
use properties::longhands::box_shadow::computed_value::T as BoxShadowList;
|
|
use properties::longhands::box_shadow::single_value::computed_value::T as BoxShadow;
|
|
use properties::longhands::vertical_align::computed_value::T as VerticalAlign;
|
|
use properties::longhands::visibility::computed_value::T as Visibility;
|
|
use properties::longhands::z_index::computed_value::T as ZIndex;
|
|
use std::cmp;
|
|
use std::fmt;
|
|
use super::ComputedValues;
|
|
use values::computed::{Angle, LengthOrPercentageOrAuto, LengthOrPercentageOrNone};
|
|
use values::computed::{BorderRadiusSize, LengthOrNone};
|
|
use values::computed::{CalcLengthOrPercentage, LengthOrPercentage};
|
|
use values::computed::position::Position;
|
|
|
|
|
|
|
|
// NB: This needs to be here because it needs all the longhands generated
|
|
// beforehand.
|
|
#[derive(Copy, Clone, Debug, PartialEq)]
|
|
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
|
pub enum TransitionProperty {
|
|
All,
|
|
% for prop in data.longhands:
|
|
% if prop.animatable:
|
|
${prop.camel_case},
|
|
% endif
|
|
% endfor
|
|
}
|
|
|
|
impl TransitionProperty {
|
|
/// Iterates over each property that is not `All`.
|
|
pub fn each<F: FnMut(TransitionProperty) -> ()>(mut cb: F) {
|
|
% for prop in data.longhands:
|
|
% if prop.animatable:
|
|
cb(TransitionProperty::${prop.camel_case});
|
|
% endif
|
|
% endfor
|
|
}
|
|
|
|
pub fn parse(input: &mut Parser) -> Result<Self, ()> {
|
|
match_ignore_ascii_case! { try!(input.expect_ident()),
|
|
"all" => Ok(TransitionProperty::All),
|
|
% for prop in data.longhands:
|
|
% if prop.animatable:
|
|
"${prop.name}" => Ok(TransitionProperty::${prop.camel_case}),
|
|
% endif
|
|
% endfor
|
|
_ => Err(())
|
|
}
|
|
}
|
|
|
|
pub fn from_declaration(declaration: &PropertyDeclaration) -> Option<Self> {
|
|
match *declaration {
|
|
% for prop in data.longhands:
|
|
% if prop.animatable:
|
|
PropertyDeclaration::${prop.camel_case}(..)
|
|
=> Some(TransitionProperty::${prop.camel_case}),
|
|
% endif
|
|
% endfor
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ToCss for TransitionProperty {
|
|
fn to_css<W>(&self, dest: &mut W) -> fmt::Result where W: fmt::Write {
|
|
match *self {
|
|
TransitionProperty::All => dest.write_str("all"),
|
|
% for prop in data.longhands:
|
|
% if prop.animatable:
|
|
TransitionProperty::${prop.camel_case} => dest.write_str("${prop.name}"),
|
|
% endif
|
|
% endfor
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
|
pub enum AnimatedProperty {
|
|
% for prop in data.longhands:
|
|
% if prop.animatable:
|
|
${prop.camel_case}(longhands::${prop.ident}::computed_value::T,
|
|
longhands::${prop.ident}::computed_value::T),
|
|
% endif
|
|
% endfor
|
|
}
|
|
|
|
impl AnimatedProperty {
|
|
pub fn does_animate(&self) -> bool {
|
|
match *self {
|
|
% for prop in data.longhands:
|
|
% if prop.animatable:
|
|
AnimatedProperty::${prop.camel_case}(ref from, ref to) => from != to,
|
|
% endif
|
|
% endfor
|
|
}
|
|
}
|
|
|
|
pub fn update(&self, style: &mut ComputedValues, progress: f64) {
|
|
match *self {
|
|
% for prop in data.longhands:
|
|
% if prop.animatable:
|
|
AnimatedProperty::${prop.camel_case}(ref from, ref to) => {
|
|
if let Ok(value) = from.interpolate(to, progress) {
|
|
style.mutate_${prop.style_struct.ident.strip("_")}().set_${prop.ident}(value);
|
|
}
|
|
}
|
|
% endif
|
|
% endfor
|
|
}
|
|
}
|
|
|
|
pub fn from_transition_property(transition_property: &TransitionProperty,
|
|
old_style: &ComputedValues,
|
|
new_style: &ComputedValues)
|
|
-> AnimatedProperty {
|
|
match *transition_property {
|
|
TransitionProperty::All => panic!("Can't use TransitionProperty::All here."),
|
|
% for prop in data.longhands:
|
|
% if prop.animatable:
|
|
TransitionProperty::${prop.camel_case} => {
|
|
AnimatedProperty::${prop.camel_case}(
|
|
old_style.get_${prop.style_struct.ident.strip("_")}().clone_${prop.ident}(),
|
|
new_style.get_${prop.style_struct.ident.strip("_")}().clone_${prop.ident}())
|
|
}
|
|
% endif
|
|
% endfor
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A trait used to implement [interpolation][interpolated-types].
|
|
///
|
|
/// [interpolated-types]: https://drafts.csswg.org/css-transitions/#interpolated-types
|
|
pub trait Interpolate: Sized {
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()>;
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-repeatable-list
|
|
pub trait RepeatableListInterpolate: Interpolate {}
|
|
|
|
impl<T: RepeatableListInterpolate> Interpolate for Vec<T> {
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
use num_integer::lcm;
|
|
let len = lcm(self.len(), other.len());
|
|
self.iter().cycle().zip(other.iter().cycle()).take(len).map(|(me, you)| {
|
|
me.interpolate(you, time)
|
|
}).collect()
|
|
}
|
|
}
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-number
|
|
impl Interpolate for Au {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
Ok(Au((self.0 as f64 + (other.0 as f64 - self.0 as f64) * time).round() as i32))
|
|
}
|
|
}
|
|
|
|
impl <T> Interpolate for Option<T> where T: Interpolate {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Option<T>, time: f64) -> Result<Option<T>, ()> {
|
|
match (self, other) {
|
|
(&Some(ref this), &Some(ref other)) => {
|
|
Ok(this.interpolate(other, time).ok())
|
|
}
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-number
|
|
impl Interpolate for f32 {
|
|
#[inline]
|
|
fn interpolate(&self, other: &f32, time: f64) -> Result<Self, ()> {
|
|
Ok(((*self as f64) + ((*other as f64) - (*self as f64)) * time) as f32)
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-number
|
|
impl Interpolate for f64 {
|
|
#[inline]
|
|
fn interpolate(&self, other: &f64, time: f64) -> Result<Self, ()> {
|
|
Ok(*self + (*other - *self) * time)
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-number
|
|
impl Interpolate for i32 {
|
|
#[inline]
|
|
fn interpolate(&self, other: &i32, time: f64) -> Result<Self, ()> {
|
|
let a = *self as f64;
|
|
let b = *other as f64;
|
|
Ok((a + (b - a) * time).round() as i32)
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-number
|
|
impl Interpolate for Angle {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Angle, time: f64) -> Result<Self, ()> {
|
|
self.radians().interpolate(&other.radians(), time).map(Angle)
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-visibility
|
|
impl Interpolate for Visibility {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
match (*self, *other) {
|
|
(Visibility::visible, _) | (_, Visibility::visible) => {
|
|
Ok(if time >= 0.0 && time <= 1.0 {
|
|
Visibility::visible
|
|
} else if time < 0.0 {
|
|
*self
|
|
} else {
|
|
*other
|
|
})
|
|
}
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-integer
|
|
impl Interpolate for ZIndex {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
match (*self, *other) {
|
|
(ZIndex::Number(ref this),
|
|
ZIndex::Number(ref other)) => {
|
|
this.interpolate(other, time).map(ZIndex::Number)
|
|
}
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: Interpolate + Copy> Interpolate for Size2D<T> {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
let width = try!(self.width.interpolate(&other.width, time));
|
|
let height = try!(self.height.interpolate(&other.height, time));
|
|
|
|
Ok(Size2D::new(width, height))
|
|
}
|
|
}
|
|
|
|
impl<T: Interpolate + Copy> Interpolate for Point2D<T> {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
let x = try!(self.x.interpolate(&other.x, time));
|
|
let y = try!(self.y.interpolate(&other.y, time));
|
|
|
|
Ok(Point2D::new(x, y))
|
|
}
|
|
}
|
|
|
|
impl Interpolate for BorderRadiusSize {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
self.0.interpolate(&other.0, time).map(BorderRadiusSize)
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-length
|
|
impl Interpolate for VerticalAlign {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
match (*self, *other) {
|
|
(VerticalAlign::LengthOrPercentage(LengthOrPercentage::Length(ref this)),
|
|
VerticalAlign::LengthOrPercentage(LengthOrPercentage::Length(ref other))) => {
|
|
this.interpolate(other, time).map(|value| {
|
|
VerticalAlign::LengthOrPercentage(LengthOrPercentage::Length(value))
|
|
})
|
|
}
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
impl Interpolate for BackgroundSize {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
self.0.interpolate(&other.0, time).map(BackgroundSize)
|
|
}
|
|
}
|
|
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-color
|
|
impl Interpolate for RGBA {
|
|
#[inline]
|
|
fn interpolate(&self, other: &RGBA, time: f64) -> Result<Self, ()> {
|
|
Ok(RGBA {
|
|
red: try!(self.red.interpolate(&other.red, time)),
|
|
green: try!(self.green.interpolate(&other.green, time)),
|
|
blue: try!(self.blue.interpolate(&other.blue, time)),
|
|
alpha: try!(self.alpha.interpolate(&other.alpha, time)),
|
|
})
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-color
|
|
impl Interpolate for CSSParserColor {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
match (*self, *other) {
|
|
(CSSParserColor::RGBA(ref this), CSSParserColor::RGBA(ref other)) => {
|
|
this.interpolate(other, time).map(CSSParserColor::RGBA)
|
|
}
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-lpcalc
|
|
impl Interpolate for CalcLengthOrPercentage {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
fn interpolate_half<T>(this: Option<T>,
|
|
other: Option<T>,
|
|
time: f64)
|
|
-> Result<Option<T>, ()>
|
|
where T: Default + Interpolate
|
|
{
|
|
match (this, other) {
|
|
(None, None) => Ok(None),
|
|
(this, other) => {
|
|
let this = this.unwrap_or(T::default());
|
|
let other = other.unwrap_or(T::default());
|
|
this.interpolate(&other, time).map(Some)
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(CalcLengthOrPercentage {
|
|
length: try!(interpolate_half(self.length, other.length, time)),
|
|
percentage: try!(interpolate_half(self.percentage, other.percentage, time)),
|
|
})
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-lpcalc
|
|
impl Interpolate for LengthOrPercentage {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
match (*self, *other) {
|
|
(LengthOrPercentage::Length(ref this),
|
|
LengthOrPercentage::Length(ref other)) => {
|
|
this.interpolate(other, time).map(LengthOrPercentage::Length)
|
|
}
|
|
(LengthOrPercentage::Percentage(ref this),
|
|
LengthOrPercentage::Percentage(ref other)) => {
|
|
this.interpolate(other, time).map(LengthOrPercentage::Percentage)
|
|
}
|
|
(this, other) => {
|
|
let this: CalcLengthOrPercentage = From::from(this);
|
|
let other: CalcLengthOrPercentage = From::from(other);
|
|
this.interpolate(&other, time)
|
|
.map(LengthOrPercentage::Calc)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-lpcalc
|
|
impl Interpolate for LengthOrPercentageOrAuto {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
match (*self, *other) {
|
|
(LengthOrPercentageOrAuto::Length(ref this),
|
|
LengthOrPercentageOrAuto::Length(ref other)) => {
|
|
this.interpolate(other, time).map(LengthOrPercentageOrAuto::Length)
|
|
}
|
|
(LengthOrPercentageOrAuto::Percentage(ref this),
|
|
LengthOrPercentageOrAuto::Percentage(ref other)) => {
|
|
this.interpolate(other, time).map(LengthOrPercentageOrAuto::Percentage)
|
|
}
|
|
(LengthOrPercentageOrAuto::Auto, LengthOrPercentageOrAuto::Auto) => {
|
|
Ok(LengthOrPercentageOrAuto::Auto)
|
|
}
|
|
(this, other) => {
|
|
let this: Option<CalcLengthOrPercentage> = From::from(this);
|
|
let other: Option<CalcLengthOrPercentage> = From::from(other);
|
|
match this.interpolate(&other, time) {
|
|
Ok(Some(result)) => Ok(LengthOrPercentageOrAuto::Calc(result)),
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-lpcalc
|
|
impl Interpolate for LengthOrPercentageOrNone {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
match (*self, *other) {
|
|
(LengthOrPercentageOrNone::Length(ref this),
|
|
LengthOrPercentageOrNone::Length(ref other)) => {
|
|
this.interpolate(other, time).map(LengthOrPercentageOrNone::Length)
|
|
}
|
|
(LengthOrPercentageOrNone::Percentage(ref this),
|
|
LengthOrPercentageOrNone::Percentage(ref other)) => {
|
|
this.interpolate(other, time).map(LengthOrPercentageOrNone::Percentage)
|
|
}
|
|
(LengthOrPercentageOrNone::None, LengthOrPercentageOrNone::None) => {
|
|
Ok(LengthOrPercentageOrNone::None)
|
|
}
|
|
_ => Err(())
|
|
}
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-number
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-length
|
|
impl Interpolate for LineHeight {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
match (*self, *other) {
|
|
(LineHeight::Length(ref this),
|
|
LineHeight::Length(ref other)) => {
|
|
this.interpolate(other, time).map(LineHeight::Length)
|
|
}
|
|
(LineHeight::Number(ref this),
|
|
LineHeight::Number(ref other)) => {
|
|
this.interpolate(other, time).map(LineHeight::Number)
|
|
}
|
|
(LineHeight::Normal, LineHeight::Normal) => {
|
|
Ok(LineHeight::Normal)
|
|
}
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// http://dev.w3.org/csswg/css-transitions/#animtype-font-weight
|
|
impl Interpolate for FontWeight {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
let a = (*self as u32) as f64;
|
|
let b = (*other as u32) as f64;
|
|
let weight = a + (b - a) * time;
|
|
Ok(if weight < 150. {
|
|
FontWeight::Weight100
|
|
} else if weight < 250. {
|
|
FontWeight::Weight200
|
|
} else if weight < 350. {
|
|
FontWeight::Weight300
|
|
} else if weight < 450. {
|
|
FontWeight::Weight400
|
|
} else if weight < 550. {
|
|
FontWeight::Weight500
|
|
} else if weight < 650. {
|
|
FontWeight::Weight600
|
|
} else if weight < 750. {
|
|
FontWeight::Weight700
|
|
} else if weight < 850. {
|
|
FontWeight::Weight800
|
|
} else {
|
|
FontWeight::Weight900
|
|
})
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-simple-list
|
|
impl Interpolate for Position {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
Ok(Position {
|
|
horizontal: try!(self.horizontal.interpolate(&other.horizontal, time)),
|
|
vertical: try!(self.vertical.interpolate(&other.vertical, time)),
|
|
})
|
|
}
|
|
}
|
|
|
|
impl RepeatableListInterpolate for Position {}
|
|
|
|
impl Interpolate for BackgroundPosition {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
Ok(BackgroundPosition(try!(self.0.interpolate(&other.0, time))))
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-shadow-list
|
|
impl Interpolate for TextShadow {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
Ok(TextShadow {
|
|
offset_x: try!(self.offset_x.interpolate(&other.offset_x, time)),
|
|
offset_y: try!(self.offset_y.interpolate(&other.offset_y, time)),
|
|
blur_radius: try!(self.blur_radius.interpolate(&other.blur_radius, time)),
|
|
color: try!(self.color.interpolate(&other.color, time)),
|
|
})
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-shadow-list
|
|
impl Interpolate for TextShadowList {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
let zero = TextShadow {
|
|
offset_x: Au(0),
|
|
offset_y: Au(0),
|
|
blur_radius: Au(0),
|
|
color: CSSParserColor::RGBA(RGBA {
|
|
red: 0.0, green: 0.0, blue: 0.0, alpha: 0.0
|
|
})
|
|
};
|
|
|
|
let max_len = cmp::max(self.0.len(), other.0.len());
|
|
let mut result = Vec::with_capacity(max_len);
|
|
|
|
for i in 0..max_len {
|
|
let shadow = match (self.0.get(i), other.0.get(i)) {
|
|
(Some(shadow), Some(other))
|
|
=> try!(shadow.interpolate(other, time)),
|
|
(Some(shadow), None) => {
|
|
shadow.interpolate(&zero, time).unwrap()
|
|
}
|
|
(None, Some(shadow)) => {
|
|
zero.interpolate(&shadow, time).unwrap()
|
|
}
|
|
(None, None) => unreachable!(),
|
|
};
|
|
result.push(shadow);
|
|
}
|
|
|
|
Ok(TextShadowList(result))
|
|
}
|
|
}
|
|
|
|
|
|
impl Interpolate for BoxShadowList {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
// The inset value must change
|
|
let mut zero = BoxShadow {
|
|
offset_x: Au(0),
|
|
offset_y: Au(0),
|
|
spread_radius: Au(0),
|
|
blur_radius: Au(0),
|
|
color: CSSParserColor::RGBA(RGBA {
|
|
red: 0.0, green: 0.0, blue: 0.0, alpha: 0.0
|
|
}),
|
|
inset: false,
|
|
};
|
|
|
|
let max_len = cmp::max(self.0.len(), other.0.len());
|
|
let mut result = Vec::with_capacity(max_len);
|
|
|
|
for i in 0..max_len {
|
|
let shadow = match (self.0.get(i), other.0.get(i)) {
|
|
(Some(shadow), Some(other))
|
|
=> try!(shadow.interpolate(other, time)),
|
|
(Some(shadow), None) => {
|
|
zero.inset = shadow.inset;
|
|
shadow.interpolate(&zero, time).unwrap()
|
|
}
|
|
(None, Some(shadow)) => {
|
|
zero.inset = shadow.inset;
|
|
zero.interpolate(&shadow, time).unwrap()
|
|
}
|
|
(None, None) => unreachable!(),
|
|
};
|
|
result.push(shadow);
|
|
}
|
|
|
|
Ok(BoxShadowList(result))
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transitions/#animtype-shadow-list
|
|
impl Interpolate for BoxShadow {
|
|
#[inline]
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
if self.inset != other.inset {
|
|
return Err(());
|
|
}
|
|
|
|
let x = try!(self.offset_x.interpolate(&other.offset_x, time));
|
|
let y = try!(self.offset_y.interpolate(&other.offset_y, time));
|
|
let color = try!(self.color.interpolate(&other.color, time));
|
|
let spread = try!(self.spread_radius.interpolate(&other.spread_radius, time));
|
|
let blur = try!(self.blur_radius.interpolate(&other.blur_radius, time));
|
|
|
|
Ok(BoxShadow {
|
|
offset_x: x,
|
|
offset_y: y,
|
|
blur_radius: blur,
|
|
spread_radius: spread,
|
|
color: color,
|
|
inset: self.inset,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Interpolate for LengthOrNone {
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
match (*self, *other) {
|
|
(LengthOrNone::Length(ref len), LengthOrNone::Length(ref other)) =>
|
|
len.interpolate(&other, time).map(LengthOrNone::Length),
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
% if product == "servo":
|
|
use properties::longhands::transform::computed_value::ComputedMatrix;
|
|
use properties::longhands::transform::computed_value::ComputedOperation as TransformOperation;
|
|
use properties::longhands::transform::computed_value::T as TransformList;
|
|
use values::CSSFloat;
|
|
use values::specified::Angle as SpecifiedAngle;
|
|
|
|
/// Check if it's possible to do a direct numerical interpolation
|
|
/// between these two transform lists.
|
|
/// http://dev.w3.org/csswg/css-transforms/#transform-transform-animation
|
|
fn can_interpolate_list(from_list: &[TransformOperation],
|
|
to_list: &[TransformOperation]) -> bool {
|
|
// Lists must be equal length
|
|
if from_list.len() != to_list.len() {
|
|
return false;
|
|
}
|
|
|
|
// Each transform operation must match primitive type in other list
|
|
for (from, to) in from_list.iter().zip(to_list) {
|
|
match (from, to) {
|
|
(&TransformOperation::Matrix(..), &TransformOperation::Matrix(..)) |
|
|
(&TransformOperation::Skew(..), &TransformOperation::Skew(..)) |
|
|
(&TransformOperation::Translate(..), &TransformOperation::Translate(..)) |
|
|
(&TransformOperation::Scale(..), &TransformOperation::Scale(..)) |
|
|
(&TransformOperation::Rotate(..), &TransformOperation::Rotate(..)) |
|
|
(&TransformOperation::Perspective(..), &TransformOperation::Perspective(..)) => {}
|
|
_ => {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
/// Build an equivalent 'identity transform function list' based
|
|
/// on an existing transform list.
|
|
/// http://dev.w3.org/csswg/css-transforms/#none-transform-animation
|
|
fn build_identity_transform_list(list: &[TransformOperation]) -> Vec<TransformOperation> {
|
|
let mut result = vec!();
|
|
|
|
for operation in list {
|
|
match *operation {
|
|
TransformOperation::Matrix(..) => {
|
|
let identity = ComputedMatrix::identity();
|
|
result.push(TransformOperation::Matrix(identity));
|
|
}
|
|
TransformOperation::Skew(..) => {
|
|
result.push(TransformOperation::Skew(Angle(0.0), Angle(0.0)));
|
|
}
|
|
TransformOperation::Translate(..) => {
|
|
result.push(TransformOperation::Translate(LengthOrPercentage::zero(),
|
|
LengthOrPercentage::zero(),
|
|
Au(0)));
|
|
}
|
|
TransformOperation::Scale(..) => {
|
|
result.push(TransformOperation::Scale(1.0, 1.0, 1.0));
|
|
}
|
|
TransformOperation::Rotate(..) => {
|
|
result.push(TransformOperation::Rotate(0.0, 0.0, 1.0, Angle(0.0)));
|
|
}
|
|
TransformOperation::Perspective(..) => {
|
|
// http://dev.w3.org/csswg/css-transforms/#identity-transform-function
|
|
let identity = ComputedMatrix::identity();
|
|
result.push(TransformOperation::Matrix(identity));
|
|
}
|
|
}
|
|
}
|
|
|
|
result
|
|
}
|
|
|
|
/// Interpolate two transform lists.
|
|
/// http://dev.w3.org/csswg/css-transforms/#interpolation-of-transforms
|
|
fn interpolate_transform_list(from_list: &[TransformOperation],
|
|
to_list: &[TransformOperation],
|
|
time: f64) -> TransformList {
|
|
let mut result = vec![];
|
|
|
|
if can_interpolate_list(from_list, to_list) {
|
|
for (from, to) in from_list.iter().zip(to_list) {
|
|
match (from, to) {
|
|
(&TransformOperation::Matrix(from),
|
|
&TransformOperation::Matrix(_to)) => {
|
|
let interpolated = from.interpolate(&_to, time).unwrap();
|
|
result.push(TransformOperation::Matrix(interpolated));
|
|
}
|
|
(&TransformOperation::Skew(fx, fy),
|
|
&TransformOperation::Skew(tx, ty)) => {
|
|
let ix = fx.interpolate(&tx, time).unwrap();
|
|
let iy = fy.interpolate(&ty, time).unwrap();
|
|
result.push(TransformOperation::Skew(ix, iy));
|
|
}
|
|
(&TransformOperation::Translate(fx, fy, fz),
|
|
&TransformOperation::Translate(tx, ty, tz)) => {
|
|
let ix = fx.interpolate(&tx, time).unwrap();
|
|
let iy = fy.interpolate(&ty, time).unwrap();
|
|
let iz = fz.interpolate(&tz, time).unwrap();
|
|
result.push(TransformOperation::Translate(ix, iy, iz));
|
|
}
|
|
(&TransformOperation::Scale(fx, fy, fz),
|
|
&TransformOperation::Scale(tx, ty, tz)) => {
|
|
let ix = fx.interpolate(&tx, time).unwrap();
|
|
let iy = fy.interpolate(&ty, time).unwrap();
|
|
let iz = fz.interpolate(&tz, time).unwrap();
|
|
result.push(TransformOperation::Scale(ix, iy, iz));
|
|
}
|
|
(&TransformOperation::Rotate(fx, fy, fz, fa),
|
|
&TransformOperation::Rotate(tx, ty, tz, ta)) => {
|
|
let norm_f = ((fx * fx) + (fy * fy) + (fz * fz)).sqrt();
|
|
let norm_t = ((tx * tx) + (ty * ty) + (tz * tz)).sqrt();
|
|
let (fx, fy, fz) = (fx / norm_f, fy / norm_f, fz / norm_f);
|
|
let (tx, ty, tz) = (tx / norm_t, ty / norm_t, tz / norm_t);
|
|
if fx == tx && fy == ty && fz == tz {
|
|
let ia = fa.interpolate(&ta, time).unwrap();
|
|
result.push(TransformOperation::Rotate(fx, fy, fz, ia));
|
|
} else {
|
|
let matrix_f = rotate_to_matrix(fx, fy, fz, fa);
|
|
let matrix_t = rotate_to_matrix(tx, ty, tz, ta);
|
|
let interpolated = matrix_f.interpolate(&matrix_t, time).unwrap();
|
|
|
|
result.push(TransformOperation::Matrix(interpolated));
|
|
}
|
|
}
|
|
(&TransformOperation::Perspective(fd),
|
|
&TransformOperation::Perspective(_td)) => {
|
|
let mut fd_matrix = ComputedMatrix::identity();
|
|
let mut td_matrix = ComputedMatrix::identity();
|
|
fd_matrix.m43 = -1. / fd.to_f32_px();
|
|
td_matrix.m43 = -1. / _td.to_f32_px();
|
|
let interpolated = fd_matrix.interpolate(&td_matrix, time).unwrap();
|
|
result.push(TransformOperation::Matrix(interpolated));
|
|
}
|
|
_ => {
|
|
// This should be unreachable due to the can_interpolate_list() call.
|
|
unreachable!();
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// TODO(gw): Implement matrix decomposition and interpolation
|
|
result.extend_from_slice(from_list);
|
|
}
|
|
|
|
TransformList(Some(result))
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transforms/#Rotate3dDefined
|
|
fn rotate_to_matrix(x: f32, y: f32, z: f32, a: SpecifiedAngle) -> ComputedMatrix {
|
|
let half_rad = a.radians() / 2.0;
|
|
let sc = (half_rad).sin() * (half_rad).cos();
|
|
let sq = (half_rad).sin().powi(2);
|
|
|
|
ComputedMatrix {
|
|
m11: 1.0 - 2.0 * (y * y + z * z) * sq,
|
|
m12: 2.0 * (x * y * sq - z * sc),
|
|
m13: 2.0 * (x * z * sq + y * sc),
|
|
m14: 0.0,
|
|
|
|
m21: 2.0 * (x * y * sq + z * sc),
|
|
m22: 1.0 - 2.0 * (x * x + z * z) * sq,
|
|
m23: 2.0 * (y * z * sq - x * sc),
|
|
m24: 0.0,
|
|
|
|
m31: 2.0 * (x * z * sq - y * sc),
|
|
m32: 2.0 * (y * z * sq + x * sc),
|
|
m33: 1.0 - 2.0 * (x * x + y * y) * sq,
|
|
m34: 0.0,
|
|
|
|
m41: 0.0,
|
|
m42: 0.0,
|
|
m43: 0.0,
|
|
m44: 1.0
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
|
pub struct InnerMatrix2D {
|
|
pub m11: CSSFloat, pub m12: CSSFloat,
|
|
pub m21: CSSFloat, pub m22: CSSFloat,
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
|
pub struct Translate2D(f32, f32);
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
|
pub struct Scale2D(f32, f32);
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
|
pub struct MatrixDecomposed2D {
|
|
pub translate: Translate2D,
|
|
pub scale: Scale2D,
|
|
pub angle: f32,
|
|
pub matrix: InnerMatrix2D,
|
|
}
|
|
|
|
impl Interpolate for InnerMatrix2D {
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
Ok(InnerMatrix2D {
|
|
m11: try!(self.m11.interpolate(&other.m11, time)),
|
|
m12: try!(self.m12.interpolate(&other.m12, time)),
|
|
m21: try!(self.m21.interpolate(&other.m21, time)),
|
|
m22: try!(self.m22.interpolate(&other.m22, time)),
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Interpolate for Translate2D {
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
Ok(Translate2D(
|
|
try!(self.0.interpolate(&other.0, time)),
|
|
try!(self.1.interpolate(&other.1, time))
|
|
))
|
|
}
|
|
}
|
|
|
|
impl Interpolate for Scale2D {
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
Ok(Scale2D(
|
|
try!(self.0.interpolate(&other.0, time)),
|
|
try!(self.1.interpolate(&other.1, time))
|
|
))
|
|
}
|
|
}
|
|
|
|
impl Interpolate for MatrixDecomposed2D {
|
|
/// https://drafts.csswg.org/css-transforms/#interpolation-of-decomposed-2d-matrix-values
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
// If x-axis of one is flipped, and y-axis of the other,
|
|
// convert to an unflipped rotation.
|
|
let mut scale = self.scale;
|
|
let mut angle = self.angle;
|
|
let mut other_angle = other.angle;
|
|
if (scale.0 < 0.0 && other.scale.1 < 0.0) || (scale.1 < 0.0 && other.scale.0 < 0.0) {
|
|
scale.0 = -scale.0;
|
|
scale.1 = -scale.1;
|
|
angle += if angle < 0.0 {180.} else {-180.};
|
|
}
|
|
|
|
// Don't rotate the long way around.
|
|
if angle == 0.0 {
|
|
angle = 360.
|
|
}
|
|
if other_angle == 0.0 {
|
|
other_angle = 360.
|
|
}
|
|
|
|
if (angle - other_angle).abs() > 180. {
|
|
if angle > other_angle {
|
|
angle -= 360.
|
|
}
|
|
else{
|
|
other_angle -= 360.
|
|
}
|
|
}
|
|
|
|
// Interpolate all values.
|
|
let translate = try!(self.translate.interpolate(&other.translate, time));
|
|
let scale = try!(scale.interpolate(&other.scale, time));
|
|
let angle = try!(angle.interpolate(&other_angle, time));
|
|
let matrix = try!(self.matrix.interpolate(&other.matrix, time));
|
|
|
|
Ok(MatrixDecomposed2D {
|
|
translate: translate,
|
|
scale: scale,
|
|
angle: angle,
|
|
matrix: matrix,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Interpolate for ComputedMatrix {
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
if self.is_3d() || other.is_3d() {
|
|
let decomposed_from = decompose_3d_matrix(*self);
|
|
let decomposed_to = decompose_3d_matrix(*other);
|
|
match (decomposed_from, decomposed_to) {
|
|
(Ok(from), Ok(to)) => {
|
|
let interpolated = try!(from.interpolate(&to, time));
|
|
Ok(ComputedMatrix::from(interpolated))
|
|
},
|
|
_ => {
|
|
let interpolated = if time < 0.5 {*self} else {*other};
|
|
Ok(interpolated)
|
|
}
|
|
}
|
|
} else {
|
|
let decomposed_from = MatrixDecomposed2D::from(*self);
|
|
let decomposed_to = MatrixDecomposed2D::from(*other);
|
|
let interpolated = try!(decomposed_from.interpolate(&decomposed_to, time));
|
|
Ok(ComputedMatrix::from(interpolated))
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<ComputedMatrix> for MatrixDecomposed2D {
|
|
/// Decompose a 2D matrix.
|
|
/// https://drafts.csswg.org/css-transforms/#decomposing-a-2d-matrix
|
|
fn from(matrix: ComputedMatrix) -> MatrixDecomposed2D {
|
|
let mut row0x = matrix.m11;
|
|
let mut row0y = matrix.m12;
|
|
let mut row1x = matrix.m21;
|
|
let mut row1y = matrix.m22;
|
|
|
|
let translate = Translate2D(matrix.m41, matrix.m42);
|
|
let mut scale = Scale2D((row0x * row0x + row0y * row0y).sqrt(),
|
|
(row1x * row1x + row1y * row1y).sqrt());
|
|
|
|
// If determinant is negative, one axis was flipped.
|
|
let determinant = row0x * row1y - row0y * row1x;
|
|
if determinant < 0. {
|
|
if row0x < row1y {
|
|
scale.0 = -scale.0;
|
|
} else {
|
|
scale.1 = -scale.1;
|
|
}
|
|
}
|
|
|
|
// Renormalize matrix to remove scale.
|
|
if scale.0 != 0.0 {
|
|
row0x *= 1. / scale.0;
|
|
row0y *= 1. / scale.0;
|
|
}
|
|
if scale.1 != 0.0 {
|
|
row1x *= 1. / scale.1;
|
|
row1y *= 1. / scale.1;
|
|
}
|
|
|
|
// Compute rotation and renormalize matrix.
|
|
let mut angle = row0y.atan2(row0x);
|
|
if angle != 0.0 {
|
|
let sn = -row0y;
|
|
let cs = row0x;
|
|
let m11 = row0x;
|
|
let m12 = row0y;
|
|
let m21 = row1x;
|
|
let m22 = row1y;
|
|
row0x = cs * m11 + sn * m21;
|
|
row0y = cs * m12 + sn * m22;
|
|
row1x = -sn * m11 + cs * m21;
|
|
row1y = -sn * m12 + cs * m22;
|
|
}
|
|
|
|
let m = InnerMatrix2D {
|
|
m11: row0x, m12: row0y,
|
|
m21: row1x, m22: row1y,
|
|
};
|
|
|
|
// Convert into degrees because our rotation functions expect it.
|
|
angle = angle.to_degrees();
|
|
MatrixDecomposed2D {
|
|
translate: translate,
|
|
scale: scale,
|
|
angle: angle,
|
|
matrix: m,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<MatrixDecomposed2D> for ComputedMatrix {
|
|
/// Recompose a 2D matrix.
|
|
/// https://drafts.csswg.org/css-transforms/#recomposing-to-a-2d-matrix
|
|
fn from(decomposed: MatrixDecomposed2D) -> ComputedMatrix {
|
|
let mut computed_matrix = ComputedMatrix::identity();
|
|
computed_matrix.m11 = decomposed.matrix.m11;
|
|
computed_matrix.m12 = decomposed.matrix.m12;
|
|
computed_matrix.m21 = decomposed.matrix.m21;
|
|
computed_matrix.m22 = decomposed.matrix.m22;
|
|
|
|
// Translate matrix.
|
|
computed_matrix.m41 = decomposed.translate.0;
|
|
computed_matrix.m42 = decomposed.translate.1;
|
|
|
|
// Rotate matrix.
|
|
let angle = decomposed.angle.to_radians();
|
|
let cos_angle = angle.cos();
|
|
let sin_angle = angle.sin();
|
|
|
|
let mut rotate_matrix = ComputedMatrix::identity();
|
|
rotate_matrix.m11 = cos_angle;
|
|
rotate_matrix.m12 = sin_angle;
|
|
rotate_matrix.m21 = -sin_angle;
|
|
rotate_matrix.m22 = cos_angle;
|
|
|
|
// Multiplication of computed_matrix and rotate_matrix
|
|
computed_matrix = multiply(rotate_matrix, computed_matrix);
|
|
|
|
// Scale matrix.
|
|
computed_matrix.m11 *= decomposed.scale.0;
|
|
computed_matrix.m12 *= decomposed.scale.0;
|
|
computed_matrix.m21 *= decomposed.scale.1;
|
|
computed_matrix.m22 *= decomposed.scale.1;
|
|
computed_matrix
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
|
pub struct Translate3D(f32, f32, f32);
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
|
pub struct Scale3D(f32, f32, f32);
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
|
pub struct Skew(f32, f32, f32);
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
|
pub struct Perspective(f32, f32, f32, f32);
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
|
pub struct Quaternion(f32, f32, f32, f32);
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
|
pub struct MatrixDecomposed3D {
|
|
pub translate: Translate3D,
|
|
pub scale: Scale3D,
|
|
pub skew: Skew,
|
|
pub perspective: Perspective,
|
|
pub quaternion: Quaternion,
|
|
}
|
|
|
|
/// Decompose a 3D matrix.
|
|
/// https://drafts.csswg.org/css-transforms/#decomposing-a-3d-matrix
|
|
fn decompose_3d_matrix(mut matrix: ComputedMatrix) -> Result<MatrixDecomposed3D, ()> {
|
|
// Normalize the matrix.
|
|
if matrix.m44 == 0.0 {
|
|
return Err(());
|
|
}
|
|
|
|
let scaling_factor = matrix.m44;
|
|
% for i in range(1, 5):
|
|
% for j in range(1, 5):
|
|
matrix.m${i}${j} /= scaling_factor;
|
|
% endfor
|
|
% endfor
|
|
|
|
// perspective_matrix is used to solve for perspective, but it also provides
|
|
// an easy way to test for singularity of the upper 3x3 component.
|
|
let mut perspective_matrix = matrix;
|
|
|
|
% for i in range(1, 4):
|
|
perspective_matrix.m${i}4 = 0.0;
|
|
% endfor
|
|
perspective_matrix.m44 = 1.0;
|
|
|
|
if perspective_matrix.determinant() == 0.0 {
|
|
return Err(());
|
|
}
|
|
|
|
// First, isolate perspective.
|
|
let perspective = if matrix.m14 != 0.0 || matrix.m24 != 0.0 || matrix.m34 != 0.0 {
|
|
let right_hand_side: [f32; 4] = [
|
|
matrix.m14,
|
|
matrix.m24,
|
|
matrix.m34,
|
|
matrix.m44
|
|
];
|
|
|
|
perspective_matrix = perspective_matrix.inverse().unwrap();
|
|
|
|
// Transpose perspective_matrix
|
|
perspective_matrix = ComputedMatrix {
|
|
% for i in range(1, 5):
|
|
% for j in range(1, 5):
|
|
m${i}${j}: perspective_matrix.m${j}${i},
|
|
% endfor
|
|
% endfor
|
|
};
|
|
|
|
// Multiply right_hand_side with perspective_matrix
|
|
let mut tmp: [f32; 4] = [0.0; 4];
|
|
% for i in range(1, 5):
|
|
tmp[${i - 1}] = (right_hand_side[0] * perspective_matrix.m1${i}) +
|
|
(right_hand_side[1] * perspective_matrix.m2${i}) +
|
|
(right_hand_side[2] * perspective_matrix.m3${i}) +
|
|
(right_hand_side[3] * perspective_matrix.m4${i});
|
|
% endfor
|
|
|
|
Perspective(tmp[0], tmp[1], tmp[2], tmp[3])
|
|
} else {
|
|
Perspective(0.0, 0.0, 0.0, 1.0)
|
|
};
|
|
|
|
// Next take care of translation
|
|
let translate = Translate3D (
|
|
matrix.m41,
|
|
matrix.m42,
|
|
matrix.m43
|
|
);
|
|
|
|
// Now get scale and shear. 'row' is a 3 element array of 3 component vectors
|
|
let mut row: [[f32; 3]; 3] = [[0.0; 3]; 3];
|
|
% for i in range(1, 4):
|
|
row[${i - 1}][0] = matrix.m${i}1;
|
|
row[${i - 1}][1] = matrix.m${i}2;
|
|
row[${i - 1}][2] = matrix.m${i}3;
|
|
% endfor
|
|
|
|
// Compute X scale factor and normalize first row.
|
|
let row0len = (row[0][0] * row[0][0] + row[0][1] * row[0][1] + row[0][2] * row[0][2]).sqrt();
|
|
let mut scale = Scale3D(row0len, 0.0, 0.0);
|
|
row[0] = [row[0][0] / row0len, row[0][1] / row0len, row[0][2] / row0len];
|
|
|
|
// Compute XY shear factor and make 2nd row orthogonal to 1st.
|
|
let mut skew = Skew(dot(row[0], row[1]), 0.0, 0.0);
|
|
row[1] = combine(row[1], row[0], 1.0, -skew.0);
|
|
|
|
// Now, compute Y scale and normalize 2nd row.
|
|
let row1len = (row[0][0] * row[0][0] + row[0][1] * row[0][1] + row[0][2] * row[0][2]).sqrt();
|
|
scale.1 = row1len;
|
|
row[1] = [row[1][0] / row1len, row[1][1] / row1len, row[1][2] / row1len];
|
|
skew.0 /= scale.1;
|
|
|
|
// Compute XZ and YZ shears, orthogonalize 3rd row
|
|
skew.1 = dot(row[0], row[2]);
|
|
row[2] = combine(row[2], row[0], 1.0, -skew.1);
|
|
skew.2 = dot(row[1], row[2]);
|
|
row[2] = combine(row[2], row[1], 1.0, -skew.2);
|
|
|
|
// Next, get Z scale and normalize 3rd row.
|
|
let row2len = (row[2][0] * row[2][0] + row[2][1] * row[2][1] + row[2][2] * row[2][2]).sqrt();
|
|
scale.2 = row2len;
|
|
row[2] = [row[2][0] / row2len, row[2][1] / row2len, row[2][2] / row2len];
|
|
skew.1 /= scale.2;
|
|
skew.2 /= scale.2;
|
|
|
|
// At this point, the matrix (in rows) is orthonormal.
|
|
// Check for a coordinate system flip. If the determinant
|
|
// is -1, then negate the matrix and the scaling factors.
|
|
let pdum3 = cross(row[1], row[2]);
|
|
if dot(row[0], pdum3) < 0.0 {
|
|
% for i in range(3):
|
|
scale.${i} *= -1.0;
|
|
row[${i}][0] *= -1.0;
|
|
row[${i}][1] *= -1.0;
|
|
row[${i}][2] *= -1.0;
|
|
% endfor
|
|
}
|
|
|
|
// Now, get the rotations out
|
|
let mut quaternion = Quaternion (
|
|
0.5 * ((1.0 + row[0][0] - row[1][1] - row[2][2]).max(0.0)).sqrt(),
|
|
0.5 * ((1.0 - row[0][0] + row[1][1] - row[2][2]).max(0.0)).sqrt(),
|
|
0.5 * ((1.0 - row[0][0] - row[1][1] + row[2][2]).max(0.0)).sqrt(),
|
|
0.5 * ((1.0 + row[0][0] + row[1][1] + row[2][2]).max(0.0)).sqrt()
|
|
);
|
|
|
|
if row[2][1] > row[1][2] {
|
|
quaternion.0 = -quaternion.0
|
|
}
|
|
if row[0][2] > row[2][0] {
|
|
quaternion.1 = -quaternion.1
|
|
}
|
|
if row[1][0] > row[0][1] {
|
|
quaternion.2 = -quaternion.2
|
|
}
|
|
|
|
Ok(MatrixDecomposed3D {
|
|
translate: translate,
|
|
scale: scale,
|
|
skew: skew,
|
|
perspective: perspective,
|
|
quaternion: quaternion
|
|
})
|
|
}
|
|
|
|
// Combine 2 point.
|
|
fn combine(a: [f32; 3], b: [f32; 3], ascl: f32, bscl: f32) -> [f32; 3] {
|
|
[
|
|
(ascl * a[0]) + (bscl * b[0]),
|
|
(ascl * a[1]) + (bscl * b[1]),
|
|
(ascl * a[2]) + (bscl * b[2])
|
|
]
|
|
}
|
|
|
|
// Dot product.
|
|
fn dot(a: [f32; 3], b: [f32; 3]) -> f32 {
|
|
a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
|
|
}
|
|
|
|
// Cross product.
|
|
fn cross(row1: [f32; 3], row2: [f32; 3]) -> [f32; 3] {
|
|
[
|
|
row1[1] * row2[2] - row1[2] * row2[1],
|
|
row1[2] * row2[0] - row1[0] * row2[2],
|
|
row1[0] * row2[1] - row1[1] * row2[0]
|
|
]
|
|
}
|
|
|
|
impl Interpolate for Translate3D {
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
Ok(Translate3D(
|
|
try!(self.0.interpolate(&other.0, time)),
|
|
try!(self.1.interpolate(&other.1, time)),
|
|
try!(self.2.interpolate(&other.2, time))
|
|
))
|
|
}
|
|
}
|
|
|
|
impl Interpolate for Scale3D {
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
Ok(Scale3D(
|
|
try!(self.0.interpolate(&other.0, time)),
|
|
try!(self.1.interpolate(&other.1, time)),
|
|
try!(self.2.interpolate(&other.2, time))
|
|
))
|
|
}
|
|
}
|
|
|
|
impl Interpolate for Skew {
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
Ok(Skew(
|
|
try!(self.0.interpolate(&other.0, time)),
|
|
try!(self.1.interpolate(&other.1, time)),
|
|
try!(self.2.interpolate(&other.2, time))
|
|
))
|
|
}
|
|
}
|
|
|
|
impl Interpolate for Perspective {
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
Ok(Perspective(
|
|
try!(self.0.interpolate(&other.0, time)),
|
|
try!(self.1.interpolate(&other.1, time)),
|
|
try!(self.2.interpolate(&other.2, time)),
|
|
try!(self.3.interpolate(&other.3, time))
|
|
))
|
|
}
|
|
}
|
|
|
|
impl Interpolate for MatrixDecomposed3D {
|
|
/// https://drafts.csswg.org/css-transforms/#interpolation-of-decomposed-3d-matrix-values
|
|
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
|
|
let mut interpolated = *self;
|
|
|
|
// Interpolate translate, scale, skew and perspective components.
|
|
interpolated.translate = try!(self.translate.interpolate(&other.translate, time));
|
|
interpolated.scale = try!(self.scale.interpolate(&other.scale, time));
|
|
interpolated.skew = try!(self.skew.interpolate(&other.skew, time));
|
|
interpolated.perspective = try!(self.perspective.interpolate(&other.perspective, time));
|
|
|
|
// Interpolate quaternions using spherical linear interpolation (Slerp).
|
|
let mut product = self.quaternion.0 * other.quaternion.0 +
|
|
self.quaternion.1 * other.quaternion.1 +
|
|
self.quaternion.2 * other.quaternion.2 +
|
|
self.quaternion.3 * other.quaternion.3;
|
|
|
|
// Clamp product to -1.0 <= product <= 1.0
|
|
product = product.min(1.0);
|
|
product = product.max(-1.0);
|
|
|
|
if product == 1.0 {
|
|
return Ok(interpolated);
|
|
}
|
|
|
|
let theta = product.acos();
|
|
let w = (time as f32 * theta).sin() * 1.0 / (1.0 - product * product).sqrt();
|
|
|
|
let mut a = *self;
|
|
let mut b = *other;
|
|
% for i in range(4):
|
|
a.quaternion.${i} *= (time as f32 * theta).cos() - product * w;
|
|
b.quaternion.${i} *= w;
|
|
interpolated.quaternion.${i} = a.quaternion.${i} + b.quaternion.${i};
|
|
% endfor
|
|
|
|
Ok(interpolated)
|
|
}
|
|
}
|
|
|
|
impl From<MatrixDecomposed3D> for ComputedMatrix {
|
|
/// Recompose a 3D matrix.
|
|
/// https://drafts.csswg.org/css-transforms/#recomposing-to-a-3d-matrix
|
|
fn from(decomposed: MatrixDecomposed3D) -> ComputedMatrix {
|
|
let mut matrix = ComputedMatrix::identity();
|
|
|
|
// Apply perspective
|
|
% for i in range(1, 5):
|
|
matrix.m${i}4 = decomposed.perspective.${i - 1};
|
|
% endfor
|
|
|
|
// Apply translation
|
|
% for i in range(1, 4):
|
|
% for j in range(1, 4):
|
|
matrix.m4${i} += decomposed.translate.${j - 1} * matrix.m${j}${i};
|
|
% endfor
|
|
% endfor
|
|
|
|
// Apply rotation
|
|
let x = decomposed.quaternion.0;
|
|
let y = decomposed.quaternion.1;
|
|
let z = decomposed.quaternion.2;
|
|
let w = decomposed.quaternion.3;
|
|
|
|
// Construct a composite rotation matrix from the quaternion values
|
|
// rotationMatrix is a identity 4x4 matrix initially
|
|
let mut rotation_matrix = ComputedMatrix::identity();
|
|
rotation_matrix.m11 = 1.0 - 2.0 * (y * y + z * z);
|
|
rotation_matrix.m12 = 2.0 * (x * y + z * w);
|
|
rotation_matrix.m13 = 2.0 * (x * z - y * w);
|
|
rotation_matrix.m21 = 2.0 * (x * y - z * w);
|
|
rotation_matrix.m22 = 1.0 - 2.0 * (x * x + z * z);
|
|
rotation_matrix.m23 = 2.0 * (y * z + x * w);
|
|
rotation_matrix.m31 = 2.0 * (x * z + y * w);
|
|
rotation_matrix.m32 = 2.0 * (y * z - x * w);
|
|
rotation_matrix.m33 = 1.0 - 2.0 * (x * x + y * y);
|
|
|
|
matrix = multiply(rotation_matrix, matrix);
|
|
|
|
// Apply skew
|
|
let mut temp = ComputedMatrix::identity();
|
|
if decomposed.skew.2 != 0.0 {
|
|
temp.m32 = decomposed.skew.2;
|
|
matrix = multiply(matrix, temp);
|
|
}
|
|
|
|
if decomposed.skew.1 != 0.0 {
|
|
temp.m32 = 0.0;
|
|
temp.m31 = decomposed.skew.1;
|
|
matrix = multiply(matrix, temp);
|
|
}
|
|
|
|
if decomposed.skew.0 != 0.0 {
|
|
temp.m31 = 0.0;
|
|
temp.m21 = decomposed.skew.0;
|
|
matrix = multiply(matrix, temp);
|
|
}
|
|
|
|
// Apply scale
|
|
% for i in range(1, 4):
|
|
% for j in range(1, 4):
|
|
matrix.m${i}${j} *= decomposed.scale.${i - 1};
|
|
% endfor
|
|
% endfor
|
|
|
|
matrix
|
|
}
|
|
}
|
|
|
|
// Multiplication of two 4x4 matrices.
|
|
fn multiply(a: ComputedMatrix, b: ComputedMatrix) -> ComputedMatrix {
|
|
let mut a_clone = a;
|
|
% for i in range(1, 5):
|
|
% for j in range(1, 5):
|
|
a_clone.m${i}${j} = (a.m${i}1 * b.m1${j}) +
|
|
(a.m${i}2 * b.m2${j}) +
|
|
(a.m${i}3 * b.m3${j}) +
|
|
(a.m${i}4 * b.m4${j});
|
|
% endfor
|
|
% endfor
|
|
a_clone
|
|
}
|
|
|
|
impl ComputedMatrix {
|
|
fn is_3d(&self) -> bool {
|
|
self.m13 != 0.0 || self.m14 != 0.0 ||
|
|
self.m23 != 0.0 || self.m24 != 0.0 ||
|
|
self.m31 != 0.0 || self.m32 != 0.0 || self.m33 != 1.0 || self.m34 != 0.0 ||
|
|
self.m43 != 0.0 || self.m44 != 1.0
|
|
}
|
|
|
|
pub fn determinant(&self) -> CSSFloat {
|
|
self.m14 * self.m23 * self.m32 * self.m41 -
|
|
self.m13 * self.m24 * self.m32 * self.m41 -
|
|
self.m14 * self.m22 * self.m33 * self.m41 +
|
|
self.m12 * self.m24 * self.m33 * self.m41 +
|
|
self.m13 * self.m22 * self.m34 * self.m41 -
|
|
self.m12 * self.m23 * self.m34 * self.m41 -
|
|
self.m14 * self.m23 * self.m31 * self.m42 +
|
|
self.m13 * self.m24 * self.m31 * self.m42 +
|
|
self.m14 * self.m21 * self.m33 * self.m42 -
|
|
self.m11 * self.m24 * self.m33 * self.m42 -
|
|
self.m13 * self.m21 * self.m34 * self.m42 +
|
|
self.m11 * self.m23 * self.m34 * self.m42 +
|
|
self.m14 * self.m22 * self.m31 * self.m43 -
|
|
self.m12 * self.m24 * self.m31 * self.m43 -
|
|
self.m14 * self.m21 * self.m32 * self.m43 +
|
|
self.m11 * self.m24 * self.m32 * self.m43 +
|
|
self.m12 * self.m21 * self.m34 * self.m43 -
|
|
self.m11 * self.m22 * self.m34 * self.m43 -
|
|
self.m13 * self.m22 * self.m31 * self.m44 +
|
|
self.m12 * self.m23 * self.m31 * self.m44 +
|
|
self.m13 * self.m21 * self.m32 * self.m44 -
|
|
self.m11 * self.m23 * self.m32 * self.m44 -
|
|
self.m12 * self.m21 * self.m33 * self.m44 +
|
|
self.m11 * self.m22 * self.m33 * self.m44
|
|
}
|
|
|
|
fn inverse(&self) -> Option<ComputedMatrix> {
|
|
let mut det = self.determinant();
|
|
|
|
if det == 0.0 {
|
|
return None;
|
|
}
|
|
|
|
det = 1.0 / det;
|
|
let x = ComputedMatrix {
|
|
m11: det *
|
|
(self.m23*self.m34*self.m42 - self.m24*self.m33*self.m42 +
|
|
self.m24*self.m32*self.m43 - self.m22*self.m34*self.m43 -
|
|
self.m23*self.m32*self.m44 + self.m22*self.m33*self.m44),
|
|
m12: det *
|
|
(self.m14*self.m33*self.m42 - self.m13*self.m34*self.m42 -
|
|
self.m14*self.m32*self.m43 + self.m12*self.m34*self.m43 +
|
|
self.m13*self.m32*self.m44 - self.m12*self.m33*self.m44),
|
|
m13: det *
|
|
(self.m13*self.m24*self.m42 - self.m14*self.m23*self.m42 +
|
|
self.m14*self.m22*self.m43 - self.m12*self.m24*self.m43 -
|
|
self.m13*self.m22*self.m44 + self.m12*self.m23*self.m44),
|
|
m14: det *
|
|
(self.m14*self.m23*self.m32 - self.m13*self.m24*self.m32 -
|
|
self.m14*self.m22*self.m33 + self.m12*self.m24*self.m33 +
|
|
self.m13*self.m22*self.m34 - self.m12*self.m23*self.m34),
|
|
m21: det *
|
|
(self.m24*self.m33*self.m41 - self.m23*self.m34*self.m41 -
|
|
self.m24*self.m31*self.m43 + self.m21*self.m34*self.m43 +
|
|
self.m23*self.m31*self.m44 - self.m21*self.m33*self.m44),
|
|
m22: det *
|
|
(self.m13*self.m34*self.m41 - self.m14*self.m33*self.m41 +
|
|
self.m14*self.m31*self.m43 - self.m11*self.m34*self.m43 -
|
|
self.m13*self.m31*self.m44 + self.m11*self.m33*self.m44),
|
|
m23: det *
|
|
(self.m14*self.m23*self.m41 - self.m13*self.m24*self.m41 -
|
|
self.m14*self.m21*self.m43 + self.m11*self.m24*self.m43 +
|
|
self.m13*self.m21*self.m44 - self.m11*self.m23*self.m44),
|
|
m24: det *
|
|
(self.m13*self.m24*self.m31 - self.m14*self.m23*self.m31 +
|
|
self.m14*self.m21*self.m33 - self.m11*self.m24*self.m33 -
|
|
self.m13*self.m21*self.m34 + self.m11*self.m23*self.m34),
|
|
m31: det *
|
|
(self.m22*self.m34*self.m41 - self.m24*self.m32*self.m41 +
|
|
self.m24*self.m31*self.m42 - self.m21*self.m34*self.m42 -
|
|
self.m22*self.m31*self.m44 + self.m21*self.m32*self.m44),
|
|
m32: det *
|
|
(self.m14*self.m32*self.m41 - self.m12*self.m34*self.m41 -
|
|
self.m14*self.m31*self.m42 + self.m11*self.m34*self.m42 +
|
|
self.m12*self.m31*self.m44 - self.m11*self.m32*self.m44),
|
|
m33: det *
|
|
(self.m12*self.m24*self.m41 - self.m14*self.m22*self.m41 +
|
|
self.m14*self.m21*self.m42 - self.m11*self.m24*self.m42 -
|
|
self.m12*self.m21*self.m44 + self.m11*self.m22*self.m44),
|
|
m34: det *
|
|
(self.m14*self.m22*self.m31 - self.m12*self.m24*self.m31 -
|
|
self.m14*self.m21*self.m32 + self.m11*self.m24*self.m32 +
|
|
self.m12*self.m21*self.m34 - self.m11*self.m22*self.m34),
|
|
m41: det *
|
|
(self.m23*self.m32*self.m41 - self.m22*self.m33*self.m41 -
|
|
self.m23*self.m31*self.m42 + self.m21*self.m33*self.m42 +
|
|
self.m22*self.m31*self.m43 - self.m21*self.m32*self.m43),
|
|
m42: det *
|
|
(self.m12*self.m33*self.m41 - self.m13*self.m32*self.m41 +
|
|
self.m13*self.m31*self.m42 - self.m11*self.m33*self.m42 -
|
|
self.m12*self.m31*self.m43 + self.m11*self.m32*self.m43),
|
|
m43: det *
|
|
(self.m13*self.m22*self.m41 - self.m12*self.m23*self.m41 -
|
|
self.m13*self.m21*self.m42 + self.m11*self.m23*self.m42 +
|
|
self.m12*self.m21*self.m43 - self.m11*self.m22*self.m43),
|
|
m44: det *
|
|
(self.m12*self.m23*self.m31 - self.m13*self.m22*self.m31 +
|
|
self.m13*self.m21*self.m32 - self.m11*self.m23*self.m32 -
|
|
self.m12*self.m21*self.m33 + self.m11*self.m22*self.m33),
|
|
};
|
|
|
|
Some(x)
|
|
}
|
|
}
|
|
|
|
/// https://drafts.csswg.org/css-transforms/#interpolation-of-transforms
|
|
impl Interpolate for TransformList {
|
|
#[inline]
|
|
fn interpolate(&self, other: &TransformList, time: f64) -> Result<Self, ()> {
|
|
// http://dev.w3.org/csswg/css-transforms/#interpolation-of-transforms
|
|
let result = match (&self.0, &other.0) {
|
|
(&Some(ref from_list), &Some(ref to_list)) => {
|
|
// Two lists of transforms
|
|
interpolate_transform_list(from_list, &to_list, time)
|
|
}
|
|
(&Some(ref from_list), &None) => {
|
|
// http://dev.w3.org/csswg/css-transforms/#none-transform-animation
|
|
let to_list = build_identity_transform_list(from_list);
|
|
interpolate_transform_list(from_list, &to_list, time)
|
|
}
|
|
(&None, &Some(ref to_list)) => {
|
|
// http://dev.w3.org/csswg/css-transforms/#none-transform-animation
|
|
let from_list = build_identity_transform_list(to_list);
|
|
interpolate_transform_list(&from_list, to_list, time)
|
|
}
|
|
_ => {
|
|
// http://dev.w3.org/csswg/css-transforms/#none-none-animation
|
|
TransformList(None)
|
|
}
|
|
};
|
|
|
|
Ok(result)
|
|
}
|
|
}
|
|
% endif
|
|
|
|
|