servo/components/style/properties/helpers/animated_properties.mako.rs
2016-09-16 12:57:25 +03:00

1529 lines
58 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use app_units::Au;
use cssparser::{Color as CSSParserColor, Parser, RGBA, ToCss};
use euclid::{Point2D, Size2D};
use properties::PropertyDeclaration;
use properties::longhands;
use properties::longhands::background_position::computed_value::T as BackgroundPosition;
use properties::longhands::background_size::computed_value::T as BackgroundSize;
use properties::longhands::font_weight::computed_value::T as FontWeight;
use properties::longhands::line_height::computed_value::T as LineHeight;
use properties::longhands::text_shadow::computed_value::T as TextShadowList;
use properties::longhands::text_shadow::computed_value::TextShadow;
use properties::longhands::box_shadow::computed_value::T as BoxShadowList;
use properties::longhands::box_shadow::single_value::computed_value::T as BoxShadow;
use properties::longhands::vertical_align::computed_value::T as VerticalAlign;
use properties::longhands::visibility::computed_value::T as Visibility;
use properties::longhands::z_index::computed_value::T as ZIndex;
use std::cmp;
use std::fmt;
use super::ComputedValues;
use values::computed::{Angle, LengthOrPercentageOrAuto, LengthOrPercentageOrNone};
use values::computed::{BorderRadiusSize, LengthOrNone};
use values::computed::{CalcLengthOrPercentage, LengthOrPercentage};
use values::computed::position::Position;
// NB: This needs to be here because it needs all the longhands generated
// beforehand.
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub enum TransitionProperty {
All,
% for prop in data.longhands:
% if prop.animatable:
${prop.camel_case},
% endif
% endfor
}
impl TransitionProperty {
/// Iterates over each property that is not `All`.
pub fn each<F: FnMut(TransitionProperty) -> ()>(mut cb: F) {
% for prop in data.longhands:
% if prop.animatable:
cb(TransitionProperty::${prop.camel_case});
% endif
% endfor
}
pub fn parse(input: &mut Parser) -> Result<Self, ()> {
match_ignore_ascii_case! { try!(input.expect_ident()),
"all" => Ok(TransitionProperty::All),
% for prop in data.longhands:
% if prop.animatable:
"${prop.name}" => Ok(TransitionProperty::${prop.camel_case}),
% endif
% endfor
_ => Err(())
}
}
pub fn from_declaration(declaration: &PropertyDeclaration) -> Option<Self> {
match *declaration {
% for prop in data.longhands:
% if prop.animatable:
PropertyDeclaration::${prop.camel_case}(..)
=> Some(TransitionProperty::${prop.camel_case}),
% endif
% endfor
_ => None,
}
}
}
impl ToCss for TransitionProperty {
fn to_css<W>(&self, dest: &mut W) -> fmt::Result where W: fmt::Write {
match *self {
TransitionProperty::All => dest.write_str("all"),
% for prop in data.longhands:
% if prop.animatable:
TransitionProperty::${prop.camel_case} => dest.write_str("${prop.name}"),
% endif
% endfor
}
}
}
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub enum AnimatedProperty {
% for prop in data.longhands:
% if prop.animatable:
${prop.camel_case}(longhands::${prop.ident}::computed_value::T,
longhands::${prop.ident}::computed_value::T),
% endif
% endfor
}
impl AnimatedProperty {
pub fn does_animate(&self) -> bool {
match *self {
% for prop in data.longhands:
% if prop.animatable:
AnimatedProperty::${prop.camel_case}(ref from, ref to) => from != to,
% endif
% endfor
}
}
pub fn update(&self, style: &mut ComputedValues, progress: f64) {
match *self {
% for prop in data.longhands:
% if prop.animatable:
AnimatedProperty::${prop.camel_case}(ref from, ref to) => {
if let Ok(value) = from.interpolate(to, progress) {
style.mutate_${prop.style_struct.ident.strip("_")}().set_${prop.ident}(value);
}
}
% endif
% endfor
}
}
pub fn from_transition_property(transition_property: &TransitionProperty,
old_style: &ComputedValues,
new_style: &ComputedValues)
-> AnimatedProperty {
match *transition_property {
TransitionProperty::All => panic!("Can't use TransitionProperty::All here."),
% for prop in data.longhands:
% if prop.animatable:
TransitionProperty::${prop.camel_case} => {
AnimatedProperty::${prop.camel_case}(
old_style.get_${prop.style_struct.ident.strip("_")}().clone_${prop.ident}(),
new_style.get_${prop.style_struct.ident.strip("_")}().clone_${prop.ident}())
}
% endif
% endfor
}
}
}
/// A trait used to implement [interpolation][interpolated-types].
///
/// [interpolated-types]: https://drafts.csswg.org/css-transitions/#interpolated-types
pub trait Interpolate: Sized {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()>;
}
/// https://drafts.csswg.org/css-transitions/#animtype-repeatable-list
pub trait RepeatableListInterpolate: Interpolate {}
impl<T: RepeatableListInterpolate> Interpolate for Vec<T> {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
use num_integer::lcm;
let len = lcm(self.len(), other.len());
self.iter().cycle().zip(other.iter().cycle()).take(len).map(|(me, you)| {
me.interpolate(you, time)
}).collect()
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-number
impl Interpolate for Au {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
Ok(Au((self.0 as f64 + (other.0 as f64 - self.0 as f64) * time).round() as i32))
}
}
impl <T> Interpolate for Option<T> where T: Interpolate {
#[inline]
fn interpolate(&self, other: &Option<T>, time: f64) -> Result<Option<T>, ()> {
match (self, other) {
(&Some(ref this), &Some(ref other)) => {
Ok(this.interpolate(other, time).ok())
}
_ => Err(()),
}
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-number
impl Interpolate for f32 {
#[inline]
fn interpolate(&self, other: &f32, time: f64) -> Result<Self, ()> {
Ok(((*self as f64) + ((*other as f64) - (*self as f64)) * time) as f32)
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-number
impl Interpolate for f64 {
#[inline]
fn interpolate(&self, other: &f64, time: f64) -> Result<Self, ()> {
Ok(*self + (*other - *self) * time)
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-number
impl Interpolate for i32 {
#[inline]
fn interpolate(&self, other: &i32, time: f64) -> Result<Self, ()> {
let a = *self as f64;
let b = *other as f64;
Ok((a + (b - a) * time).round() as i32)
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-number
impl Interpolate for Angle {
#[inline]
fn interpolate(&self, other: &Angle, time: f64) -> Result<Self, ()> {
self.radians().interpolate(&other.radians(), time).map(Angle)
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-visibility
impl Interpolate for Visibility {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
match (*self, *other) {
(Visibility::visible, _) | (_, Visibility::visible) => {
Ok(if time >= 0.0 && time <= 1.0 {
Visibility::visible
} else if time < 0.0 {
*self
} else {
*other
})
}
_ => Err(()),
}
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-integer
impl Interpolate for ZIndex {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
match (*self, *other) {
(ZIndex::Number(ref this),
ZIndex::Number(ref other)) => {
this.interpolate(other, time).map(ZIndex::Number)
}
_ => Err(()),
}
}
}
impl<T: Interpolate + Copy> Interpolate for Size2D<T> {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
let width = try!(self.width.interpolate(&other.width, time));
let height = try!(self.height.interpolate(&other.height, time));
Ok(Size2D::new(width, height))
}
}
impl<T: Interpolate + Copy> Interpolate for Point2D<T> {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
let x = try!(self.x.interpolate(&other.x, time));
let y = try!(self.y.interpolate(&other.y, time));
Ok(Point2D::new(x, y))
}
}
impl Interpolate for BorderRadiusSize {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
self.0.interpolate(&other.0, time).map(BorderRadiusSize)
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-length
impl Interpolate for VerticalAlign {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
match (*self, *other) {
(VerticalAlign::LengthOrPercentage(LengthOrPercentage::Length(ref this)),
VerticalAlign::LengthOrPercentage(LengthOrPercentage::Length(ref other))) => {
this.interpolate(other, time).map(|value| {
VerticalAlign::LengthOrPercentage(LengthOrPercentage::Length(value))
})
}
_ => Err(()),
}
}
}
impl Interpolate for BackgroundSize {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
self.0.interpolate(&other.0, time).map(BackgroundSize)
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-color
impl Interpolate for RGBA {
#[inline]
fn interpolate(&self, other: &RGBA, time: f64) -> Result<Self, ()> {
Ok(RGBA {
red: try!(self.red.interpolate(&other.red, time)),
green: try!(self.green.interpolate(&other.green, time)),
blue: try!(self.blue.interpolate(&other.blue, time)),
alpha: try!(self.alpha.interpolate(&other.alpha, time)),
})
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-color
impl Interpolate for CSSParserColor {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
match (*self, *other) {
(CSSParserColor::RGBA(ref this), CSSParserColor::RGBA(ref other)) => {
this.interpolate(other, time).map(CSSParserColor::RGBA)
}
_ => Err(()),
}
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-lpcalc
impl Interpolate for CalcLengthOrPercentage {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
fn interpolate_half<T>(this: Option<T>,
other: Option<T>,
time: f64)
-> Result<Option<T>, ()>
where T: Default + Interpolate
{
match (this, other) {
(None, None) => Ok(None),
(this, other) => {
let this = this.unwrap_or(T::default());
let other = other.unwrap_or(T::default());
this.interpolate(&other, time).map(Some)
}
}
}
Ok(CalcLengthOrPercentage {
length: try!(interpolate_half(self.length, other.length, time)),
percentage: try!(interpolate_half(self.percentage, other.percentage, time)),
})
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-lpcalc
impl Interpolate for LengthOrPercentage {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
match (*self, *other) {
(LengthOrPercentage::Length(ref this),
LengthOrPercentage::Length(ref other)) => {
this.interpolate(other, time).map(LengthOrPercentage::Length)
}
(LengthOrPercentage::Percentage(ref this),
LengthOrPercentage::Percentage(ref other)) => {
this.interpolate(other, time).map(LengthOrPercentage::Percentage)
}
(this, other) => {
let this: CalcLengthOrPercentage = From::from(this);
let other: CalcLengthOrPercentage = From::from(other);
this.interpolate(&other, time)
.map(LengthOrPercentage::Calc)
}
}
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-lpcalc
impl Interpolate for LengthOrPercentageOrAuto {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
match (*self, *other) {
(LengthOrPercentageOrAuto::Length(ref this),
LengthOrPercentageOrAuto::Length(ref other)) => {
this.interpolate(other, time).map(LengthOrPercentageOrAuto::Length)
}
(LengthOrPercentageOrAuto::Percentage(ref this),
LengthOrPercentageOrAuto::Percentage(ref other)) => {
this.interpolate(other, time).map(LengthOrPercentageOrAuto::Percentage)
}
(LengthOrPercentageOrAuto::Auto, LengthOrPercentageOrAuto::Auto) => {
Ok(LengthOrPercentageOrAuto::Auto)
}
(this, other) => {
let this: Option<CalcLengthOrPercentage> = From::from(this);
let other: Option<CalcLengthOrPercentage> = From::from(other);
match this.interpolate(&other, time) {
Ok(Some(result)) => Ok(LengthOrPercentageOrAuto::Calc(result)),
_ => Err(()),
}
}
}
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-lpcalc
impl Interpolate for LengthOrPercentageOrNone {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
match (*self, *other) {
(LengthOrPercentageOrNone::Length(ref this),
LengthOrPercentageOrNone::Length(ref other)) => {
this.interpolate(other, time).map(LengthOrPercentageOrNone::Length)
}
(LengthOrPercentageOrNone::Percentage(ref this),
LengthOrPercentageOrNone::Percentage(ref other)) => {
this.interpolate(other, time).map(LengthOrPercentageOrNone::Percentage)
}
(LengthOrPercentageOrNone::None, LengthOrPercentageOrNone::None) => {
Ok(LengthOrPercentageOrNone::None)
}
_ => Err(())
}
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-number
/// https://drafts.csswg.org/css-transitions/#animtype-length
impl Interpolate for LineHeight {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
match (*self, *other) {
(LineHeight::Length(ref this),
LineHeight::Length(ref other)) => {
this.interpolate(other, time).map(LineHeight::Length)
}
(LineHeight::Number(ref this),
LineHeight::Number(ref other)) => {
this.interpolate(other, time).map(LineHeight::Number)
}
(LineHeight::Normal, LineHeight::Normal) => {
Ok(LineHeight::Normal)
}
_ => Err(()),
}
}
}
/// http://dev.w3.org/csswg/css-transitions/#animtype-font-weight
impl Interpolate for FontWeight {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
let a = (*self as u32) as f64;
let b = (*other as u32) as f64;
let weight = a + (b - a) * time;
Ok(if weight < 150. {
FontWeight::Weight100
} else if weight < 250. {
FontWeight::Weight200
} else if weight < 350. {
FontWeight::Weight300
} else if weight < 450. {
FontWeight::Weight400
} else if weight < 550. {
FontWeight::Weight500
} else if weight < 650. {
FontWeight::Weight600
} else if weight < 750. {
FontWeight::Weight700
} else if weight < 850. {
FontWeight::Weight800
} else {
FontWeight::Weight900
})
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-simple-list
impl Interpolate for Position {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
Ok(Position {
horizontal: try!(self.horizontal.interpolate(&other.horizontal, time)),
vertical: try!(self.vertical.interpolate(&other.vertical, time)),
})
}
}
impl RepeatableListInterpolate for Position {}
impl Interpolate for BackgroundPosition {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
Ok(BackgroundPosition(try!(self.0.interpolate(&other.0, time))))
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-shadow-list
impl Interpolate for TextShadow {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
Ok(TextShadow {
offset_x: try!(self.offset_x.interpolate(&other.offset_x, time)),
offset_y: try!(self.offset_y.interpolate(&other.offset_y, time)),
blur_radius: try!(self.blur_radius.interpolate(&other.blur_radius, time)),
color: try!(self.color.interpolate(&other.color, time)),
})
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-shadow-list
impl Interpolate for TextShadowList {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
let zero = TextShadow {
offset_x: Au(0),
offset_y: Au(0),
blur_radius: Au(0),
color: CSSParserColor::RGBA(RGBA {
red: 0.0, green: 0.0, blue: 0.0, alpha: 0.0
})
};
let max_len = cmp::max(self.0.len(), other.0.len());
let mut result = Vec::with_capacity(max_len);
for i in 0..max_len {
let shadow = match (self.0.get(i), other.0.get(i)) {
(Some(shadow), Some(other))
=> try!(shadow.interpolate(other, time)),
(Some(shadow), None) => {
shadow.interpolate(&zero, time).unwrap()
}
(None, Some(shadow)) => {
zero.interpolate(&shadow, time).unwrap()
}
(None, None) => unreachable!(),
};
result.push(shadow);
}
Ok(TextShadowList(result))
}
}
impl Interpolate for BoxShadowList {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
// The inset value must change
let mut zero = BoxShadow {
offset_x: Au(0),
offset_y: Au(0),
spread_radius: Au(0),
blur_radius: Au(0),
color: CSSParserColor::RGBA(RGBA {
red: 0.0, green: 0.0, blue: 0.0, alpha: 0.0
}),
inset: false,
};
let max_len = cmp::max(self.0.len(), other.0.len());
let mut result = Vec::with_capacity(max_len);
for i in 0..max_len {
let shadow = match (self.0.get(i), other.0.get(i)) {
(Some(shadow), Some(other))
=> try!(shadow.interpolate(other, time)),
(Some(shadow), None) => {
zero.inset = shadow.inset;
shadow.interpolate(&zero, time).unwrap()
}
(None, Some(shadow)) => {
zero.inset = shadow.inset;
zero.interpolate(&shadow, time).unwrap()
}
(None, None) => unreachable!(),
};
result.push(shadow);
}
Ok(BoxShadowList(result))
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-shadow-list
impl Interpolate for BoxShadow {
#[inline]
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
if self.inset != other.inset {
return Err(());
}
let x = try!(self.offset_x.interpolate(&other.offset_x, time));
let y = try!(self.offset_y.interpolate(&other.offset_y, time));
let color = try!(self.color.interpolate(&other.color, time));
let spread = try!(self.spread_radius.interpolate(&other.spread_radius, time));
let blur = try!(self.blur_radius.interpolate(&other.blur_radius, time));
Ok(BoxShadow {
offset_x: x,
offset_y: y,
blur_radius: blur,
spread_radius: spread,
color: color,
inset: self.inset,
})
}
}
impl Interpolate for LengthOrNone {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
match (*self, *other) {
(LengthOrNone::Length(ref len), LengthOrNone::Length(ref other)) =>
len.interpolate(&other, time).map(LengthOrNone::Length),
_ => Err(()),
}
}
}
% if product == "servo":
use properties::longhands::transform::computed_value::ComputedMatrix;
use properties::longhands::transform::computed_value::ComputedOperation as TransformOperation;
use properties::longhands::transform::computed_value::T as TransformList;
use values::CSSFloat;
use values::specified::Angle as SpecifiedAngle;
/// Check if it's possible to do a direct numerical interpolation
/// between these two transform lists.
/// http://dev.w3.org/csswg/css-transforms/#transform-transform-animation
fn can_interpolate_list(from_list: &[TransformOperation],
to_list: &[TransformOperation]) -> bool {
// Lists must be equal length
if from_list.len() != to_list.len() {
return false;
}
// Each transform operation must match primitive type in other list
for (from, to) in from_list.iter().zip(to_list) {
match (from, to) {
(&TransformOperation::Matrix(..), &TransformOperation::Matrix(..)) |
(&TransformOperation::Skew(..), &TransformOperation::Skew(..)) |
(&TransformOperation::Translate(..), &TransformOperation::Translate(..)) |
(&TransformOperation::Scale(..), &TransformOperation::Scale(..)) |
(&TransformOperation::Rotate(..), &TransformOperation::Rotate(..)) |
(&TransformOperation::Perspective(..), &TransformOperation::Perspective(..)) => {}
_ => {
return false;
}
}
}
true
}
/// Build an equivalent 'identity transform function list' based
/// on an existing transform list.
/// http://dev.w3.org/csswg/css-transforms/#none-transform-animation
fn build_identity_transform_list(list: &[TransformOperation]) -> Vec<TransformOperation> {
let mut result = vec!();
for operation in list {
match *operation {
TransformOperation::Matrix(..) => {
let identity = ComputedMatrix::identity();
result.push(TransformOperation::Matrix(identity));
}
TransformOperation::Skew(..) => {
result.push(TransformOperation::Skew(Angle(0.0), Angle(0.0)));
}
TransformOperation::Translate(..) => {
result.push(TransformOperation::Translate(LengthOrPercentage::zero(),
LengthOrPercentage::zero(),
Au(0)));
}
TransformOperation::Scale(..) => {
result.push(TransformOperation::Scale(1.0, 1.0, 1.0));
}
TransformOperation::Rotate(..) => {
result.push(TransformOperation::Rotate(0.0, 0.0, 1.0, Angle(0.0)));
}
TransformOperation::Perspective(..) => {
// http://dev.w3.org/csswg/css-transforms/#identity-transform-function
let identity = ComputedMatrix::identity();
result.push(TransformOperation::Matrix(identity));
}
}
}
result
}
/// Interpolate two transform lists.
/// http://dev.w3.org/csswg/css-transforms/#interpolation-of-transforms
fn interpolate_transform_list(from_list: &[TransformOperation],
to_list: &[TransformOperation],
time: f64) -> TransformList {
let mut result = vec![];
if can_interpolate_list(from_list, to_list) {
for (from, to) in from_list.iter().zip(to_list) {
match (from, to) {
(&TransformOperation::Matrix(from),
&TransformOperation::Matrix(_to)) => {
let interpolated = from.interpolate(&_to, time).unwrap();
result.push(TransformOperation::Matrix(interpolated));
}
(&TransformOperation::Skew(fx, fy),
&TransformOperation::Skew(tx, ty)) => {
let ix = fx.interpolate(&tx, time).unwrap();
let iy = fy.interpolate(&ty, time).unwrap();
result.push(TransformOperation::Skew(ix, iy));
}
(&TransformOperation::Translate(fx, fy, fz),
&TransformOperation::Translate(tx, ty, tz)) => {
let ix = fx.interpolate(&tx, time).unwrap();
let iy = fy.interpolate(&ty, time).unwrap();
let iz = fz.interpolate(&tz, time).unwrap();
result.push(TransformOperation::Translate(ix, iy, iz));
}
(&TransformOperation::Scale(fx, fy, fz),
&TransformOperation::Scale(tx, ty, tz)) => {
let ix = fx.interpolate(&tx, time).unwrap();
let iy = fy.interpolate(&ty, time).unwrap();
let iz = fz.interpolate(&tz, time).unwrap();
result.push(TransformOperation::Scale(ix, iy, iz));
}
(&TransformOperation::Rotate(fx, fy, fz, fa),
&TransformOperation::Rotate(tx, ty, tz, ta)) => {
let norm_f = ((fx * fx) + (fy * fy) + (fz * fz)).sqrt();
let norm_t = ((tx * tx) + (ty * ty) + (tz * tz)).sqrt();
let (fx, fy, fz) = (fx / norm_f, fy / norm_f, fz / norm_f);
let (tx, ty, tz) = (tx / norm_t, ty / norm_t, tz / norm_t);
if fx == tx && fy == ty && fz == tz {
let ia = fa.interpolate(&ta, time).unwrap();
result.push(TransformOperation::Rotate(fx, fy, fz, ia));
} else {
let matrix_f = rotate_to_matrix(fx, fy, fz, fa);
let matrix_t = rotate_to_matrix(tx, ty, tz, ta);
let interpolated = matrix_f.interpolate(&matrix_t, time).unwrap();
result.push(TransformOperation::Matrix(interpolated));
}
}
(&TransformOperation::Perspective(fd),
&TransformOperation::Perspective(_td)) => {
let mut fd_matrix = ComputedMatrix::identity();
let mut td_matrix = ComputedMatrix::identity();
fd_matrix.m43 = -1. / fd.to_f32_px();
td_matrix.m43 = -1. / _td.to_f32_px();
let interpolated = fd_matrix.interpolate(&td_matrix, time).unwrap();
result.push(TransformOperation::Matrix(interpolated));
}
_ => {
// This should be unreachable due to the can_interpolate_list() call.
unreachable!();
}
}
}
} else {
// TODO(gw): Implement matrix decomposition and interpolation
result.extend_from_slice(from_list);
}
TransformList(Some(result))
}
/// https://drafts.csswg.org/css-transforms/#Rotate3dDefined
fn rotate_to_matrix(x: f32, y: f32, z: f32, a: SpecifiedAngle) -> ComputedMatrix {
let half_rad = a.radians() / 2.0;
let sc = (half_rad).sin() * (half_rad).cos();
let sq = (half_rad).sin().powi(2);
ComputedMatrix {
m11: 1.0 - 2.0 * (y * y + z * z) * sq,
m12: 2.0 * (x * y * sq - z * sc),
m13: 2.0 * (x * z * sq + y * sc),
m14: 0.0,
m21: 2.0 * (x * y * sq + z * sc),
m22: 1.0 - 2.0 * (x * x + z * z) * sq,
m23: 2.0 * (y * z * sq - x * sc),
m24: 0.0,
m31: 2.0 * (x * z * sq - y * sc),
m32: 2.0 * (y * z * sq + x * sc),
m33: 1.0 - 2.0 * (x * x + y * y) * sq,
m34: 0.0,
m41: 0.0,
m42: 0.0,
m43: 0.0,
m44: 1.0
}
}
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct InnerMatrix2D {
pub m11: CSSFloat, pub m12: CSSFloat,
pub m21: CSSFloat, pub m22: CSSFloat,
}
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct Translate2D(f32, f32);
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct Scale2D(f32, f32);
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct MatrixDecomposed2D {
pub translate: Translate2D,
pub scale: Scale2D,
pub angle: f32,
pub matrix: InnerMatrix2D,
}
impl Interpolate for InnerMatrix2D {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
Ok(InnerMatrix2D {
m11: try!(self.m11.interpolate(&other.m11, time)),
m12: try!(self.m12.interpolate(&other.m12, time)),
m21: try!(self.m21.interpolate(&other.m21, time)),
m22: try!(self.m22.interpolate(&other.m22, time)),
})
}
}
impl Interpolate for Translate2D {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
Ok(Translate2D(
try!(self.0.interpolate(&other.0, time)),
try!(self.1.interpolate(&other.1, time))
))
}
}
impl Interpolate for Scale2D {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
Ok(Scale2D(
try!(self.0.interpolate(&other.0, time)),
try!(self.1.interpolate(&other.1, time))
))
}
}
impl Interpolate for MatrixDecomposed2D {
/// https://drafts.csswg.org/css-transforms/#interpolation-of-decomposed-2d-matrix-values
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
// If x-axis of one is flipped, and y-axis of the other,
// convert to an unflipped rotation.
let mut scale = self.scale;
let mut angle = self.angle;
let mut other_angle = other.angle;
if (scale.0 < 0.0 && other.scale.1 < 0.0) || (scale.1 < 0.0 && other.scale.0 < 0.0) {
scale.0 = -scale.0;
scale.1 = -scale.1;
angle += if angle < 0.0 {180.} else {-180.};
}
// Don't rotate the long way around.
if angle == 0.0 {
angle = 360.
}
if other_angle == 0.0 {
other_angle = 360.
}
if (angle - other_angle).abs() > 180. {
if angle > other_angle {
angle -= 360.
}
else{
other_angle -= 360.
}
}
// Interpolate all values.
let translate = try!(self.translate.interpolate(&other.translate, time));
let scale = try!(scale.interpolate(&other.scale, time));
let angle = try!(angle.interpolate(&other_angle, time));
let matrix = try!(self.matrix.interpolate(&other.matrix, time));
Ok(MatrixDecomposed2D {
translate: translate,
scale: scale,
angle: angle,
matrix: matrix,
})
}
}
impl Interpolate for ComputedMatrix {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
if self.is_3d() || other.is_3d() {
let decomposed_from = decompose_3d_matrix(*self);
let decomposed_to = decompose_3d_matrix(*other);
match (decomposed_from, decomposed_to) {
(Ok(from), Ok(to)) => {
let interpolated = try!(from.interpolate(&to, time));
Ok(ComputedMatrix::from(interpolated))
},
_ => {
let interpolated = if time < 0.5 {*self} else {*other};
Ok(interpolated)
}
}
} else {
let decomposed_from = MatrixDecomposed2D::from(*self);
let decomposed_to = MatrixDecomposed2D::from(*other);
let interpolated = try!(decomposed_from.interpolate(&decomposed_to, time));
Ok(ComputedMatrix::from(interpolated))
}
}
}
impl From<ComputedMatrix> for MatrixDecomposed2D {
/// Decompose a 2D matrix.
/// https://drafts.csswg.org/css-transforms/#decomposing-a-2d-matrix
fn from(matrix: ComputedMatrix) -> MatrixDecomposed2D {
let mut row0x = matrix.m11;
let mut row0y = matrix.m12;
let mut row1x = matrix.m21;
let mut row1y = matrix.m22;
let translate = Translate2D(matrix.m41, matrix.m42);
let mut scale = Scale2D((row0x * row0x + row0y * row0y).sqrt(),
(row1x * row1x + row1y * row1y).sqrt());
// If determinant is negative, one axis was flipped.
let determinant = row0x * row1y - row0y * row1x;
if determinant < 0. {
if row0x < row1y {
scale.0 = -scale.0;
} else {
scale.1 = -scale.1;
}
}
// Renormalize matrix to remove scale.
if scale.0 != 0.0 {
row0x *= 1. / scale.0;
row0y *= 1. / scale.0;
}
if scale.1 != 0.0 {
row1x *= 1. / scale.1;
row1y *= 1. / scale.1;
}
// Compute rotation and renormalize matrix.
let mut angle = row0y.atan2(row0x);
if angle != 0.0 {
let sn = -row0y;
let cs = row0x;
let m11 = row0x;
let m12 = row0y;
let m21 = row1x;
let m22 = row1y;
row0x = cs * m11 + sn * m21;
row0y = cs * m12 + sn * m22;
row1x = -sn * m11 + cs * m21;
row1y = -sn * m12 + cs * m22;
}
let m = InnerMatrix2D {
m11: row0x, m12: row0y,
m21: row1x, m22: row1y,
};
// Convert into degrees because our rotation functions expect it.
angle = angle.to_degrees();
MatrixDecomposed2D {
translate: translate,
scale: scale,
angle: angle,
matrix: m,
}
}
}
impl From<MatrixDecomposed2D> for ComputedMatrix {
/// Recompose a 2D matrix.
/// https://drafts.csswg.org/css-transforms/#recomposing-to-a-2d-matrix
fn from(decomposed: MatrixDecomposed2D) -> ComputedMatrix {
let mut computed_matrix = ComputedMatrix::identity();
computed_matrix.m11 = decomposed.matrix.m11;
computed_matrix.m12 = decomposed.matrix.m12;
computed_matrix.m21 = decomposed.matrix.m21;
computed_matrix.m22 = decomposed.matrix.m22;
// Translate matrix.
computed_matrix.m41 = decomposed.translate.0;
computed_matrix.m42 = decomposed.translate.1;
// Rotate matrix.
let angle = decomposed.angle.to_radians();
let cos_angle = angle.cos();
let sin_angle = angle.sin();
let mut rotate_matrix = ComputedMatrix::identity();
rotate_matrix.m11 = cos_angle;
rotate_matrix.m12 = sin_angle;
rotate_matrix.m21 = -sin_angle;
rotate_matrix.m22 = cos_angle;
// Multiplication of computed_matrix and rotate_matrix
computed_matrix = multiply(rotate_matrix, computed_matrix);
// Scale matrix.
computed_matrix.m11 *= decomposed.scale.0;
computed_matrix.m12 *= decomposed.scale.0;
computed_matrix.m21 *= decomposed.scale.1;
computed_matrix.m22 *= decomposed.scale.1;
computed_matrix
}
}
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct Translate3D(f32, f32, f32);
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct Scale3D(f32, f32, f32);
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct Skew(f32, f32, f32);
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct Perspective(f32, f32, f32, f32);
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct Quaternion(f32, f32, f32, f32);
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct MatrixDecomposed3D {
pub translate: Translate3D,
pub scale: Scale3D,
pub skew: Skew,
pub perspective: Perspective,
pub quaternion: Quaternion,
}
/// Decompose a 3D matrix.
/// https://drafts.csswg.org/css-transforms/#decomposing-a-3d-matrix
fn decompose_3d_matrix(mut matrix: ComputedMatrix) -> Result<MatrixDecomposed3D, ()> {
// Normalize the matrix.
if matrix.m44 == 0.0 {
return Err(());
}
let scaling_factor = matrix.m44;
% for i in range(1, 5):
% for j in range(1, 5):
matrix.m${i}${j} /= scaling_factor;
% endfor
% endfor
// perspective_matrix is used to solve for perspective, but it also provides
// an easy way to test for singularity of the upper 3x3 component.
let mut perspective_matrix = matrix;
% for i in range(1, 4):
perspective_matrix.m${i}4 = 0.0;
% endfor
perspective_matrix.m44 = 1.0;
if perspective_matrix.determinant() == 0.0 {
return Err(());
}
// First, isolate perspective.
let perspective = if matrix.m14 != 0.0 || matrix.m24 != 0.0 || matrix.m34 != 0.0 {
let right_hand_side: [f32; 4] = [
matrix.m14,
matrix.m24,
matrix.m34,
matrix.m44
];
perspective_matrix = perspective_matrix.inverse().unwrap();
// Transpose perspective_matrix
perspective_matrix = ComputedMatrix {
% for i in range(1, 5):
% for j in range(1, 5):
m${i}${j}: perspective_matrix.m${j}${i},
% endfor
% endfor
};
// Multiply right_hand_side with perspective_matrix
let mut tmp: [f32; 4] = [0.0; 4];
% for i in range(1, 5):
tmp[${i - 1}] = (right_hand_side[0] * perspective_matrix.m1${i}) +
(right_hand_side[1] * perspective_matrix.m2${i}) +
(right_hand_side[2] * perspective_matrix.m3${i}) +
(right_hand_side[3] * perspective_matrix.m4${i});
% endfor
Perspective(tmp[0], tmp[1], tmp[2], tmp[3])
} else {
Perspective(0.0, 0.0, 0.0, 1.0)
};
// Next take care of translation
let translate = Translate3D (
matrix.m41,
matrix.m42,
matrix.m43
);
// Now get scale and shear. 'row' is a 3 element array of 3 component vectors
let mut row: [[f32; 3]; 3] = [[0.0; 3]; 3];
% for i in range(1, 4):
row[${i - 1}][0] = matrix.m${i}1;
row[${i - 1}][1] = matrix.m${i}2;
row[${i - 1}][2] = matrix.m${i}3;
% endfor
// Compute X scale factor and normalize first row.
let row0len = (row[0][0] * row[0][0] + row[0][1] * row[0][1] + row[0][2] * row[0][2]).sqrt();
let mut scale = Scale3D(row0len, 0.0, 0.0);
row[0] = [row[0][0] / row0len, row[0][1] / row0len, row[0][2] / row0len];
// Compute XY shear factor and make 2nd row orthogonal to 1st.
let mut skew = Skew(dot(row[0], row[1]), 0.0, 0.0);
row[1] = combine(row[1], row[0], 1.0, -skew.0);
// Now, compute Y scale and normalize 2nd row.
let row1len = (row[0][0] * row[0][0] + row[0][1] * row[0][1] + row[0][2] * row[0][2]).sqrt();
scale.1 = row1len;
row[1] = [row[1][0] / row1len, row[1][1] / row1len, row[1][2] / row1len];
skew.0 /= scale.1;
// Compute XZ and YZ shears, orthogonalize 3rd row
skew.1 = dot(row[0], row[2]);
row[2] = combine(row[2], row[0], 1.0, -skew.1);
skew.2 = dot(row[1], row[2]);
row[2] = combine(row[2], row[1], 1.0, -skew.2);
// Next, get Z scale and normalize 3rd row.
let row2len = (row[2][0] * row[2][0] + row[2][1] * row[2][1] + row[2][2] * row[2][2]).sqrt();
scale.2 = row2len;
row[2] = [row[2][0] / row2len, row[2][1] / row2len, row[2][2] / row2len];
skew.1 /= scale.2;
skew.2 /= scale.2;
// At this point, the matrix (in rows) is orthonormal.
// Check for a coordinate system flip. If the determinant
// is -1, then negate the matrix and the scaling factors.
let pdum3 = cross(row[1], row[2]);
if dot(row[0], pdum3) < 0.0 {
% for i in range(3):
scale.${i} *= -1.0;
row[${i}][0] *= -1.0;
row[${i}][1] *= -1.0;
row[${i}][2] *= -1.0;
% endfor
}
// Now, get the rotations out
let mut quaternion = Quaternion (
0.5 * ((1.0 + row[0][0] - row[1][1] - row[2][2]).max(0.0)).sqrt(),
0.5 * ((1.0 - row[0][0] + row[1][1] - row[2][2]).max(0.0)).sqrt(),
0.5 * ((1.0 - row[0][0] - row[1][1] + row[2][2]).max(0.0)).sqrt(),
0.5 * ((1.0 + row[0][0] + row[1][1] + row[2][2]).max(0.0)).sqrt()
);
if row[2][1] > row[1][2] {
quaternion.0 = -quaternion.0
}
if row[0][2] > row[2][0] {
quaternion.1 = -quaternion.1
}
if row[1][0] > row[0][1] {
quaternion.2 = -quaternion.2
}
Ok(MatrixDecomposed3D {
translate: translate,
scale: scale,
skew: skew,
perspective: perspective,
quaternion: quaternion
})
}
// Combine 2 point.
fn combine(a: [f32; 3], b: [f32; 3], ascl: f32, bscl: f32) -> [f32; 3] {
[
(ascl * a[0]) + (bscl * b[0]),
(ascl * a[1]) + (bscl * b[1]),
(ascl * a[2]) + (bscl * b[2])
]
}
// Dot product.
fn dot(a: [f32; 3], b: [f32; 3]) -> f32 {
a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
}
// Cross product.
fn cross(row1: [f32; 3], row2: [f32; 3]) -> [f32; 3] {
[
row1[1] * row2[2] - row1[2] * row2[1],
row1[2] * row2[0] - row1[0] * row2[2],
row1[0] * row2[1] - row1[1] * row2[0]
]
}
impl Interpolate for Translate3D {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
Ok(Translate3D(
try!(self.0.interpolate(&other.0, time)),
try!(self.1.interpolate(&other.1, time)),
try!(self.2.interpolate(&other.2, time))
))
}
}
impl Interpolate for Scale3D {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
Ok(Scale3D(
try!(self.0.interpolate(&other.0, time)),
try!(self.1.interpolate(&other.1, time)),
try!(self.2.interpolate(&other.2, time))
))
}
}
impl Interpolate for Skew {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
Ok(Skew(
try!(self.0.interpolate(&other.0, time)),
try!(self.1.interpolate(&other.1, time)),
try!(self.2.interpolate(&other.2, time))
))
}
}
impl Interpolate for Perspective {
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
Ok(Perspective(
try!(self.0.interpolate(&other.0, time)),
try!(self.1.interpolate(&other.1, time)),
try!(self.2.interpolate(&other.2, time)),
try!(self.3.interpolate(&other.3, time))
))
}
}
impl Interpolate for MatrixDecomposed3D {
/// https://drafts.csswg.org/css-transforms/#interpolation-of-decomposed-3d-matrix-values
fn interpolate(&self, other: &Self, time: f64) -> Result<Self, ()> {
let mut interpolated = *self;
// Interpolate translate, scale, skew and perspective components.
interpolated.translate = try!(self.translate.interpolate(&other.translate, time));
interpolated.scale = try!(self.scale.interpolate(&other.scale, time));
interpolated.skew = try!(self.skew.interpolate(&other.skew, time));
interpolated.perspective = try!(self.perspective.interpolate(&other.perspective, time));
// Interpolate quaternions using spherical linear interpolation (Slerp).
let mut product = self.quaternion.0 * other.quaternion.0 +
self.quaternion.1 * other.quaternion.1 +
self.quaternion.2 * other.quaternion.2 +
self.quaternion.3 * other.quaternion.3;
// Clamp product to -1.0 <= product <= 1.0
product = product.min(1.0);
product = product.max(-1.0);
if product == 1.0 {
return Ok(interpolated);
}
let theta = product.acos();
let w = (time as f32 * theta).sin() * 1.0 / (1.0 - product * product).sqrt();
let mut a = *self;
let mut b = *other;
% for i in range(4):
a.quaternion.${i} *= (time as f32 * theta).cos() - product * w;
b.quaternion.${i} *= w;
interpolated.quaternion.${i} = a.quaternion.${i} + b.quaternion.${i};
% endfor
Ok(interpolated)
}
}
impl From<MatrixDecomposed3D> for ComputedMatrix {
/// Recompose a 3D matrix.
/// https://drafts.csswg.org/css-transforms/#recomposing-to-a-3d-matrix
fn from(decomposed: MatrixDecomposed3D) -> ComputedMatrix {
let mut matrix = ComputedMatrix::identity();
// Apply perspective
% for i in range(1, 5):
matrix.m${i}4 = decomposed.perspective.${i - 1};
% endfor
// Apply translation
% for i in range(1, 4):
% for j in range(1, 4):
matrix.m4${i} += decomposed.translate.${j - 1} * matrix.m${j}${i};
% endfor
% endfor
// Apply rotation
let x = decomposed.quaternion.0;
let y = decomposed.quaternion.1;
let z = decomposed.quaternion.2;
let w = decomposed.quaternion.3;
// Construct a composite rotation matrix from the quaternion values
// rotationMatrix is a identity 4x4 matrix initially
let mut rotation_matrix = ComputedMatrix::identity();
rotation_matrix.m11 = 1.0 - 2.0 * (y * y + z * z);
rotation_matrix.m12 = 2.0 * (x * y + z * w);
rotation_matrix.m13 = 2.0 * (x * z - y * w);
rotation_matrix.m21 = 2.0 * (x * y - z * w);
rotation_matrix.m22 = 1.0 - 2.0 * (x * x + z * z);
rotation_matrix.m23 = 2.0 * (y * z + x * w);
rotation_matrix.m31 = 2.0 * (x * z + y * w);
rotation_matrix.m32 = 2.0 * (y * z - x * w);
rotation_matrix.m33 = 1.0 - 2.0 * (x * x + y * y);
matrix = multiply(rotation_matrix, matrix);
// Apply skew
let mut temp = ComputedMatrix::identity();
if decomposed.skew.2 != 0.0 {
temp.m32 = decomposed.skew.2;
matrix = multiply(matrix, temp);
}
if decomposed.skew.1 != 0.0 {
temp.m32 = 0.0;
temp.m31 = decomposed.skew.1;
matrix = multiply(matrix, temp);
}
if decomposed.skew.0 != 0.0 {
temp.m31 = 0.0;
temp.m21 = decomposed.skew.0;
matrix = multiply(matrix, temp);
}
// Apply scale
% for i in range(1, 4):
% for j in range(1, 4):
matrix.m${i}${j} *= decomposed.scale.${i - 1};
% endfor
% endfor
matrix
}
}
// Multiplication of two 4x4 matrices.
fn multiply(a: ComputedMatrix, b: ComputedMatrix) -> ComputedMatrix {
let mut a_clone = a;
% for i in range(1, 5):
% for j in range(1, 5):
a_clone.m${i}${j} = (a.m${i}1 * b.m1${j}) +
(a.m${i}2 * b.m2${j}) +
(a.m${i}3 * b.m3${j}) +
(a.m${i}4 * b.m4${j});
% endfor
% endfor
a_clone
}
impl ComputedMatrix {
fn is_3d(&self) -> bool {
self.m13 != 0.0 || self.m14 != 0.0 ||
self.m23 != 0.0 || self.m24 != 0.0 ||
self.m31 != 0.0 || self.m32 != 0.0 || self.m33 != 1.0 || self.m34 != 0.0 ||
self.m43 != 0.0 || self.m44 != 1.0
}
pub fn determinant(&self) -> CSSFloat {
self.m14 * self.m23 * self.m32 * self.m41 -
self.m13 * self.m24 * self.m32 * self.m41 -
self.m14 * self.m22 * self.m33 * self.m41 +
self.m12 * self.m24 * self.m33 * self.m41 +
self.m13 * self.m22 * self.m34 * self.m41 -
self.m12 * self.m23 * self.m34 * self.m41 -
self.m14 * self.m23 * self.m31 * self.m42 +
self.m13 * self.m24 * self.m31 * self.m42 +
self.m14 * self.m21 * self.m33 * self.m42 -
self.m11 * self.m24 * self.m33 * self.m42 -
self.m13 * self.m21 * self.m34 * self.m42 +
self.m11 * self.m23 * self.m34 * self.m42 +
self.m14 * self.m22 * self.m31 * self.m43 -
self.m12 * self.m24 * self.m31 * self.m43 -
self.m14 * self.m21 * self.m32 * self.m43 +
self.m11 * self.m24 * self.m32 * self.m43 +
self.m12 * self.m21 * self.m34 * self.m43 -
self.m11 * self.m22 * self.m34 * self.m43 -
self.m13 * self.m22 * self.m31 * self.m44 +
self.m12 * self.m23 * self.m31 * self.m44 +
self.m13 * self.m21 * self.m32 * self.m44 -
self.m11 * self.m23 * self.m32 * self.m44 -
self.m12 * self.m21 * self.m33 * self.m44 +
self.m11 * self.m22 * self.m33 * self.m44
}
fn inverse(&self) -> Option<ComputedMatrix> {
let mut det = self.determinant();
if det == 0.0 {
return None;
}
det = 1.0 / det;
let x = ComputedMatrix {
m11: det *
(self.m23*self.m34*self.m42 - self.m24*self.m33*self.m42 +
self.m24*self.m32*self.m43 - self.m22*self.m34*self.m43 -
self.m23*self.m32*self.m44 + self.m22*self.m33*self.m44),
m12: det *
(self.m14*self.m33*self.m42 - self.m13*self.m34*self.m42 -
self.m14*self.m32*self.m43 + self.m12*self.m34*self.m43 +
self.m13*self.m32*self.m44 - self.m12*self.m33*self.m44),
m13: det *
(self.m13*self.m24*self.m42 - self.m14*self.m23*self.m42 +
self.m14*self.m22*self.m43 - self.m12*self.m24*self.m43 -
self.m13*self.m22*self.m44 + self.m12*self.m23*self.m44),
m14: det *
(self.m14*self.m23*self.m32 - self.m13*self.m24*self.m32 -
self.m14*self.m22*self.m33 + self.m12*self.m24*self.m33 +
self.m13*self.m22*self.m34 - self.m12*self.m23*self.m34),
m21: det *
(self.m24*self.m33*self.m41 - self.m23*self.m34*self.m41 -
self.m24*self.m31*self.m43 + self.m21*self.m34*self.m43 +
self.m23*self.m31*self.m44 - self.m21*self.m33*self.m44),
m22: det *
(self.m13*self.m34*self.m41 - self.m14*self.m33*self.m41 +
self.m14*self.m31*self.m43 - self.m11*self.m34*self.m43 -
self.m13*self.m31*self.m44 + self.m11*self.m33*self.m44),
m23: det *
(self.m14*self.m23*self.m41 - self.m13*self.m24*self.m41 -
self.m14*self.m21*self.m43 + self.m11*self.m24*self.m43 +
self.m13*self.m21*self.m44 - self.m11*self.m23*self.m44),
m24: det *
(self.m13*self.m24*self.m31 - self.m14*self.m23*self.m31 +
self.m14*self.m21*self.m33 - self.m11*self.m24*self.m33 -
self.m13*self.m21*self.m34 + self.m11*self.m23*self.m34),
m31: det *
(self.m22*self.m34*self.m41 - self.m24*self.m32*self.m41 +
self.m24*self.m31*self.m42 - self.m21*self.m34*self.m42 -
self.m22*self.m31*self.m44 + self.m21*self.m32*self.m44),
m32: det *
(self.m14*self.m32*self.m41 - self.m12*self.m34*self.m41 -
self.m14*self.m31*self.m42 + self.m11*self.m34*self.m42 +
self.m12*self.m31*self.m44 - self.m11*self.m32*self.m44),
m33: det *
(self.m12*self.m24*self.m41 - self.m14*self.m22*self.m41 +
self.m14*self.m21*self.m42 - self.m11*self.m24*self.m42 -
self.m12*self.m21*self.m44 + self.m11*self.m22*self.m44),
m34: det *
(self.m14*self.m22*self.m31 - self.m12*self.m24*self.m31 -
self.m14*self.m21*self.m32 + self.m11*self.m24*self.m32 +
self.m12*self.m21*self.m34 - self.m11*self.m22*self.m34),
m41: det *
(self.m23*self.m32*self.m41 - self.m22*self.m33*self.m41 -
self.m23*self.m31*self.m42 + self.m21*self.m33*self.m42 +
self.m22*self.m31*self.m43 - self.m21*self.m32*self.m43),
m42: det *
(self.m12*self.m33*self.m41 - self.m13*self.m32*self.m41 +
self.m13*self.m31*self.m42 - self.m11*self.m33*self.m42 -
self.m12*self.m31*self.m43 + self.m11*self.m32*self.m43),
m43: det *
(self.m13*self.m22*self.m41 - self.m12*self.m23*self.m41 -
self.m13*self.m21*self.m42 + self.m11*self.m23*self.m42 +
self.m12*self.m21*self.m43 - self.m11*self.m22*self.m43),
m44: det *
(self.m12*self.m23*self.m31 - self.m13*self.m22*self.m31 +
self.m13*self.m21*self.m32 - self.m11*self.m23*self.m32 -
self.m12*self.m21*self.m33 + self.m11*self.m22*self.m33),
};
Some(x)
}
}
/// https://drafts.csswg.org/css-transforms/#interpolation-of-transforms
impl Interpolate for TransformList {
#[inline]
fn interpolate(&self, other: &TransformList, time: f64) -> Result<Self, ()> {
// http://dev.w3.org/csswg/css-transforms/#interpolation-of-transforms
let result = match (&self.0, &other.0) {
(&Some(ref from_list), &Some(ref to_list)) => {
// Two lists of transforms
interpolate_transform_list(from_list, &to_list, time)
}
(&Some(ref from_list), &None) => {
// http://dev.w3.org/csswg/css-transforms/#none-transform-animation
let to_list = build_identity_transform_list(from_list);
interpolate_transform_list(from_list, &to_list, time)
}
(&None, &Some(ref to_list)) => {
// http://dev.w3.org/csswg/css-transforms/#none-transform-animation
let from_list = build_identity_transform_list(to_list);
interpolate_transform_list(&from_list, to_list, time)
}
_ => {
// http://dev.w3.org/csswg/css-transforms/#none-none-animation
TransformList(None)
}
};
Ok(result)
}
}
% endif