servo/components/gfx/text/glyph.rs
Patrick Walton 5fdaba05a6 layout: Implement text-align: justify and text-justify per
CSS-TEXT-3 § 7.3.

`text-justify: distribute` is not supported.

The behavior of `text-justify: none` does not seem to match what Firefox
and Chrome do, but it seems to match the spec.

Closes #213.
2015-01-29 17:00:41 -08:00

802 lines
27 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use geom::point::Point2D;
use std::cmp::{Ordering, PartialOrd};
use std::iter::repeat;
use std::mem;
use std::num::{ToPrimitive, NumCast};
use std::ops::{Add, Sub, Mul, Neg, Div, Rem, BitAnd, BitOr, BitXor, Shl, Shr, Not};
use std::u16;
use std::vec::Vec;
use util::geometry::Au;
use util::range::{mod, Range, RangeIndex, EachIndex};
use util::vec::*;
/// GlyphEntry is a port of Gecko's CompressedGlyph scheme for storing glyph data compactly.
///
/// In the common case (reasonable glyph advances, no offsets from the font em-box, and one glyph
/// per character), we pack glyph advance, glyph id, and some flags into a single u32.
///
/// In the uncommon case (multiple glyphs per unicode character, large glyph index/advance, or
/// glyph offsets), we pack the glyph count into GlyphEntry, and store the other glyph information
/// in DetailedGlyphStore.
#[derive(Clone, Show, Copy)]
struct GlyphEntry {
value: u32,
}
impl GlyphEntry {
fn new(value: u32) -> GlyphEntry {
GlyphEntry {
value: value,
}
}
fn initial() -> GlyphEntry {
GlyphEntry::new(0)
}
// Creates a GlyphEntry for the common case
fn simple(id: GlyphId, advance: Au) -> GlyphEntry {
assert!(is_simple_glyph_id(id));
assert!(is_simple_advance(advance));
let id_mask = id as u32;
let Au(advance) = advance;
let advance_mask = (advance as u32) << GLYPH_ADVANCE_SHIFT as uint;
GlyphEntry::new(id_mask | advance_mask | FLAG_IS_SIMPLE_GLYPH)
}
// Create a GlyphEntry for uncommon case; should be accompanied by
// initialization of the actual DetailedGlyph data in DetailedGlyphStore
fn complex(starts_cluster: bool, starts_ligature: bool, glyph_count: int) -> GlyphEntry {
assert!(glyph_count <= u16::MAX as int);
debug!("creating complex glyph entry: starts_cluster={}, starts_ligature={}, \
glyph_count={}",
starts_cluster,
starts_ligature,
glyph_count);
let mut val = FLAG_NOT_MISSING;
if !starts_cluster {
val |= FLAG_NOT_CLUSTER_START;
}
if !starts_ligature {
val |= FLAG_NOT_LIGATURE_GROUP_START;
}
val |= (glyph_count as u32) << GLYPH_COUNT_SHIFT as uint;
GlyphEntry::new(val)
}
/// Create a GlyphEntry for the case where glyphs couldn't be found for the specified
/// character.
fn missing(glyph_count: int) -> GlyphEntry {
assert!(glyph_count <= u16::MAX as int);
GlyphEntry::new((glyph_count as u32) << GLYPH_COUNT_SHIFT as uint)
}
}
/// The id of a particular glyph within a font
pub type GlyphId = u32;
// TODO: unify with bit flags?
#[derive(PartialEq, Copy)]
pub enum BreakType {
None,
Normal,
Hyphen,
}
static BREAK_TYPE_NONE: u8 = 0x0;
static BREAK_TYPE_NORMAL: u8 = 0x1;
static BREAK_TYPE_HYPHEN: u8 = 0x2;
fn break_flag_to_enum(flag: u8) -> BreakType {
if (flag & BREAK_TYPE_NORMAL) != 0 {
BreakType::Normal
} else if (flag & BREAK_TYPE_HYPHEN) != 0 {
BreakType::Hyphen
} else {
BreakType::None
}
}
fn break_enum_to_flag(e: BreakType) -> u8 {
match e {
BreakType::None => BREAK_TYPE_NONE,
BreakType::Normal => BREAK_TYPE_NORMAL,
BreakType::Hyphen => BREAK_TYPE_HYPHEN,
}
}
// TODO: make this more type-safe.
static FLAG_CHAR_IS_SPACE: u32 = 0x10000000;
// These two bits store some BREAK_TYPE_* flags
static FLAG_CAN_BREAK_MASK: u32 = 0x60000000;
static FLAG_CAN_BREAK_SHIFT: u32 = 29;
static FLAG_IS_SIMPLE_GLYPH: u32 = 0x80000000;
// glyph advance; in Au's.
static GLYPH_ADVANCE_MASK: u32 = 0x0FFF0000;
static GLYPH_ADVANCE_SHIFT: u32 = 16;
static GLYPH_ID_MASK: u32 = 0x0000FFFF;
// Non-simple glyphs (more than one glyph per char; missing glyph,
// newline, tab, large advance, or nonzero x/y offsets) may have one
// or more detailed glyphs associated with them. They are stored in a
// side array so that there is a 1:1 mapping of GlyphEntry to
// unicode char.
// The number of detailed glyphs for this char. If the char couldn't
// be mapped to a glyph (!FLAG_NOT_MISSING), then this actually holds
// the UTF8 code point instead.
static GLYPH_COUNT_MASK: u32 = 0x00FFFF00;
static GLYPH_COUNT_SHIFT: u32 = 8;
// N.B. following Gecko, these are all inverted so that a lot of
// missing chars can be memset with zeros in one fell swoop.
static FLAG_NOT_MISSING: u32 = 0x00000001;
static FLAG_NOT_CLUSTER_START: u32 = 0x00000002;
static FLAG_NOT_LIGATURE_GROUP_START: u32 = 0x00000004;
static FLAG_CHAR_IS_TAB: u32 = 0x00000008;
static FLAG_CHAR_IS_NEWLINE: u32 = 0x00000010;
//static FLAG_CHAR_IS_LOW_SURROGATE: u32 = 0x00000020;
//static CHAR_IDENTITY_FLAGS_MASK: u32 = 0x00000038;
fn is_simple_glyph_id(id: GlyphId) -> bool {
((id as u32) & GLYPH_ID_MASK) == id
}
fn is_simple_advance(advance: Au) -> bool {
let unsigned_au = advance.to_u32().unwrap();
(unsigned_au & (GLYPH_ADVANCE_MASK >> GLYPH_ADVANCE_SHIFT as uint)) == unsigned_au
}
type DetailedGlyphCount = u16;
// Getters and setters for GlyphEntry. Setter methods are functional,
// because GlyphEntry is immutable and only a u32 in size.
impl GlyphEntry {
// getter methods
#[inline(always)]
fn advance(&self) -> Au {
NumCast::from((self.value & GLYPH_ADVANCE_MASK) >> GLYPH_ADVANCE_SHIFT as uint).unwrap()
}
fn id(&self) -> GlyphId {
self.value & GLYPH_ID_MASK
}
fn is_ligature_start(&self) -> bool {
self.has_flag(!FLAG_NOT_LIGATURE_GROUP_START)
}
fn is_cluster_start(&self) -> bool {
self.has_flag(!FLAG_NOT_CLUSTER_START)
}
// True if original char was normal (U+0020) space. Other chars may
// map to space glyph, but this does not account for them.
fn char_is_space(&self) -> bool {
self.has_flag(FLAG_CHAR_IS_SPACE)
}
fn char_is_tab(&self) -> bool {
!self.is_simple() && self.has_flag(FLAG_CHAR_IS_TAB)
}
fn char_is_newline(&self) -> bool {
!self.is_simple() && self.has_flag(FLAG_CHAR_IS_NEWLINE)
}
fn can_break_before(&self) -> BreakType {
let flag = ((self.value & FLAG_CAN_BREAK_MASK) >> FLAG_CAN_BREAK_SHIFT as uint) as u8;
break_flag_to_enum(flag)
}
// setter methods
#[inline(always)]
fn set_char_is_space(&self) -> GlyphEntry {
GlyphEntry::new(self.value | FLAG_CHAR_IS_SPACE)
}
#[inline(always)]
fn set_char_is_tab(&self) -> GlyphEntry {
assert!(!self.is_simple());
GlyphEntry::new(self.value | FLAG_CHAR_IS_TAB)
}
#[inline(always)]
fn set_char_is_newline(&self) -> GlyphEntry {
assert!(!self.is_simple());
GlyphEntry::new(self.value | FLAG_CHAR_IS_NEWLINE)
}
#[inline(always)]
fn set_can_break_before(&self, e: BreakType) -> GlyphEntry {
let flag = (break_enum_to_flag(e) as u32) << FLAG_CAN_BREAK_SHIFT as uint;
GlyphEntry::new(self.value | flag)
}
// helper methods
fn glyph_count(&self) -> u16 {
assert!(!self.is_simple());
((self.value & GLYPH_COUNT_MASK) >> GLYPH_COUNT_SHIFT as uint) as u16
}
#[inline(always)]
fn is_simple(&self) -> bool {
self.has_flag(FLAG_IS_SIMPLE_GLYPH)
}
#[inline(always)]
fn has_flag(&self, flag: u32) -> bool {
(self.value & flag) != 0
}
#[inline(always)]
fn adapt_character_flags_of_entry(&self, other: GlyphEntry) -> GlyphEntry {
GlyphEntry { value: self.value | other.value }
}
}
// Stores data for a detailed glyph, in the case that several glyphs
// correspond to one character, or the glyph's data couldn't be packed.
#[derive(Clone, Show, Copy)]
struct DetailedGlyph {
id: GlyphId,
// glyph's advance, in the text's direction (LTR or RTL)
advance: Au,
// glyph's offset from the font's em-box (from top-left)
offset: Point2D<Au>,
}
impl DetailedGlyph {
fn new(id: GlyphId, advance: Au, offset: Point2D<Au>) -> DetailedGlyph {
DetailedGlyph {
id: id,
advance: advance,
offset: offset,
}
}
}
#[derive(PartialEq, Clone, Eq, Show, Copy)]
struct DetailedGlyphRecord {
// source string offset/GlyphEntry offset in the TextRun
entry_offset: CharIndex,
// offset into the detailed glyphs buffer
detail_offset: int,
}
impl PartialOrd for DetailedGlyphRecord {
fn partial_cmp(&self, other: &DetailedGlyphRecord) -> Option<Ordering> {
self.entry_offset.partial_cmp(&other.entry_offset)
}
}
impl Ord for DetailedGlyphRecord {
fn cmp(&self, other: &DetailedGlyphRecord) -> Ordering {
self.entry_offset.cmp(&other.entry_offset)
}
}
// Manages the lookup table for detailed glyphs. Sorting is deferred
// until a lookup is actually performed; this matches the expected
// usage pattern of setting/appending all the detailed glyphs, and
// then querying without setting.
#[derive(Clone)]
struct DetailedGlyphStore {
// TODO(pcwalton): Allocation of this buffer is expensive. Consider a small-vector
// optimization.
detail_buffer: Vec<DetailedGlyph>,
// TODO(pcwalton): Allocation of this buffer is expensive. Consider a small-vector
// optimization.
detail_lookup: Vec<DetailedGlyphRecord>,
lookup_is_sorted: bool,
}
impl<'a> DetailedGlyphStore {
fn new() -> DetailedGlyphStore {
DetailedGlyphStore {
detail_buffer: vec!(), // TODO: default size?
detail_lookup: vec!(),
lookup_is_sorted: false,
}
}
fn add_detailed_glyphs_for_entry(&mut self, entry_offset: CharIndex, glyphs: &[DetailedGlyph]) {
let entry = DetailedGlyphRecord {
entry_offset: entry_offset,
detail_offset: self.detail_buffer.len() as int,
};
debug!("Adding entry[off={:?}] for detailed glyphs: {:?}", entry_offset, glyphs);
/* TODO: don't actually assert this until asserts are compiled
in/out based on severity, debug/release, etc. This assertion
would wreck the complexity of the lookup.
See Rust Issue #3647, #2228, #3627 for related information.
do self.detail_lookup.borrow |arr| {
assert !arr.contains(entry)
}
*/
self.detail_lookup.push(entry);
self.detail_buffer.push_all(glyphs);
self.lookup_is_sorted = false;
}
fn get_detailed_glyphs_for_entry(&'a self, entry_offset: CharIndex, count: u16)
-> &'a [DetailedGlyph] {
debug!("Requesting detailed glyphs[n={}] for entry[off={:?}]", count, entry_offset);
// FIXME: Is this right? --pcwalton
// TODO: should fix this somewhere else
if count == 0 {
return self.detail_buffer.slice(0, 0);
}
assert!((count as uint) <= self.detail_buffer.len());
assert!(self.lookup_is_sorted);
let key = DetailedGlyphRecord {
entry_offset: entry_offset,
detail_offset: 0, // unused
};
let i = self.detail_lookup.as_slice().binary_search_index(&key)
.expect("Invalid index not found in detailed glyph lookup table!");
assert!(i + (count as uint) <= self.detail_buffer.len());
// return a slice into the buffer
self.detail_buffer.slice(i, i + count as uint)
}
fn get_detailed_glyph_with_index(&'a self,
entry_offset: CharIndex,
detail_offset: u16)
-> &'a DetailedGlyph {
assert!((detail_offset as uint) <= self.detail_buffer.len());
assert!(self.lookup_is_sorted);
let key = DetailedGlyphRecord {
entry_offset: entry_offset,
detail_offset: 0, // unused
};
let i = self.detail_lookup.as_slice().binary_search_index(&key)
.expect("Invalid index not found in detailed glyph lookup table!");
assert!(i + (detail_offset as uint) < self.detail_buffer.len());
&self.detail_buffer[i + (detail_offset as uint)]
}
fn ensure_sorted(&mut self) {
if self.lookup_is_sorted {
return;
}
// Sorting a unique vector is surprisingly hard. The following
// code is a good argument for using DVecs, but they require
// immutable locations thus don't play well with freezing.
// Thar be dragons here. You have been warned. (Tips accepted.)
let mut unsorted_records: Vec<DetailedGlyphRecord> = vec!();
mem::swap(&mut self.detail_lookup, &mut unsorted_records);
let mut mut_records : Vec<DetailedGlyphRecord> = unsorted_records;
mut_records.sort_by(|a, b| {
if a < b {
Ordering::Less
} else {
Ordering::Greater
}
});
let mut sorted_records = mut_records;
mem::swap(&mut self.detail_lookup, &mut sorted_records);
self.lookup_is_sorted = true;
}
}
// This struct is used by GlyphStore clients to provide new glyph data.
// It should be allocated on the stack and passed by reference to GlyphStore.
#[derive(Copy)]
pub struct GlyphData {
id: GlyphId,
advance: Au,
offset: Point2D<Au>,
is_missing: bool,
cluster_start: bool,
ligature_start: bool,
}
impl GlyphData {
/// Creates a new entry for one glyph.
pub fn new(id: GlyphId,
advance: Au,
offset: Option<Point2D<Au>>,
is_missing: bool,
cluster_start: bool,
ligature_start: bool)
-> GlyphData {
GlyphData {
id: id,
advance: advance,
offset: offset.unwrap_or(Point2D::zero()),
is_missing: is_missing,
cluster_start: cluster_start,
ligature_start: ligature_start,
}
}
}
// This enum is a proxy that's provided to GlyphStore clients when iterating
// through glyphs (either for a particular TextRun offset, or all glyphs).
// Rather than eagerly assembling and copying glyph data, it only retrieves
// values as they are needed from the GlyphStore, using provided offsets.
#[derive(Copy)]
pub enum GlyphInfo<'a> {
Simple(&'a GlyphStore, CharIndex),
Detail(&'a GlyphStore, CharIndex, u16),
}
impl<'a> GlyphInfo<'a> {
pub fn id(self) -> GlyphId {
match self {
GlyphInfo::Simple(store, entry_i) => store.entry_buffer[entry_i.to_uint()].id(),
GlyphInfo::Detail(store, entry_i, detail_j) => {
store.detail_store.get_detailed_glyph_with_index(entry_i, detail_j).id
}
}
}
#[inline(always)]
// FIXME: Resolution conflicts with IteratorUtil trait so adding trailing _
pub fn advance(self) -> Au {
match self {
GlyphInfo::Simple(store, entry_i) => store.entry_buffer[entry_i.to_uint()].advance(),
GlyphInfo::Detail(store, entry_i, detail_j) => {
store.detail_store.get_detailed_glyph_with_index(entry_i, detail_j).advance
}
}
}
pub fn offset(self) -> Option<Point2D<Au>> {
match self {
GlyphInfo::Simple(_, _) => None,
GlyphInfo::Detail(store, entry_i, detail_j) => {
Some(store.detail_store.get_detailed_glyph_with_index(entry_i, detail_j).offset)
}
}
}
}
/// Stores the glyph data belonging to a text run.
///
/// Simple glyphs are stored inline in the `entry_buffer`, detailed glyphs are
/// stored as pointers into the `detail_store`.
///
/// ~~~ignore
/// +- GlyphStore --------------------------------+
/// | +---+---+---+---+---+---+---+ |
/// | entry_buffer: | | s | | s | | s | s | | d = detailed
/// | +-|-+---+-|-+---+-|-+---+---+ | s = simple
/// | | | | |
/// | | +---+-------+ |
/// | | | |
/// | +-V-+-V-+ |
/// | detail_store: | d | d | |
/// | +---+---+ |
/// +---------------------------------------------+
/// ~~~
#[derive(Clone)]
pub struct GlyphStore {
// TODO(pcwalton): Allocation of this buffer is expensive. Consider a small-vector
// optimization.
/// A buffer of glyphs within the text run, in the order in which they
/// appear in the input text
entry_buffer: Vec<GlyphEntry>,
/// A store of the detailed glyph data. Detailed glyphs contained in the
/// `entry_buffer` point to locations in this data structure.
detail_store: DetailedGlyphStore,
is_whitespace: bool,
}
int_range_index! {
#[derive(RustcEncodable)]
#[doc = "An index that refers to a character in a text run. This could \
point to the middle of a glyph."]
struct CharIndex(int)
}
impl<'a> GlyphStore {
// Initializes the glyph store, but doesn't actually shape anything.
// Use the set_glyph, set_glyphs() methods to store glyph data.
pub fn new(length: int, is_whitespace: bool) -> GlyphStore {
assert!(length > 0);
GlyphStore {
entry_buffer: repeat(GlyphEntry::initial()).take(length as uint)
.collect(),
detail_store: DetailedGlyphStore::new(),
is_whitespace: is_whitespace,
}
}
pub fn char_len(&self) -> CharIndex {
CharIndex(self.entry_buffer.len() as int)
}
pub fn is_whitespace(&self) -> bool {
self.is_whitespace
}
pub fn finalize_changes(&mut self) {
self.detail_store.ensure_sorted();
}
/// Adds a single glyph. If `character` is present, this represents a single character;
/// otherwise, this glyph represents multiple characters.
pub fn add_glyph_for_char_index(&mut self,
i: CharIndex,
character: Option<char>,
data: &GlyphData) {
fn glyph_is_compressible(data: &GlyphData) -> bool {
is_simple_glyph_id(data.id)
&& is_simple_advance(data.advance)
&& data.offset == Point2D::zero()
&& data.cluster_start // others are stored in detail buffer
}
debug_assert!(data.ligature_start); // can't compress ligature continuation glyphs.
debug_assert!(i < self.char_len());
let mut entry = match (data.is_missing, glyph_is_compressible(data)) {
(true, _) => GlyphEntry::missing(1),
(false, true) => GlyphEntry::simple(data.id, data.advance),
(false, false) => {
let glyph = &[DetailedGlyph::new(data.id, data.advance, data.offset)];
self.detail_store.add_detailed_glyphs_for_entry(i, glyph);
GlyphEntry::complex(data.cluster_start, data.ligature_start, 1)
}
};
// FIXME(pcwalton): Is this necessary? I think it's a no-op.
entry = entry.adapt_character_flags_of_entry(self.entry_buffer[i.to_uint()]);
if character == Some(' ') {
entry = entry.set_char_is_space()
}
self.entry_buffer[i.to_uint()] = entry;
}
pub fn add_glyphs_for_char_index(&mut self, i: CharIndex, data_for_glyphs: &[GlyphData]) {
assert!(i < self.char_len());
assert!(data_for_glyphs.len() > 0);
let glyph_count = data_for_glyphs.len() as int;
let first_glyph_data = data_for_glyphs[0];
let entry = match first_glyph_data.is_missing {
true => GlyphEntry::missing(glyph_count),
false => {
let glyphs_vec: Vec<DetailedGlyph> = (0..glyph_count as uint).map(|&:i| {
DetailedGlyph::new(data_for_glyphs[i].id,
data_for_glyphs[i].advance,
data_for_glyphs[i].offset)
}).collect();
self.detail_store.add_detailed_glyphs_for_entry(i, glyphs_vec.as_slice());
GlyphEntry::complex(first_glyph_data.cluster_start,
first_glyph_data.ligature_start,
glyph_count)
}
}.adapt_character_flags_of_entry(self.entry_buffer[i.to_uint()]);
debug!("Adding multiple glyphs[idx={:?}, count={}]: {:?}", i, glyph_count, entry);
self.entry_buffer[i.to_uint()] = entry;
}
// used when a character index has no associated glyph---for example, a ligature continuation.
pub fn add_nonglyph_for_char_index(&mut self, i: CharIndex, cluster_start: bool, ligature_start: bool) {
assert!(i < self.char_len());
let entry = GlyphEntry::complex(cluster_start, ligature_start, 0);
debug!("adding spacer for chracter without associated glyph[idx={:?}]", i);
self.entry_buffer[i.to_uint()] = entry;
}
pub fn iter_glyphs_for_char_index(&'a self, i: CharIndex) -> GlyphIterator<'a> {
self.iter_glyphs_for_char_range(&Range::new(i, CharIndex(1)))
}
#[inline]
pub fn iter_glyphs_for_char_range(&'a self, rang: &Range<CharIndex>) -> GlyphIterator<'a> {
if rang.begin() >= self.char_len() {
panic!("iter_glyphs_for_range: range.begin beyond length!");
}
if rang.end() > self.char_len() {
panic!("iter_glyphs_for_range: range.end beyond length!");
}
GlyphIterator {
store: self,
char_index: rang.begin(),
char_range: rang.each_index(),
glyph_range: None,
}
}
#[inline]
pub fn advance_for_char_range(&self, rang: &Range<CharIndex>) -> Au {
self.iter_glyphs_for_char_range(rang)
.fold(Au(0), |advance, (_, glyph)| advance + glyph.advance())
}
// getter methods
pub fn char_is_space(&self, i: CharIndex) -> bool {
assert!(i < self.char_len());
self.entry_buffer[i.to_uint()].char_is_space()
}
pub fn char_is_tab(&self, i: CharIndex) -> bool {
assert!(i < self.char_len());
self.entry_buffer[i.to_uint()].char_is_tab()
}
pub fn char_is_newline(&self, i: CharIndex) -> bool {
assert!(i < self.char_len());
self.entry_buffer[i.to_uint()].char_is_newline()
}
pub fn is_ligature_start(&self, i: CharIndex) -> bool {
assert!(i < self.char_len());
self.entry_buffer[i.to_uint()].is_ligature_start()
}
pub fn is_cluster_start(&self, i: CharIndex) -> bool {
assert!(i < self.char_len());
self.entry_buffer[i.to_uint()].is_cluster_start()
}
pub fn can_break_before(&self, i: CharIndex) -> BreakType {
assert!(i < self.char_len());
self.entry_buffer[i.to_uint()].can_break_before()
}
// setter methods
pub fn set_char_is_space(&mut self, i: CharIndex) {
assert!(i < self.char_len());
let entry = self.entry_buffer[i.to_uint()];
self.entry_buffer[i.to_uint()] = entry.set_char_is_space();
}
pub fn set_char_is_tab(&mut self, i: CharIndex) {
assert!(i < self.char_len());
let entry = self.entry_buffer[i.to_uint()];
self.entry_buffer[i.to_uint()] = entry.set_char_is_tab();
}
pub fn set_char_is_newline(&mut self, i: CharIndex) {
assert!(i < self.char_len());
let entry = self.entry_buffer[i.to_uint()];
self.entry_buffer[i.to_uint()] = entry.set_char_is_newline();
}
pub fn set_can_break_before(&mut self, i: CharIndex, t: BreakType) {
assert!(i < self.char_len());
let entry = self.entry_buffer[i.to_uint()];
self.entry_buffer[i.to_uint()] = entry.set_can_break_before(t);
}
pub fn space_count_in_range(&self, range: &Range<CharIndex>) -> u32 {
let mut spaces = 0;
for index in range.each_index() {
if self.char_is_space(index) {
spaces += 1
}
}
spaces
}
pub fn distribute_extra_space_in_range(&mut self, range: &Range<CharIndex>, space: f64) {
debug_assert!(space >= 0.0);
if range.is_empty() {
return
}
for index in range.each_index() {
// TODO(pcwalton): Handle spaces that are detailed glyphs -- these are uncommon but
// possible.
let mut entry = &mut self.entry_buffer[index.to_uint()];
if entry.is_simple() && entry.char_is_space() {
// FIXME(pcwalton): This can overflow for very large font-sizes.
let advance =
((entry.value & GLYPH_ADVANCE_MASK) >> (GLYPH_ADVANCE_SHIFT as uint)) +
Au::from_frac_px(space).to_u32().unwrap();
entry.value = (entry.value & !GLYPH_ADVANCE_MASK) |
(advance << (GLYPH_ADVANCE_SHIFT as uint));
}
}
}
}
/// An iterator over the glyphs in a character range in a `GlyphStore`.
pub struct GlyphIterator<'a> {
store: &'a GlyphStore,
char_index: CharIndex,
char_range: EachIndex<int, CharIndex>,
glyph_range: Option<EachIndex<int, CharIndex>>,
}
impl<'a> GlyphIterator<'a> {
// Slow path when there is a glyph range.
#[inline(never)]
fn next_glyph_range(&mut self) -> Option<(CharIndex, GlyphInfo<'a>)> {
match self.glyph_range.as_mut().unwrap().next() {
Some(j) => Some((self.char_index,
GlyphInfo::Detail(self.store, self.char_index, j.get() as u16 /* ??? */))),
None => {
// No more glyphs for current character. Try to get another.
self.glyph_range = None;
self.next()
}
}
}
// Slow path when there is a complex glyph.
#[inline(never)]
fn next_complex_glyph(&mut self, entry: &GlyphEntry, i: CharIndex)
-> Option<(CharIndex, GlyphInfo<'a>)> {
let glyphs = self.store.detail_store.get_detailed_glyphs_for_entry(i, entry.glyph_count());
self.glyph_range = Some(range::each_index(CharIndex(0), CharIndex(glyphs.len() as int)));
self.next()
}
}
impl<'a> Iterator for GlyphIterator<'a> {
type Item = (CharIndex, GlyphInfo<'a>);
// I tried to start with something simpler and apply FlatMap, but the
// inability to store free variables in the FlatMap struct was problematic.
//
// This function consists of the fast path and is designed to be inlined into its caller. The
// slow paths, which should not be inlined, are `next_glyph_range()` and
// `next_complex_glyph()`.
#[inline(always)]
fn next(&mut self) -> Option<(CharIndex, GlyphInfo<'a>)> {
// Would use 'match' here but it borrows contents in a way that
// interferes with mutation.
if self.glyph_range.is_some() {
self.next_glyph_range()
} else {
// No glyph range. Look at next character.
self.char_range.next().and_then(|:i| {
self.char_index = i;
assert!(i < self.store.char_len());
let entry = self.store.entry_buffer[i.to_uint()];
if entry.is_simple() {
Some((self.char_index, GlyphInfo::Simple(self.store, i)))
} else {
// Fall back to the slow path.
self.next_complex_glyph(&entry, i)
}
})
}
}
}