servo/components/layout/layout_task.rs
2014-09-18 09:20:23 -07:00

1140 lines
46 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! The layout task. Performs layout on the DOM, builds display lists and sends them to be
//! rendered.
use css::matching::{ApplicableDeclarations, MatchMethods};
use css::node_style::StyledNode;
use construct::{FlowConstructionResult, NoConstructionResult};
use context::{LayoutContext, SharedLayoutContext};
use flow::{Flow, ImmutableFlowUtils, MutableFlowUtils, MutableOwnedFlowUtils};
use flow::{PreorderFlowTraversal, PostorderFlowTraversal};
use flow;
use flow_ref::FlowRef;
use incremental::RestyleDamage;
use layout_debug;
use parallel::UnsafeFlow;
use parallel;
use util::{LayoutDataAccess, LayoutDataWrapper, OpaqueNodeMethods, ToGfxColor};
use wrapper::{LayoutNode, TLayoutNode, ThreadSafeLayoutNode};
use collections::dlist::DList;
use encoding::EncodingRef;
use encoding::all::UTF_8;
use geom::point::Point2D;
use geom::rect::Rect;
use geom::size::Size2D;
use gfx::display_list::{ClipDisplayItemClass, ContentStackingLevel, DisplayItem};
use gfx::display_list::{DisplayItemIterator, DisplayList, OpaqueNode};
use gfx::render_task::{RenderInitMsg, RenderChan, RenderLayer};
use gfx::{render_task, color};
use layout_traits;
use layout_traits::{LayoutControlMsg, LayoutTaskFactory};
use script::dom::bindings::js::JS;
use script::dom::node::{ElementNodeTypeId, LayoutDataRef, Node};
use script::dom::element::{HTMLBodyElementTypeId, HTMLHtmlElementTypeId};
use script::layout_interface::{AddStylesheetMsg, LoadStylesheetMsg, ScriptLayoutChan};
use script::layout_interface::{TrustedNodeAddress, ContentBoxesResponse, ExitNowMsg};
use script::layout_interface::{ContentBoxResponse, HitTestResponse, MouseOverResponse};
use script::layout_interface::{ContentChangedDocumentDamage, LayoutChan, Msg, PrepareToExitMsg};
use script::layout_interface::{GetRPCMsg, LayoutRPC, ReapLayoutDataMsg, Reflow, UntrustedNodeAddress};
use script::layout_interface::{ReflowForDisplay, ReflowMsg};
use script_traits::{SendEventMsg, ReflowEvent, ReflowCompleteMsg, OpaqueScriptLayoutChannel, ScriptControlChan};
use servo_msg::compositor_msg::Scrollable;
use servo_msg::constellation_msg::{ConstellationChan, PipelineId, Failure, FailureMsg};
use servo_net::image_cache_task::{ImageCacheTask, ImageResponseMsg};
use gfx::font_cache_task::{FontCacheTask};
use servo_net::local_image_cache::{ImageResponder, LocalImageCache};
use servo_util::bloom::BloomFilter;
use servo_net::resource_task::{ResourceTask, load_bytes_iter};
use servo_util::geometry::Au;
use servo_util::geometry;
use servo_util::logical_geometry::LogicalPoint;
use servo_util::opts::Opts;
use servo_util::smallvec::{SmallVec, SmallVec1};
use servo_util::time::{TimeProfilerChan, profile};
use servo_util::time;
use servo_util::task::spawn_named_with_send_on_failure;
use servo_util::workqueue::WorkQueue;
use std::cell::Cell;
use std::comm::{channel, Sender, Receiver, Select};
use std::mem;
use std::ptr;
use style;
use style::{AuthorOrigin, Stylesheet, Stylist};
use style::iter_font_face_rules;
use sync::{Arc, Mutex, MutexGuard};
use url::Url;
/// Mutable data belonging to the LayoutTask.
///
/// This needs to be protected by a mutex so we can do fast RPCs.
pub struct LayoutTaskData {
/// The local image cache.
pub local_image_cache: Arc<Mutex<LocalImageCache>>,
/// The size of the viewport.
pub screen_size: Size2D<Au>,
/// A cached display list.
pub display_list: Option<Arc<DisplayList>>,
pub stylist: Box<Stylist>,
/// The workers that we use for parallel operation.
pub parallel_traversal: Option<WorkQueue<*const SharedLayoutContext, UnsafeFlow>>,
/// The dirty rect. Used during display list construction.
pub dirty: Rect<Au>,
/// Starts at zero, and increased by one every time a layout completes.
/// This can be used to easily check for invalid stale data.
pub generation: uint,
}
/// Information needed by the layout task.
pub struct LayoutTask {
/// The ID of the pipeline that we belong to.
pub id: PipelineId,
/// The port on which we receive messages from the script task.
pub port: Receiver<Msg>,
/// The port on which we receive messages from the constellation
pub pipeline_port: Receiver<LayoutControlMsg>,
//// The channel to send messages to ourself.
pub chan: LayoutChan,
/// The channel on which messages can be sent to the constellation.
pub constellation_chan: ConstellationChan,
/// The channel on which messages can be sent to the script task.
pub script_chan: ScriptControlChan,
/// The channel on which messages can be sent to the painting task.
pub render_chan: RenderChan,
/// The channel on which messages can be sent to the time profiler.
pub time_profiler_chan: TimeProfilerChan,
/// The channel on which messages can be sent to the resource task.
pub resource_task: ResourceTask,
/// The channel on which messages can be sent to the image cache.
pub image_cache_task: ImageCacheTask,
/// Public interface to the font cache task.
pub font_cache_task: FontCacheTask,
/// The command-line options.
pub opts: Opts,
/// Is this the first reflow in this LayoutTask?
pub first_reflow: Cell<bool>,
/// A mutex to allow for fast, read-only RPC of layout's internal data
/// structures, while still letting the LayoutTask modify them.
///
/// All the other elements of this struct are read-only.
pub rw_data: Arc<Mutex<LayoutTaskData>>,
}
/// The damage computation traversal.
#[deriving(Clone)]
struct ComputeDamageTraversal;
impl PostorderFlowTraversal for ComputeDamageTraversal {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
let mut damage = flow::base(flow).restyle_damage;
for child in flow::child_iter(flow) {
damage.insert(flow::base(child).restyle_damage.propagate_up())
}
flow::mut_base(flow).restyle_damage = damage;
true
}
}
/// Propagates restyle damage up and down the tree as appropriate.
///
/// FIXME(pcwalton): Merge this with flow tree building and/or other traversals.
struct PropagateDamageTraversal {
all_style_damage: bool,
}
impl PreorderFlowTraversal for PropagateDamageTraversal {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
if self.all_style_damage {
flow::mut_base(flow).restyle_damage.insert(RestyleDamage::all())
}
debug!("restyle damage = {:?}", flow::base(flow).restyle_damage);
let prop = flow::base(flow).restyle_damage.propagate_down();
if !prop.is_empty() {
for kid_ctx in flow::child_iter(flow) {
flow::mut_base(kid_ctx).restyle_damage.insert(prop)
}
}
true
}
}
/// The flow tree verification traversal. This is only on in debug builds.
#[cfg(debug)]
struct FlowTreeVerificationTraversal;
#[cfg(debug)]
impl PreorderFlowTraversal for FlowTreeVerificationTraversal {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
let base = flow::base(flow);
if !base.flags.is_leaf() && !base.flags.is_nonleaf() {
println("flow tree verification failed: flow wasn't a leaf or a nonleaf!");
flow.dump();
fail!("flow tree verification failed")
}
true
}
}
/// The bubble-inline-sizes traversal, the first part of layout computation. This computes preferred
/// and intrinsic inline-sizes and bubbles them up the tree.
pub struct BubbleISizesTraversal<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for BubbleISizesTraversal<'a> {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
flow.bubble_inline_sizes(self.layout_context);
true
}
// FIXME: We can't prune until we start reusing flows
/*
#[inline]
fn should_prune(&mut self, flow: &mut Flow) -> bool {
flow::mut_base(flow).restyle_damage.lacks(BubbleISizes)
}
*/
}
/// The assign-inline-sizes traversal. In Gecko this corresponds to `Reflow`.
pub struct AssignISizesTraversal<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PreorderFlowTraversal for AssignISizesTraversal<'a> {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
flow.assign_inline_sizes(self.layout_context);
true
}
}
/// The assign-block-sizes-and-store-overflow traversal, the last (and most expensive) part of layout
/// computation. Determines the final block-sizes for all layout objects, computes positions, and
/// computes overflow regions. In Gecko this corresponds to `FinishAndStoreOverflow`.
pub struct AssignBSizesAndStoreOverflowTraversal<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for AssignBSizesAndStoreOverflowTraversal<'a> {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
flow.assign_block_size(self.layout_context);
// Skip store-overflow for absolutely positioned flows. That will be
// done in a separate traversal.
if !flow.is_store_overflow_delayed() {
flow.store_overflow(self.layout_context);
}
true
}
#[inline]
fn should_process(&mut self, flow: &mut Flow) -> bool {
!flow::base(flow).flags.impacted_by_floats()
}
}
/// The display list construction traversal.
pub struct BuildDisplayListTraversal<'a> {
layout_context: &'a LayoutContext<'a>,
}
impl<'a> BuildDisplayListTraversal<'a> {
#[inline]
fn process(&mut self, flow: &mut Flow) {
flow.compute_absolute_position();
for kid in flow::mut_base(flow).child_iter() {
if !kid.is_absolutely_positioned() {
self.process(kid)
}
}
for absolute_descendant_link in flow::mut_base(flow).abs_descendants.iter() {
self.process(absolute_descendant_link)
}
flow.build_display_list(self.layout_context)
}
}
struct LayoutImageResponder {
id: PipelineId,
script_chan: ScriptControlChan,
}
impl ImageResponder for LayoutImageResponder {
fn respond(&self) -> proc(ImageResponseMsg):Send {
let id = self.id.clone();
let script_chan = self.script_chan.clone();
let f: proc(ImageResponseMsg):Send = proc(_) {
let ScriptControlChan(chan) = script_chan;
drop(chan.send_opt(SendEventMsg(id.clone(), ReflowEvent)))
};
f
}
}
impl LayoutTaskFactory for LayoutTask {
/// Spawns a new layout task.
fn create(_phantom: Option<&mut LayoutTask>,
id: PipelineId,
chan: OpaqueScriptLayoutChannel,
pipeline_port: Receiver<LayoutControlMsg>,
constellation_chan: ConstellationChan,
failure_msg: Failure,
script_chan: ScriptControlChan,
render_chan: RenderChan,
resource_task: ResourceTask,
img_cache_task: ImageCacheTask,
font_cache_task: FontCacheTask,
opts: Opts,
time_profiler_chan: TimeProfilerChan,
shutdown_chan: Sender<()>) {
let ConstellationChan(con_chan) = constellation_chan.clone();
spawn_named_with_send_on_failure("LayoutTask", proc() {
{ // Ensures layout task is destroyed before we send shutdown message
let sender = chan.sender();
let layout =
LayoutTask::new(
id,
chan.receiver(),
LayoutChan(sender),
pipeline_port,
constellation_chan,
script_chan,
render_chan,
resource_task,
img_cache_task,
font_cache_task,
&opts,
time_profiler_chan);
layout.start();
}
shutdown_chan.send(());
}, FailureMsg(failure_msg), con_chan, false);
}
}
/// The `LayoutTask` `rw_data` lock must remain locked until the first reflow,
/// as RPC calls don't make sense until then. Use this in combination with
/// `LayoutTask::lock_rw_data` and `LayoutTask::return_rw_data`.
enum RWGuard<'a> {
/// If the lock was previously held, from when the task started.
Held(MutexGuard<'a, LayoutTaskData>),
/// If the lock was just used, and has been returned since there has been
/// a reflow already.
Used(MutexGuard<'a, LayoutTaskData>),
}
impl<'a> Deref<LayoutTaskData> for RWGuard<'a> {
fn deref(&self) -> &LayoutTaskData {
match *self {
Held(ref x) => x.deref(),
Used(ref x) => x.deref(),
}
}
}
impl<'a> DerefMut<LayoutTaskData> for RWGuard<'a> {
fn deref_mut(&mut self) -> &mut LayoutTaskData {
match *self {
Held(ref mut x) => x.deref_mut(),
Used(ref mut x) => x.deref_mut(),
}
}
}
impl LayoutTask {
/// Creates a new `LayoutTask` structure.
fn new(id: PipelineId,
port: Receiver<Msg>,
chan: LayoutChan,
pipeline_port: Receiver<LayoutControlMsg>,
constellation_chan: ConstellationChan,
script_chan: ScriptControlChan,
render_chan: RenderChan,
resource_task: ResourceTask,
image_cache_task: ImageCacheTask,
font_cache_task: FontCacheTask,
opts: &Opts,
time_profiler_chan: TimeProfilerChan)
-> LayoutTask {
let local_image_cache = Arc::new(Mutex::new(LocalImageCache::new(image_cache_task.clone())));
let screen_size = Size2D(Au(0), Au(0));
let parallel_traversal = if opts.layout_threads != 1 {
Some(WorkQueue::new("LayoutWorker", opts.layout_threads, ptr::null()))
} else {
None
};
LayoutTask {
id: id,
port: port,
pipeline_port: pipeline_port,
chan: chan,
constellation_chan: constellation_chan,
script_chan: script_chan,
render_chan: render_chan,
time_profiler_chan: time_profiler_chan,
resource_task: resource_task,
image_cache_task: image_cache_task.clone(),
font_cache_task: font_cache_task,
opts: opts.clone(),
first_reflow: Cell::new(true),
rw_data: Arc::new(Mutex::new(
LayoutTaskData {
local_image_cache: local_image_cache,
screen_size: screen_size,
display_list: None,
stylist: box Stylist::new(),
parallel_traversal: parallel_traversal,
dirty: Rect::zero(),
generation: 0,
})),
}
}
/// Starts listening on the port.
fn start(self) {
let mut possibly_locked_rw_data = Some(self.rw_data.lock());
while self.handle_request(&mut possibly_locked_rw_data) {
// Loop indefinitely.
}
}
// Create a layout context for use in building display lists, hit testing, &c.
fn build_shared_layout_context(
&self,
rw_data: &LayoutTaskData,
reflow_root: &LayoutNode,
url: &Url)
-> SharedLayoutContext {
SharedLayoutContext {
image_cache: rw_data.local_image_cache.clone(),
screen_size: rw_data.screen_size.clone(),
constellation_chan: self.constellation_chan.clone(),
layout_chan: self.chan.clone(),
font_cache_task: self.font_cache_task.clone(),
stylist: &*rw_data.stylist,
url: (*url).clone(),
reflow_root: OpaqueNodeMethods::from_layout_node(reflow_root),
opts: self.opts.clone(),
dirty: Rect::zero(),
generation: rw_data.generation,
}
}
/// Receives and dispatches messages from the script and constellation tasks
fn handle_request<'a>(&'a self, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) -> bool {
enum PortToRead {
Pipeline,
Script,
}
let port_to_read = {
let sel = Select::new();
let mut port1 = sel.handle(&self.port);
let mut port2 = sel.handle(&self.pipeline_port);
unsafe {
port1.add();
port2.add();
}
let ret = sel.wait();
if ret == port1.id() {
Script
} else if ret == port2.id() {
Pipeline
} else {
fail!("invalid select result");
}
};
match port_to_read {
Pipeline => match self.pipeline_port.recv() {
layout_traits::ExitNowMsg => self.handle_script_request(ExitNowMsg, possibly_locked_rw_data),
},
Script => {
let msg = self.port.recv();
self.handle_script_request(msg, possibly_locked_rw_data)
}
}
}
/// If no reflow has happened yet, this will just return the lock in
/// `possibly_locked_rw_data`. Otherwise, it will acquire the `rw_data` lock.
///
/// If you do not wish RPCs to remain blocked, just drop the `RWGuard`
/// returned from this function. If you _do_ wish for them to remain blocked,
/// use `return_rw_data`.
fn lock_rw_data<'a>(&'a self, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) -> RWGuard<'a> {
match possibly_locked_rw_data.take() {
None => Used(self.rw_data.lock()),
Some(x) => Held(x),
}
}
/// If no reflow has ever been trigger, this will keep the lock, locked
/// (and saved in `possibly_locked_rw_data`). If it has been, the lock will
/// be unlocked.
fn return_rw_data<'a>(possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>, rw_data: RWGuard<'a>) {
match rw_data {
Used(x) => drop(x),
Held(x) => *possibly_locked_rw_data = Some(x),
}
}
/// Receives and dispatches messages from the script task.
fn handle_script_request<'a>(&'a self, request: Msg, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) -> bool {
match request {
AddStylesheetMsg(sheet) => self.handle_add_stylesheet(sheet, possibly_locked_rw_data),
LoadStylesheetMsg(url) => self.handle_load_stylesheet(url, possibly_locked_rw_data),
GetRPCMsg(response_chan) => {
response_chan.send(
box LayoutRPCImpl(
self.rw_data.clone()) as Box<LayoutRPC + Send>);
},
ReflowMsg(data) => {
profile(time::LayoutPerformCategory, Some((&data.url, data.iframe, self.first_reflow.get())),
self.time_profiler_chan.clone(), || {
self.handle_reflow(&*data, possibly_locked_rw_data);
});
},
ReapLayoutDataMsg(dead_layout_data) => {
unsafe {
LayoutTask::handle_reap_layout_data(dead_layout_data)
}
},
PrepareToExitMsg(response_chan) => {
debug!("layout: PrepareToExitMsg received");
self.prepare_to_exit(response_chan, possibly_locked_rw_data);
return false
},
ExitNowMsg => {
debug!("layout: ExitNowMsg received");
self.exit_now(possibly_locked_rw_data);
return false
}
}
true
}
/// Enters a quiescent state in which no new messages except for `ReapLayoutDataMsg` will be
/// processed until an `ExitNowMsg` is received. A pong is immediately sent on the given
/// response channel.
fn prepare_to_exit<'a>(&'a self, response_chan: Sender<()>, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) {
response_chan.send(());
loop {
match self.port.recv() {
ReapLayoutDataMsg(dead_layout_data) => {
unsafe {
LayoutTask::handle_reap_layout_data(dead_layout_data)
}
}
ExitNowMsg => {
debug!("layout task is exiting...");
self.exit_now(possibly_locked_rw_data);
break
}
_ => {
fail!("layout: message that wasn't `ExitNowMsg` received after \
`PrepareToExitMsg`")
}
}
}
}
/// Shuts down the layout task now. If there are any DOM nodes left, layout will now (safely)
/// crash.
fn exit_now<'a>(&'a self, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) {
let (response_chan, response_port) = channel();
{
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
match rw_data.deref_mut().parallel_traversal {
None => {}
Some(ref mut traversal) => traversal.shutdown(),
}
LayoutTask::return_rw_data(possibly_locked_rw_data, rw_data);
}
self.render_chan.send(render_task::ExitMsg(Some(response_chan)));
response_port.recv()
}
fn handle_load_stylesheet<'a>(&'a self, url: Url, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) {
// TODO: Get the actual value. http://dev.w3.org/csswg/css-syntax/#environment-encoding
let environment_encoding = UTF_8 as EncodingRef;
let (metadata, iter) = load_bytes_iter(&self.resource_task, url);
let protocol_encoding_label = metadata.charset.as_ref().map(|s| s.as_slice());
let final_url = metadata.final_url;
let sheet = Stylesheet::from_bytes_iter(iter, final_url, protocol_encoding_label, Some(environment_encoding));
self.handle_add_stylesheet(sheet, possibly_locked_rw_data);
}
fn handle_add_stylesheet<'a>(&'a self, sheet: Stylesheet, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) {
// Find all font-face rules and notify the font cache of them.
// GWTODO: Need to handle unloading web fonts (when we handle unloading stylesheets!)
iter_font_face_rules(&sheet, |family, url| {
self.font_cache_task.add_web_font(family.to_string(), url.clone());
});
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
rw_data.stylist.add_stylesheet(sheet, AuthorOrigin);
LayoutTask::return_rw_data(possibly_locked_rw_data, rw_data);
}
/// Retrieves the flow tree root from the root node.
fn get_layout_root(&self, node: LayoutNode) -> FlowRef {
let mut layout_data_ref = node.mutate_layout_data();
let result = match &mut *layout_data_ref {
&Some(ref mut layout_data) => {
mem::replace(&mut layout_data.data.flow_construction_result, NoConstructionResult)
}
&None => fail!("no layout data for root node"),
};
let mut flow = match result {
FlowConstructionResult(mut flow, abs_descendants) => {
// Note: Assuming that the root has display 'static' (as per
// CSS Section 9.3.1). Otherwise, if it were absolutely
// positioned, it would return a reference to itself in
// `abs_descendants` and would lead to a circular reference.
// Set Root as CB for any remaining absolute descendants.
flow.set_abs_descendants(abs_descendants);
flow
}
_ => fail!("Flow construction didn't result in a flow at the root of the tree!"),
};
flow.get_mut().mark_as_root();
flow
}
/// Performs layout constraint solving.
///
/// This corresponds to `Reflow()` in Gecko and `layout()` in WebKit/Blink and should be
/// benchmarked against those two. It is marked `#[inline(never)]` to aid profiling.
#[inline(never)]
fn solve_constraints<'a>(&self,
layout_root: &mut Flow,
layout_context: &'a LayoutContext<'a>) {
let _scope = layout_debug_scope!("solve_constraints");
if layout_context.shared.opts.bubble_inline_sizes_separately {
let mut traversal = BubbleISizesTraversal {
layout_context: layout_context,
};
layout_root.traverse_postorder(&mut traversal);
}
// FIXME(kmc): We want to prune nodes without the Reflow restyle damage
// bit, but FloatContext values can't be reused, so we need to
// recompute them every time.
// NOTE: this currently computes borders, so any pruning should separate that operation
// out.
{
let mut traversal = AssignISizesTraversal {
layout_context: layout_context,
};
layout_root.traverse_preorder(&mut traversal);
}
// FIXME(pcwalton): Prune this pass as well.
{
let mut traversal = AssignBSizesAndStoreOverflowTraversal {
layout_context: layout_context,
};
layout_root.traverse_postorder(&mut traversal);
}
}
/// Performs layout constraint solving in parallel.
///
/// This corresponds to `Reflow()` in Gecko and `layout()` in WebKit/Blink and should be
/// benchmarked against those two. It is marked `#[inline(never)]` to aid profiling.
#[inline(never)]
fn solve_constraints_parallel(&self,
data: &Reflow,
rw_data: &mut LayoutTaskData,
layout_root: &mut FlowRef,
shared_layout_context: &SharedLayoutContext) {
if shared_layout_context.opts.bubble_inline_sizes_separately {
let mut traversal = BubbleISizesTraversal {
layout_context: &LayoutContext::new(shared_layout_context),
};
layout_root.get_mut().traverse_postorder(&mut traversal);
}
match rw_data.parallel_traversal {
None => fail!("solve_contraints_parallel() called with no parallel traversal ready"),
Some(ref mut traversal) => {
// NOTE: this currently computes borders, so any pruning should separate that
// operation out.
parallel::traverse_flow_tree_preorder(layout_root,
&data.url,
data.iframe,
self.first_reflow.get(),
self.time_profiler_chan.clone(),
shared_layout_context,
traversal);
}
}
}
/// Verifies that every node was either marked as a leaf or as a nonleaf in the flow tree.
/// This is only on in debug builds.
#[inline(never)]
#[cfg(debug)]
fn verify_flow_tree(&self, layout_root: &mut FlowRef) {
let mut traversal = FlowTreeVerificationTraversal;
layout_root.traverse_preorder(&mut traversal);
}
#[cfg(not(debug))]
fn verify_flow_tree(&self, _: &mut FlowRef) {
}
/// The high-level routine that performs layout tasks.
fn handle_reflow<'a>(&'a self, data: &Reflow, possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) {
// FIXME: Isolate this transmutation into a "bridge" module.
// FIXME(rust#16366): The following line had to be moved because of a
// rustc bug. It should be in the next unsafe block.
let mut node: JS<Node> = unsafe { JS::from_trusted_node_address(data.document_root) };
let node: &mut LayoutNode = unsafe {
mem::transmute(&mut node)
};
debug!("layout: received layout request for: {:s}", data.url.serialize());
debug!("layout: damage is {:?}", data.damage);
debug!("layout: parsed Node tree");
debug!("{:?}", node.dump());
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
{
// Reset the image cache.
let mut local_image_cache = rw_data.local_image_cache.lock();
local_image_cache.next_round(self.make_on_image_available_cb());
}
// true => Do the reflow with full style damage, because content
// changed or the window was resized.
let mut all_style_damage = match data.damage.level {
ContentChangedDocumentDamage => true,
_ => false
};
// TODO: Calculate the "actual viewport":
// http://www.w3.org/TR/css-device-adapt/#actual-viewport
let viewport_size = data.window_size.initial_viewport;
let current_screen_size = Size2D(Au::from_frac32_px(viewport_size.width.get()),
Au::from_frac32_px(viewport_size.height.get()));
if rw_data.screen_size != current_screen_size {
all_style_damage = true
}
rw_data.screen_size = current_screen_size;
// Create a layout context for use throughout the following passes.
let mut shared_layout_ctx =
self.build_shared_layout_context(
rw_data.deref(),
node,
&data.url);
let mut layout_root = profile(time::LayoutStyleRecalcCategory,
Some((&data.url,
data.iframe,
self.first_reflow.get())),
self.time_profiler_chan.clone(),
|| {
// Perform CSS selector matching and flow construction.
let rw_data = rw_data.deref_mut();
match rw_data.parallel_traversal {
None => {
let layout_ctx = LayoutContext::new(&shared_layout_ctx);
let mut applicable_declarations = ApplicableDeclarations::new();
let mut parent_bf = Some(BloomFilter::new(
style::RECOMMENDED_SELECTOR_BLOOM_FILTER_SIZE));
node.recalc_style_for_subtree(&*rw_data.stylist,
&layout_ctx,
&mut parent_bf,
&mut applicable_declarations,
None)
}
Some(ref mut traversal) => {
parallel::recalc_style_for_subtree(node, &mut shared_layout_ctx, traversal)
}
}
self.get_layout_root((*node).clone())
});
// Verification of the flow tree, which ensures that all nodes were either marked as leaves
// or as non-leaves. This becomes a no-op in release builds. (It is inconsequential to
// memory safety but is a useful debugging tool.)
self.verify_flow_tree(&mut layout_root);
if self.opts.trace_layout {
layout_debug::begin_trace(layout_root.clone());
}
// Propagate damage.
profile(time::LayoutDamagePropagateCategory, Some((&data.url, data.iframe, self.first_reflow.get())),
self.time_profiler_chan.clone(), || {
layout_root.get_mut().traverse_preorder(&mut PropagateDamageTraversal {
all_style_damage: all_style_damage
});
layout_root.get_mut().traverse_postorder(&mut ComputeDamageTraversal.clone());
});
// Perform the primary layout passes over the flow tree to compute the locations of all
// the boxes.
profile(time::LayoutMainCategory, Some((&data.url, data.iframe, self.first_reflow.get())),
self.time_profiler_chan.clone(), || {
let rw_data = rw_data.deref_mut();
match rw_data.parallel_traversal {
None => {
// Sequential mode.
let layout_ctx = LayoutContext::new(&shared_layout_ctx);
self.solve_constraints(layout_root.get_mut(), &layout_ctx)
}
Some(_) => {
// Parallel mode.
self.solve_constraints_parallel(data, rw_data, &mut layout_root, &mut shared_layout_ctx)
}
}
});
// Build the display list if necessary, and send it to the renderer.
if data.goal == ReflowForDisplay {
let writing_mode = flow::base(layout_root.get()).writing_mode;
profile(time::LayoutDispListBuildCategory, Some((&data.url, data.iframe, self.first_reflow.get())), self.time_profiler_chan.clone(), || {
shared_layout_ctx.dirty = flow::base(layout_root.get()).position.to_physical(
writing_mode, rw_data.screen_size);
flow::mut_base(layout_root.get_mut()).abs_position =
LogicalPoint::zero(writing_mode).to_physical(writing_mode, rw_data.screen_size);
let rw_data = rw_data.deref_mut();
match rw_data.parallel_traversal {
None => {
let layout_ctx = LayoutContext::new(&shared_layout_ctx);
let mut traversal = BuildDisplayListTraversal {
layout_context: &layout_ctx,
};
traversal.process(layout_root.get_mut());
}
Some(ref mut traversal) => {
parallel::build_display_list_for_subtree(&mut layout_root,
&data.url,
data.iframe,
self.first_reflow.get(),
self.time_profiler_chan.clone(),
&mut shared_layout_ctx,
traversal);
}
}
let root_display_list =
mem::replace(&mut flow::mut_base(layout_root.get_mut()).display_list,
DisplayList::new());
root_display_list.debug();
let display_list = Arc::new(root_display_list.flatten(ContentStackingLevel));
// FIXME(pcwalton): This is really ugly and can't handle overflow: scroll. Refactor
// it with extreme prejudice.
let mut color = color::rgba(1.0, 1.0, 1.0, 1.0);
for child in node.traverse_preorder() {
if child.type_id() == Some(ElementNodeTypeId(HTMLHtmlElementTypeId)) ||
child.type_id() == Some(ElementNodeTypeId(HTMLBodyElementTypeId)) {
let element_bg_color = {
let thread_safe_child = ThreadSafeLayoutNode::new(&child);
thread_safe_child.style()
.resolve_color(thread_safe_child.style()
.get_background()
.background_color)
.to_gfx_color()
};
match element_bg_color {
color::rgba(0., 0., 0., 0.) => {}
_ => {
color = element_bg_color;
break;
}
}
}
}
let root_size = {
let root_flow = flow::base(layout_root.get());
root_flow.position.size.to_physical(root_flow.writing_mode)
};
let root_size = Size2D(root_size.width.to_nearest_px() as uint,
root_size.height.to_nearest_px() as uint);
let render_layer = RenderLayer {
id: layout_root.get().layer_id(0),
display_list: display_list.clone(),
position: Rect(Point2D(0u, 0u), root_size),
background_color: color,
scroll_policy: Scrollable,
};
rw_data.display_list = Some(display_list.clone());
// TODO(pcwalton): Eventually, when we have incremental reflow, this will have to
// be smarter in order to handle retained layer contents properly from reflow to
// reflow.
let mut layers = SmallVec1::new();
layers.push(render_layer);
for layer in mem::replace(&mut flow::mut_base(layout_root.get_mut()).layers,
DList::new()).move_iter() {
layers.push(layer)
}
debug!("Layout done!");
self.render_chan.send(RenderInitMsg(layers));
});
}
self.first_reflow.set(false);
if self.opts.trace_layout {
layout_debug::end_trace();
}
rw_data.generation += 1;
// Tell script that we're done.
//
// FIXME(pcwalton): This should probably be *one* channel, but we can't fix this without
// either select or a filtered recv() that only looks for messages of a given type.
data.script_join_chan.send(());
let ScriptControlChan(ref chan) = data.script_chan;
chan.send(ReflowCompleteMsg(self.id, data.id));
}
// When images can't be loaded in time to display they trigger
// this callback in some task somewhere. This will send a message
// to the script task, and ultimately cause the image to be
// re-requested. We probably don't need to go all the way back to
// the script task for this.
fn make_on_image_available_cb(&self) -> Box<ImageResponder+Send> {
// This has a crazy signature because the image cache needs to
// make multiple copies of the callback, and the dom event
// channel is not a copyable type, so this is actually a
// little factory to produce callbacks
box LayoutImageResponder {
id: self.id.clone(),
script_chan: self.script_chan.clone(),
} as Box<ImageResponder+Send>
}
/// Handles a message to destroy layout data. Layout data must be destroyed on *this* task
/// because it contains local managed pointers.
unsafe fn handle_reap_layout_data(layout_data: LayoutDataRef) {
let mut layout_data_ref = layout_data.borrow_mut();
let _: Option<LayoutDataWrapper> = mem::transmute(
mem::replace(&mut *layout_data_ref, None));
}
}
struct LayoutRPCImpl(Arc<Mutex<LayoutTaskData>>);
impl LayoutRPC for LayoutRPCImpl {
// The neat thing here is that in order to answer the following two queries we only
// need to compare nodes for equality. Thus we can safely work only with `OpaqueNode`.
fn content_box(&self, node: TrustedNodeAddress) -> ContentBoxResponse {
let node: OpaqueNode = OpaqueNodeMethods::from_script_node(node);
fn union_boxes_for_node(accumulator: &mut Option<Rect<Au>>,
mut iter: DisplayItemIterator,
node: OpaqueNode) {
for item in iter {
union_boxes_for_node(accumulator, item.children(), node);
if item.base().node == node {
match *accumulator {
None => *accumulator = Some(item.base().bounds),
Some(ref mut acc) => *acc = acc.union(&item.base().bounds),
}
}
}
}
let mut rect = None;
{
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock();
match rw_data.display_list {
None => fail!("no display list!"),
Some(ref display_list) => {
union_boxes_for_node(&mut rect, display_list.iter(), node)
}
}
}
ContentBoxResponse(rect.unwrap_or(Rect::zero()))
}
/// Requests the dimensions of all the content boxes, as in the `getClientRects()` call.
fn content_boxes(&self, node: TrustedNodeAddress) -> ContentBoxesResponse {
let node: OpaqueNode = OpaqueNodeMethods::from_script_node(node);
fn add_boxes_for_node(accumulator: &mut Vec<Rect<Au>>,
mut iter: DisplayItemIterator,
node: OpaqueNode) {
for item in iter {
add_boxes_for_node(accumulator, item.children(), node);
if item.base().node == node {
accumulator.push(item.base().bounds)
}
}
}
let mut boxes = vec!();
{
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock();
match rw_data.display_list {
None => fail!("no display list!"),
Some(ref display_list) => {
add_boxes_for_node(&mut boxes, display_list.iter(), node)
}
}
}
ContentBoxesResponse(boxes)
}
/// Requests the node containing the point of interest
fn hit_test(&self, _: TrustedNodeAddress, point: Point2D<f32>) -> Result<HitTestResponse, ()> {
fn hit_test<'a,I:Iterator<&'a DisplayItem>>(x: Au, y: Au, mut iterator: I)
-> Option<HitTestResponse> {
for item in iterator {
match *item {
ClipDisplayItemClass(ref cc) => {
if geometry::rect_contains_point(cc.base.bounds, Point2D(x, y)) {
let ret = hit_test(x, y, cc.children.list.iter().rev());
if !ret.is_none() {
return ret
}
}
continue
}
_ => {}
}
let bounds = item.bounds();
// TODO(tikue): This check should really be performed by a method of
// DisplayItem.
if x < bounds.origin.x + bounds.size.width &&
bounds.origin.x <= x &&
y < bounds.origin.y + bounds.size.height &&
bounds.origin.y <= y {
return Some(HitTestResponse(item.base()
.node
.to_untrusted_node_address()))
}
}
let ret: Option<HitTestResponse> = None;
ret
}
let (x, y) = (Au::from_frac_px(point.x as f64),
Au::from_frac_px(point.y as f64));
let resp = {
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock();
match rw_data.display_list {
None => fail!("no display list!"),
Some(ref display_list) => hit_test(x, y, display_list.list.iter().rev()),
}
};
if resp.is_some() {
return Ok(resp.unwrap());
}
Err(())
}
fn mouse_over(&self, _: TrustedNodeAddress, point: Point2D<f32>) -> Result<MouseOverResponse, ()> {
fn mouse_over_test<'a,
I:Iterator<&'a DisplayItem>>(
x: Au,
y: Au,
mut iterator: I,
result: &mut Vec<UntrustedNodeAddress>) {
for item in iterator {
match *item {
ClipDisplayItemClass(ref cc) => {
mouse_over_test(x, y, cc.children.list.iter().rev(), result);
}
_ => {
let bounds = item.bounds();
// TODO(tikue): This check should really be performed by a method
// of DisplayItem.
if x < bounds.origin.x + bounds.size.width &&
bounds.origin.x <= x &&
y < bounds.origin.y + bounds.size.height &&
bounds.origin.y <= y {
result.push(item.base()
.node
.to_untrusted_node_address());
}
}
}
}
}
let mut mouse_over_list: Vec<UntrustedNodeAddress> = vec!();
let (x, y) = (Au::from_frac_px(point.x as f64), Au::from_frac_px(point.y as f64));
{
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock();
match rw_data.display_list {
None => fail!("no display list!"),
Some(ref display_list) => {
mouse_over_test(x,
y,
display_list.list.iter().rev(),
&mut mouse_over_list);
}
};
}
if mouse_over_list.is_empty() {
Err(())
} else {
Ok(MouseOverResponse(mouse_over_list))
}
}
}