servo/components/layout/parallel.rs
2014-09-18 09:20:23 -07:00

686 lines
26 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Implements parallel traversals over the DOM and flow trees.
//!
//! This code is highly unsafe. Keep this file small and easy to audit.
use css::matching::{ApplicableDeclarations, CannotShare, MatchMethods, StyleWasShared};
use construct::FlowConstructor;
use context::{LayoutContext, SharedLayoutContext};
use extra::LayoutAuxMethods;
use flow::{Flow, MutableFlowUtils, PreorderFlowTraversal, PostorderFlowTraversal};
use flow;
use flow_ref::FlowRef;
use layout_task::{AssignBSizesAndStoreOverflowTraversal, AssignISizesTraversal};
use layout_task::{BubbleISizesTraversal};
use url::Url;
use util::{LayoutDataAccess, LayoutDataWrapper, OpaqueNodeMethods};
use wrapper::{layout_node_to_unsafe_layout_node, layout_node_from_unsafe_layout_node, LayoutNode, PostorderNodeMutTraversal};
use wrapper::{ThreadSafeLayoutNode, UnsafeLayoutNode};
use gfx::display_list::OpaqueNode;
use servo_util::bloom::BloomFilter;
use servo_util::tid::tid;
use servo_util::time::{TimeProfilerChan, profile};
use servo_util::time;
use servo_util::workqueue::{WorkQueue, WorkUnit, WorkerProxy};
use std::mem;
use std::ptr;
use std::sync::atomics::{AtomicInt, Relaxed, SeqCst};
use style;
use style::TNode;
#[allow(dead_code)]
fn static_assertion(node: UnsafeLayoutNode) {
unsafe {
let _: UnsafeFlow = ::std::intrinsics::transmute(node);
}
}
/// Vtable + pointer representation of a Flow trait object.
pub type UnsafeFlow = (uint, uint);
fn null_unsafe_flow() -> UnsafeFlow {
(0, 0)
}
pub fn owned_flow_to_unsafe_flow(flow: *const FlowRef) -> UnsafeFlow {
unsafe {
mem::transmute_copy(&*flow)
}
}
pub fn mut_owned_flow_to_unsafe_flow(flow: *mut FlowRef) -> UnsafeFlow {
unsafe {
mem::transmute_copy(&*flow)
}
}
pub fn borrowed_flow_to_unsafe_flow(flow: &Flow) -> UnsafeFlow {
unsafe {
mem::transmute_copy(&flow)
}
}
pub fn mut_borrowed_flow_to_unsafe_flow(flow: &mut Flow) -> UnsafeFlow {
unsafe {
mem::transmute_copy(&flow)
}
}
/// Information that we need stored in each DOM node.
pub struct DomParallelInfo {
/// The number of children that still need work done.
pub children_count: AtomicInt,
}
impl DomParallelInfo {
pub fn new() -> DomParallelInfo {
DomParallelInfo {
children_count: AtomicInt::new(0),
}
}
}
/// Information that we need stored in each flow.
pub struct FlowParallelInfo {
/// The number of children that still need work done.
pub children_count: AtomicInt,
/// The number of children and absolute descendants that still need work done.
pub children_and_absolute_descendant_count: AtomicInt,
/// The address of the parent flow.
pub parent: UnsafeFlow,
}
impl FlowParallelInfo {
pub fn new() -> FlowParallelInfo {
FlowParallelInfo {
children_count: AtomicInt::new(0),
children_and_absolute_descendant_count: AtomicInt::new(0),
parent: null_unsafe_flow(),
}
}
}
/// A parallel bottom-up flow traversal.
trait ParallelPostorderFlowTraversal : PostorderFlowTraversal {
/// Process current flow and potentially traverse its ancestors.
///
/// If we are the last child that finished processing, recursively process
/// our parent. Else, stop.
/// Also, stop at the root (obviously :P).
///
/// Thus, if we start with all the leaves of a tree, we end up traversing
/// the whole tree bottom-up because each parent will be processed exactly
/// once (by the last child that finishes processing).
///
/// The only communication between siblings is that they both
/// fetch-and-subtract the parent's children count.
fn run_parallel(&mut self,
mut unsafe_flow: UnsafeFlow,
_: &mut WorkerProxy<*const SharedLayoutContext,UnsafeFlow>) {
loop {
unsafe {
// Get a real flow.
let flow: &mut FlowRef = mem::transmute(&unsafe_flow);
// Perform the appropriate traversal.
if self.should_process(flow.get_mut()) {
self.process(flow.get_mut());
}
let base = flow::mut_base(flow.get_mut());
// Reset the count of children for the next layout traversal.
base.parallel.children_count.store(base.children.len() as int, Relaxed);
// Possibly enqueue the parent.
let unsafe_parent = base.parallel.parent;
if unsafe_parent == null_unsafe_flow() {
// We're done!
break
}
// No, we're not at the root yet. Then are we the last child
// of our parent to finish processing? If so, we can continue
// on with our parent; otherwise, we've gotta wait.
let parent: &mut FlowRef = mem::transmute(&unsafe_parent);
let parent_base = flow::mut_base(parent.get_mut());
if parent_base.parallel.children_count.fetch_sub(1, SeqCst) == 1 {
// We were the last child of our parent. Reflow our parent.
unsafe_flow = unsafe_parent
} else {
// Stop.
break
}
}
}
}
}
/// A parallel top-down flow traversal.
trait ParallelPreorderFlowTraversal : PreorderFlowTraversal {
fn run_parallel(&mut self,
unsafe_flow: UnsafeFlow,
proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeFlow>);
#[inline(always)]
fn run_parallel_helper(&mut self,
unsafe_flow: UnsafeFlow,
proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeFlow>,
top_down_func: extern "Rust" fn(UnsafeFlow,
&mut WorkerProxy<*const SharedLayoutContext,
UnsafeFlow>),
bottom_up_func: extern "Rust" fn(UnsafeFlow,
&mut WorkerProxy<*const SharedLayoutContext,
UnsafeFlow>)) {
let mut had_children = false;
unsafe {
// Get a real flow.
let flow: &mut FlowRef = mem::transmute(&unsafe_flow);
// Perform the appropriate traversal.
self.process(flow.get_mut());
// Possibly enqueue the children.
for kid in flow::child_iter(flow.get_mut()) {
had_children = true;
proxy.push(WorkUnit {
fun: top_down_func,
data: borrowed_flow_to_unsafe_flow(kid),
});
}
}
// If there were no more children, start assigning block-sizes.
if !had_children {
bottom_up_func(unsafe_flow, proxy)
}
}
}
impl<'a> ParallelPostorderFlowTraversal for BubbleISizesTraversal<'a> {}
impl<'a> ParallelPreorderFlowTraversal for AssignISizesTraversal<'a> {
fn run_parallel(&mut self,
unsafe_flow: UnsafeFlow,
proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeFlow>) {
self.run_parallel_helper(unsafe_flow,
proxy,
assign_inline_sizes,
assign_block_sizes_and_store_overflow)
}
}
impl<'a> ParallelPostorderFlowTraversal for AssignBSizesAndStoreOverflowTraversal<'a> {}
/// Every time we do another layout, the old bloom filters are invalid. This is
/// detected by ticking a generation number every layout.
type Generation = uint;
/// A pair of the bloom filter used for css selector matching, and the node to
/// which it applies. This is used to efficiently do `Descendant` selector
/// matches. Thanks to the bloom filter, we can avoid walking up the tree
/// looking for ancestors that aren't there in the majority of cases.
///
/// As we walk down the DOM tree a task-local bloom filter is built of all the
/// CSS `SimpleSelector`s which are part of a `Descendant` compound selector
/// (i.e. paired with a `Descendant` combinator, in the `next` field of a
/// `CompoundSelector`.
///
/// Before a `Descendant` selector match is tried, it's compared against the
/// bloom filter. If the bloom filter can exclude it, the selector is quickly
/// rejected.
///
/// When done styling a node, all selectors previously inserted into the filter
/// are removed.
///
/// Since a work-stealing queue is used for styling, sometimes, the bloom filter
/// will no longer be the for the parent of the node we're currently on. When
/// this happens, the task local bloom filter will be thrown away and rebuilt.
local_data_key!(style_bloom: (BloomFilter, UnsafeLayoutNode, Generation))
/// Returns the task local bloom filter.
///
/// If one does not exist, a new one will be made for you. If it is out of date,
/// it will be thrown out and a new one will be made for you.
fn take_task_local_bloom_filter(
parent_node: Option<LayoutNode>,
layout_context: &LayoutContext)
-> BloomFilter {
let new_bloom =
|p: Option<LayoutNode>| -> BloomFilter {
let mut bf = BloomFilter::new(style::RECOMMENDED_SELECTOR_BLOOM_FILTER_SIZE);
p.map(|p| insert_ancestors_into_bloom_filter(&mut bf, p, layout_context));
if p.is_none() {
debug!("[{}] No parent, but new bloom filter!", tid());
}
bf
};
match (parent_node, style_bloom.replace(None)) {
// Root node. Needs new bloom filter.
(None, _ ) => new_bloom(None),
// No bloom filter for this thread yet.
(Some(p), None) => new_bloom(Some(p)),
// Found cached bloom filter.
(Some(p), Some((bf, old_node, old_generation))) => {
// Hey, the cached parent is our parent! We can reuse the bloom filter.
if old_node == layout_node_to_unsafe_layout_node(&p) &&
old_generation == layout_context.shared.generation {
debug!("[{}] Parent matches (={}). Reusing bloom filter.", tid(), old_node.val0());
bf
// Oh no. the cached parent is stale. I guess we need a new one...
} else {
new_bloom(Some(p))
}
},
}
}
fn put_task_local_bloom_filter(bf: BloomFilter, unsafe_node: &UnsafeLayoutNode, layout_context: &LayoutContext) {
match style_bloom.replace(Some((bf, *unsafe_node, layout_context.shared.generation))) {
None => {},
Some(_) => fail!("Putting into a never-taken task-local bloom filter"),
}
}
/// "Ancestors" in this context is inclusive of ourselves.
fn insert_ancestors_into_bloom_filter(
bf: &mut BloomFilter, mut n: LayoutNode, layout_context: &LayoutContext) {
debug!("[{}] Inserting ancestors.", tid());
let mut ancestors = 0u;
loop {
ancestors += 1;
n.insert_into_bloom_filter(bf);
n = match parent_node(&n, layout_context) {
None => break,
Some(p) => p,
};
}
debug!("[{}] Inserted {} ancestors.", tid(), ancestors);
}
fn parent_node<'ln>(node: &LayoutNode<'ln>, layout_context: &LayoutContext) -> Option<LayoutNode<'ln>> {
let opaque_node: OpaqueNode = OpaqueNodeMethods::from_layout_node(node);
if opaque_node == layout_context.shared.reflow_root {
None
} else {
node.parent_node()
}
}
fn recalc_style_for_node(mut unsafe_layout_node: UnsafeLayoutNode,
proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeLayoutNode>) {
let shared_layout_context = unsafe { &**proxy.user_data() };
let layout_context = LayoutContext::new(shared_layout_context);
// Get a real layout node.
let node: LayoutNode = unsafe {
layout_node_from_unsafe_layout_node(&unsafe_layout_node)
};
// Initialize layout data.
//
// FIXME(pcwalton): Stop allocating here. Ideally this should just be done by the HTML
// parser.
node.initialize_layout_data(layout_context.shared.layout_chan.clone());
// Get the parent node.
let parent_opt = parent_node(&node, &layout_context);
// Get the style bloom filter.
let bf = take_task_local_bloom_filter(parent_opt, &layout_context);
// First, check to see whether we can share a style with someone.
let style_sharing_candidate_cache = layout_context.style_sharing_candidate_cache();
let sharing_result = unsafe {
node.share_style_if_possible(style_sharing_candidate_cache,
parent_opt.clone())
};
// Just needs to be wrapped in an option for `match_node`.
let some_bf = Some(bf);
// Otherwise, match and cascade selectors.
match sharing_result {
CannotShare(mut shareable) => {
let mut applicable_declarations = ApplicableDeclarations::new();
if node.is_element() {
// Perform the CSS selector matching.
let stylist = unsafe { &*layout_context.shared.stylist };
node.match_node(stylist, &some_bf, &mut applicable_declarations, &mut shareable);
}
// Perform the CSS cascade.
unsafe {
node.cascade_node(parent_opt,
&applicable_declarations,
layout_context.applicable_declarations_cache());
}
// Add ourselves to the LRU cache.
if shareable {
style_sharing_candidate_cache.insert_if_possible(&node);
}
}
StyleWasShared(index) => style_sharing_candidate_cache.touch(index),
}
// Prepare for flow construction by counting the node's children and storing that count.
let mut child_count = 0u;
for _ in node.children() {
child_count += 1;
}
if child_count != 0 {
let mut layout_data_ref = node.mutate_layout_data();
match &mut *layout_data_ref {
&Some(ref mut layout_data) => {
layout_data.data.parallel.children_count.store(child_count as int, Relaxed)
}
&None => fail!("no layout data"),
}
}
// It can be `None` now.
let mut bf = some_bf;
// Before running the children, we need to insert our nodes into the bloom
// filter.
debug!("[{}] + {:X}", tid(), unsafe_layout_node.val0());
bf.as_mut().map(|bf| node.insert_into_bloom_filter(bf));
// It's *very* important that this block is in a separate scope to the block above,
// to avoid a data race that can occur (github issue #2308). The block above issues
// a borrow on the node layout data. That borrow must be dropped before the child
// nodes are actually pushed into the work queue. Otherwise, it's possible for a child
// node to get into construct_flows() and move up it's parent hierarchy, which can call
// borrow on the layout data before it is dropped from the block above.
if child_count != 0 {
// Enqueue kids.
for kid in node.children() {
proxy.push(WorkUnit {
fun: recalc_style_for_node,
data: layout_node_to_unsafe_layout_node(&kid),
});
}
} else {
// If we got here, we're a leaf. Start construction of flows for this node.
construct_flows(&mut unsafe_layout_node, &mut bf, &layout_context);
}
bf.map(|bf| put_task_local_bloom_filter(bf, &unsafe_layout_node, &layout_context));
}
fn construct_flows<'a>(unsafe_layout_node: &mut UnsafeLayoutNode,
parent_bf: &mut Option<BloomFilter>,
layout_context: &'a LayoutContext<'a>) {
loop {
// Get a real layout node.
let node: LayoutNode = unsafe {
layout_node_from_unsafe_layout_node(&*unsafe_layout_node)
};
// Construct flows for this node.
{
let mut flow_constructor = FlowConstructor::new(layout_context);
flow_constructor.process(&ThreadSafeLayoutNode::new(&node));
}
// Reset the count of children for the next traversal.
//
// FIXME(pcwalton): Use children().len() when the implementation of that is efficient.
let mut child_count = 0u;
for _ in node.children() {
child_count += 1
}
{
let mut layout_data_ref = node.mutate_layout_data();
match &mut *layout_data_ref {
&Some(ref mut layout_data) => {
layout_data.data.parallel.children_count.store(child_count as int, Relaxed)
}
&None => fail!("no layout data"),
}
}
// If this is the reflow root, we're done.
let opaque_node: OpaqueNode = OpaqueNodeMethods::from_layout_node(&node);
if layout_context.shared.reflow_root == opaque_node {
debug!("[{}] - {:X}, and deleting BF.", tid(), unsafe_layout_node.val0());
*parent_bf = None;
break;
} else {
debug!("[{}] - {:X}", tid(), unsafe_layout_node.val0());
parent_bf.as_mut().map(|parent_bf| node.remove_from_bloom_filter(parent_bf));
}
// Otherwise, enqueue the parent.
match node.parent_node() {
Some(parent) => {
// No, we're not at the root yet. Then are we the last sibling of our parent?
// If so, we can continue on with our parent; otherwise, we've gotta wait.
unsafe {
match *parent.borrow_layout_data_unchecked() {
Some(ref parent_layout_data) => {
*unsafe_layout_node = layout_node_to_unsafe_layout_node(&parent);
let parent_layout_data: &mut LayoutDataWrapper = mem::transmute(parent_layout_data);
if parent_layout_data.data
.parallel
.children_count
.fetch_sub(1, SeqCst) == 1 {
// We were the last child of our parent. Construct flows for our
// parent.
} else {
// Get out of here and find another node to work on.
break
}
}
None => fail!("no layout data for parent?!"),
}
}
}
None => fail!("no parent and weren't at reflow root?!"),
}
}
}
fn assign_inline_sizes(unsafe_flow: UnsafeFlow,
proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeFlow>) {
let shared_layout_context = unsafe { &**proxy.user_data() };
let layout_context = LayoutContext::new(shared_layout_context);
let mut assign_inline_sizes_traversal = AssignISizesTraversal {
layout_context: &layout_context,
};
assign_inline_sizes_traversal.run_parallel(unsafe_flow, proxy)
}
fn assign_block_sizes_and_store_overflow(unsafe_flow: UnsafeFlow,
proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeFlow>) {
let shared_layout_context = unsafe { &**proxy.user_data() };
let layout_context = LayoutContext::new(shared_layout_context);
let mut assign_block_sizes_traversal = AssignBSizesAndStoreOverflowTraversal {
layout_context: &layout_context,
};
assign_block_sizes_traversal.run_parallel(unsafe_flow, proxy)
}
fn compute_absolute_position(unsafe_flow: UnsafeFlow,
proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeFlow>) {
let mut had_descendants = false;
unsafe {
// Get a real flow.
let flow: &mut FlowRef = mem::transmute(&unsafe_flow);
// Compute the absolute position for the flow.
flow.get_mut().compute_absolute_position();
// Count the number of absolutely-positioned children, so that we can subtract it from
// from `children_and_absolute_descendant_count` to get the number of real children.
let mut absolutely_positioned_child_count = 0u;
for kid in flow::child_iter(flow.get_mut()) {
if kid.is_absolutely_positioned() {
absolutely_positioned_child_count += 1;
}
}
// Don't enqueue absolutely positioned children.
drop(flow::mut_base(flow.get_mut()).parallel
.children_and_absolute_descendant_count
.fetch_sub(absolutely_positioned_child_count as int,
SeqCst));
// Possibly enqueue the children.
for kid in flow::child_iter(flow.get_mut()) {
if !kid.is_absolutely_positioned() {
had_descendants = true;
proxy.push(WorkUnit {
fun: compute_absolute_position,
data: borrowed_flow_to_unsafe_flow(kid),
});
}
}
// Possibly enqueue absolute descendants.
for absolute_descendant_link in flow::mut_base(flow.get_mut()).abs_descendants.iter() {
had_descendants = true;
let descendant = absolute_descendant_link;
proxy.push(WorkUnit {
fun: compute_absolute_position,
data: borrowed_flow_to_unsafe_flow(descendant),
});
}
// If there were no more descendants, start building the display list.
if !had_descendants {
build_display_list(mut_owned_flow_to_unsafe_flow(flow),
proxy)
}
}
}
fn build_display_list(mut unsafe_flow: UnsafeFlow,
proxy: &mut WorkerProxy<*const SharedLayoutContext,UnsafeFlow>) {
let shared_layout_context = unsafe { &**proxy.user_data() };
let layout_context = LayoutContext::new(shared_layout_context);
loop {
unsafe {
// Get a real flow.
let flow: &mut FlowRef = mem::transmute(&unsafe_flow);
// Build display lists.
flow.get_mut().build_display_list(&layout_context);
{
let base = flow::mut_base(flow.get_mut());
// Reset the count of children and absolute descendants for the next layout
// traversal.
let children_and_absolute_descendant_count = base.children.len() +
base.abs_descendants.len();
base.parallel
.children_and_absolute_descendant_count
.store(children_and_absolute_descendant_count as int, Relaxed);
}
// Possibly enqueue the parent.
let unsafe_parent = if flow.get().is_absolutely_positioned() {
match *flow::mut_base(flow.get_mut()).absolute_cb.get() {
None => fail!("no absolute containing block for absolutely positioned?!"),
Some(ref mut absolute_cb) => {
mut_borrowed_flow_to_unsafe_flow(absolute_cb.get_mut())
}
}
} else {
flow::mut_base(flow.get_mut()).parallel.parent
};
if unsafe_parent == null_unsafe_flow() {
// We're done!
break
}
// No, we're not at the root yet. Then are we the last child
// of our parent to finish processing? If so, we can continue
// on with our parent; otherwise, we've gotta wait.
let parent: &mut FlowRef = mem::transmute(&unsafe_parent);
let parent_base = flow::mut_base(parent.get_mut());
if parent_base.parallel
.children_and_absolute_descendant_count
.fetch_sub(1, SeqCst) == 1 {
// We were the last child of our parent. Build display lists for our parent.
unsafe_flow = unsafe_parent
} else {
// Stop.
break
}
}
}
}
pub fn recalc_style_for_subtree(root_node: &LayoutNode,
shared_layout_context: &SharedLayoutContext,
queue: &mut WorkQueue<*const SharedLayoutContext,UnsafeLayoutNode>) {
debug!("[{}] Style Recalc START", tid());
queue.data = shared_layout_context as *const _;
// Enqueue the root node.
queue.push(WorkUnit {
fun: recalc_style_for_node,
data: layout_node_to_unsafe_layout_node(root_node),
});
queue.run();
queue.data = ptr::null()
}
pub fn traverse_flow_tree_preorder(root: &mut FlowRef,
url: &Url,
iframe: bool,
first_reflow: bool,
time_profiler_chan: TimeProfilerChan,
shared_layout_context: &SharedLayoutContext,
queue: &mut WorkQueue<*const SharedLayoutContext,UnsafeFlow>) {
queue.data = shared_layout_context as *const _;
profile(time::LayoutParallelWarmupCategory, Some((url, iframe, first_reflow)), time_profiler_chan, || {
queue.push(WorkUnit {
fun: assign_inline_sizes,
data: mut_owned_flow_to_unsafe_flow(root),
})
});
queue.run();
queue.data = ptr::null()
}
pub fn build_display_list_for_subtree(root: &mut FlowRef,
url: &Url,
iframe: bool,
first_reflow: bool,
time_profiler_chan: TimeProfilerChan,
shared_layout_context: &SharedLayoutContext,
queue: &mut WorkQueue<*const SharedLayoutContext,UnsafeFlow>) {
queue.data = shared_layout_context as *const _;
profile(time::LayoutParallelWarmupCategory, Some((url, iframe, first_reflow)), time_profiler_chan, || {
queue.push(WorkUnit {
fun: compute_absolute_position,
data: mut_owned_flow_to_unsafe_flow(root),
})
});
queue.run();
queue.data = ptr::null()
}