servo/components/selectors/matching.rs
Ting-Yu Lin a23596d377 Improve debug log related to selector matching
Move debug log in matches_complex_selector_internal to the front so that the
entire complex selector can be printed.

MozReview-Commit-ID: KXBDpbzBv0I
2017-08-24 17:05:35 +08:00

843 lines
32 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use attr::{ParsedAttrSelectorOperation, AttrSelectorOperation, NamespaceConstraint};
use bloom::{BLOOM_HASH_MASK, BloomFilter};
use parser::{AncestorHashes, Combinator, Component, LocalName};
use parser::{Selector, SelectorImpl, SelectorIter, SelectorList};
use std::borrow::Borrow;
use tree::Element;
pub use context::*;
// The bloom filter for descendant CSS selectors will have a <1% false
// positive rate until it has this many selectors in it, then it will
// rapidly increase.
pub static RECOMMENDED_SELECTOR_BLOOM_FILTER_SIZE: usize = 4096;
bitflags! {
/// Set of flags that are set on either the element or its parent (depending
/// on the flag) if the element could potentially match a selector.
pub flags ElementSelectorFlags: usize {
/// When a child is added or removed from the parent, all the children
/// must be restyled, because they may match :nth-last-child,
/// :last-of-type, :nth-last-of-type, or :only-of-type.
const HAS_SLOW_SELECTOR = 1 << 0,
/// When a child is added or removed from the parent, any later
/// children must be restyled, because they may match :nth-child,
/// :first-of-type, or :nth-of-type.
const HAS_SLOW_SELECTOR_LATER_SIBLINGS = 1 << 1,
/// When a child is added or removed from the parent, the first and
/// last children must be restyled, because they may match :first-child,
/// :last-child, or :only-child.
const HAS_EDGE_CHILD_SELECTOR = 1 << 2,
/// The element has an empty selector, so when a child is appended we
/// might need to restyle the parent completely.
const HAS_EMPTY_SELECTOR = 1 << 3,
}
}
impl ElementSelectorFlags {
/// Returns the subset of flags that apply to the element.
pub fn for_self(self) -> ElementSelectorFlags {
self & (HAS_EMPTY_SELECTOR)
}
/// Returns the subset of flags that apply to the parent.
pub fn for_parent(self) -> ElementSelectorFlags {
self & (HAS_SLOW_SELECTOR | HAS_SLOW_SELECTOR_LATER_SIBLINGS | HAS_EDGE_CHILD_SELECTOR)
}
}
/// Holds per-selector data alongside a pointer to MatchingContext.
pub struct LocalMatchingContext<'a, 'b: 'a, Impl: SelectorImpl> {
/// Shared `MatchingContext`.
pub shared: &'a mut MatchingContext<'b>,
/// A reference to the base selector we're matching against.
pub selector: &'a Selector<Impl>,
/// The offset of the current compound selector being matched, kept up to
/// date by the callees when the iterator is advanced. This, in conjunction
/// with the selector reference above, allows callees to synthesize an
/// iterator for the current compound selector on-demand. This is necessary
/// because the primary iterator may already have been advanced partway
/// through the current compound selector, and the callee may need the whole
/// thing.
offset: usize,
/// The level of nesting for the selector being matched.
pub nesting_level: usize,
/// Holds a bool flag to see whether :active and :hover quirk should try to
/// match or not. This flag can only be true in the case PseudoElements are
/// encountered when matching mode is ForStatelessPseudoElement.
pub hover_active_quirk_disabled: bool,
}
impl<'a, 'b, Impl> LocalMatchingContext<'a, 'b, Impl>
where Impl: SelectorImpl
{
/// Constructs a new `LocalMatchingContext`.
pub fn new(shared: &'a mut MatchingContext<'b>,
selector: &'a Selector<Impl>) -> Self {
Self {
shared: shared,
selector: selector,
offset: 0,
nesting_level: 0,
// We flip this off once third sequence is reached.
hover_active_quirk_disabled: selector.has_pseudo_element(),
}
}
/// Updates offset of Selector to show new compound selector.
/// To be able to correctly re-synthesize main SelectorIter.
fn note_position(&mut self, selector_iter: &SelectorIter<Impl>) {
if let QuirksMode::Quirks = self.shared.quirks_mode() {
if self.selector.has_pseudo_element() && self.offset != 0 {
// This is the _second_ call to note_position,
// which means we've moved past the compound
// selector adjacent to the pseudo-element.
self.hover_active_quirk_disabled = false;
}
self.offset = self.selector.len() - selector_iter.selector_length();
}
}
/// Returns true if current compound selector matches :active and :hover quirk.
/// https://quirks.spec.whatwg.org/#the-active-and-hover-quirk
pub fn active_hover_quirk_matches(&self) -> bool {
if self.shared.quirks_mode() != QuirksMode::Quirks {
return false;
}
// Don't allow it in recursive selectors such as :not and :-moz-any.
if self.nesting_level != 0 {
return false;
}
if self.hover_active_quirk_disabled {
return false;
}
let mut iter = if self.offset == 0 {
self.selector.iter()
} else {
self.selector.iter_from(self.offset)
};
return iter.all(|simple| {
match *simple {
Component::LocalName(_) |
Component::AttributeInNoNamespaceExists { .. } |
Component::AttributeInNoNamespace { .. } |
Component::AttributeOther(_) |
Component::ID(_) |
Component::Class(_) |
Component::PseudoElement(_) |
Component::Negation(_) |
Component::FirstChild |
Component::LastChild |
Component::OnlyChild |
Component::Empty |
Component::NthChild(_, _) |
Component::NthLastChild(_, _) |
Component::NthOfType(_, _) |
Component::NthLastOfType(_, _) |
Component::FirstOfType |
Component::LastOfType |
Component::OnlyOfType => false,
Component::NonTSPseudoClass(ref pseudo_class) => {
Impl::is_active_or_hover(pseudo_class)
},
_ => true,
}
});
}
}
pub fn matches_selector_list<E>(selector_list: &SelectorList<E::Impl>,
element: &E,
context: &mut MatchingContext)
-> bool
where E: Element
{
selector_list.0.iter().any(|selector| {
matches_selector(selector,
0,
None,
element,
context,
&mut |_, _| {})
})
}
#[inline(always)]
fn may_match<E>(hashes: &AncestorHashes,
bf: &BloomFilter)
-> bool
where E: Element,
{
// Check the first three hashes. Note that we can check for zero before
// masking off the high bits, since if any of the first three hashes is
// zero the fourth will be as well. We also take care to avoid the
// special-case complexity of the fourth hash until we actually reach it,
// because we usually don't.
//
// To be clear: this is all extremely hot.
for i in 0..3 {
let packed = hashes.packed_hashes[i];
if packed == 0 {
// No more hashes left - unable to fast-reject.
return true;
}
if !bf.might_contain_hash(packed & BLOOM_HASH_MASK) {
// Hooray! We fast-rejected on this hash.
return false;
}
}
// Now do the slighty-more-complex work of synthesizing the fourth hash,
// and check it against the filter if it exists.
let fourth = hashes.fourth_hash();
fourth == 0 || bf.might_contain_hash(fourth)
}
/// Tracks whether we are currently looking for relevant links for a given
/// complex selector. A "relevant link" is the element being matched if it is a
/// link or the nearest ancestor link.
///
/// `matches_complex_selector` creates a new instance of this for each complex
/// selector we try to match for an element. This is done because `is_visited`
/// and `is_unvisited` are based on relevant link state of only the current
/// complex selector being matched (not the global relevant link status for all
/// selectors in `MatchingContext`).
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum RelevantLinkStatus {
/// Looking for a possible relevant link. This is the initial mode when
/// matching a selector.
Looking,
/// Not looking for a relevant link. We transition to this mode if we
/// encounter a sibiling combinator (since only ancestor combinators are
/// allowed for this purpose).
NotLooking,
/// Found a relevant link for the element being matched.
Found,
}
impl Default for RelevantLinkStatus {
fn default() -> Self {
RelevantLinkStatus::NotLooking
}
}
impl RelevantLinkStatus {
/// If we found the relevant link for this element, record that in the
/// overall matching context for the element as a whole and stop looking for
/// addtional links.
fn examine_potential_link<E>(&self, element: &E, context: &mut MatchingContext)
-> RelevantLinkStatus
where E: Element,
{
// If a relevant link was previously found, we no longer want to look
// for links. Only the nearest ancestor link is considered relevant.
if *self != RelevantLinkStatus::Looking {
return RelevantLinkStatus::NotLooking
}
if !element.is_link() {
return *self
}
// We found a relevant link. Record this in the `MatchingContext`,
// where we track whether one was found for _any_ selector (meaning
// this field might already be true from a previous selector).
context.relevant_link_found = true;
// Also return `Found` to update the relevant link status for _this_
// specific selector's matching process.
RelevantLinkStatus::Found
}
/// Returns whether an element is considered visited for the purposes of
/// matching. This is true only if the element is a link, an relevant link
/// exists for the element, and the visited handling mode is set to accept
/// relevant links as visited.
pub fn is_visited<E>(&self, element: &E, context: &MatchingContext) -> bool
where E: Element,
{
if !element.is_link() {
return false
}
if context.visited_handling == VisitedHandlingMode::AllLinksVisitedAndUnvisited {
return true;
}
// Non-relevant links are always unvisited.
if *self != RelevantLinkStatus::Found {
return false
}
context.visited_handling == VisitedHandlingMode::RelevantLinkVisited
}
/// Returns whether an element is considered unvisited for the purposes of
/// matching. Assuming the element is a link, this is always true for
/// non-relevant links, since only relevant links can potentially be treated
/// as visited. If this is a relevant link, then is it unvisited if the
/// visited handling mode is set to treat all links as unvisted (including
/// relevant links).
pub fn is_unvisited<E>(&self, element: &E, context: &MatchingContext) -> bool
where E: Element,
{
if !element.is_link() {
return false
}
if context.visited_handling == VisitedHandlingMode::AllLinksVisitedAndUnvisited {
return true;
}
// Non-relevant links are always unvisited.
if *self != RelevantLinkStatus::Found {
return true
}
context.visited_handling == VisitedHandlingMode::AllLinksUnvisited
}
}
/// A result of selector matching, includes 3 failure types,
///
/// NotMatchedAndRestartFromClosestLaterSibling
/// NotMatchedAndRestartFromClosestDescendant
/// NotMatchedGlobally
///
/// When NotMatchedGlobally appears, stop selector matching completely since
/// the succeeding selectors never matches.
/// It is raised when
/// Child combinator cannot find the candidate element.
/// Descendant combinator cannot find the candidate element.
///
/// When NotMatchedAndRestartFromClosestDescendant appears, the selector
/// matching does backtracking and restarts from the closest Descendant
/// combinator.
/// It is raised when
/// NextSibling combinator cannot find the candidate element.
/// LaterSibling combinator cannot find the candidate element.
/// Child combinator doesn't match on the found element.
///
/// When NotMatchedAndRestartFromClosestLaterSibling appears, the selector
/// matching does backtracking and restarts from the closest LaterSibling
/// combinator.
/// It is raised when
/// NextSibling combinator doesn't match on the found element.
///
/// For example, when the selector "d1 d2 a" is provided and we cannot *find*
/// an appropriate ancestor element for "d1", this selector matching raises
/// NotMatchedGlobally since even if "d2" is moved to more upper element, the
/// candidates for "d1" becomes less than before and d1 .
///
/// The next example is siblings. When the selector "b1 + b2 ~ d1 a" is
/// provided and we cannot *find* an appropriate brother element for b1,
/// the selector matching raises NotMatchedAndRestartFromClosestDescendant.
/// The selectors ("b1 + b2 ~") doesn't match and matching restart from "d1".
///
/// The additional example is child and sibling. When the selector
/// "b1 + c1 > b2 ~ d1 a" is provided and the selector "b1" doesn't match on
/// the element, this "b1" raises NotMatchedAndRestartFromClosestLaterSibling.
/// However since the selector "c1" raises
/// NotMatchedAndRestartFromClosestDescendant. So the selector
/// "b1 + c1 > b2 ~ " doesn't match and restart matching from "d1".
#[derive(Clone, Copy, Eq, PartialEq)]
enum SelectorMatchingResult {
Matched,
NotMatchedAndRestartFromClosestLaterSibling,
NotMatchedAndRestartFromClosestDescendant,
NotMatchedGlobally,
}
/// Matches a selector, fast-rejecting against a bloom filter.
///
/// We accept an offset to allow consumers to represent and match against
/// partial selectors (indexed from the right). We use this API design, rather
/// than having the callers pass a SelectorIter, because creating a SelectorIter
/// requires dereferencing the selector to get the length, which adds an
/// unncessary cache miss for cases when we can fast-reject with AncestorHashes
/// (which the caller can store inline with the selector pointer).
#[inline(always)]
pub fn matches_selector<E, F>(selector: &Selector<E::Impl>,
offset: usize,
hashes: Option<&AncestorHashes>,
element: &E,
context: &mut MatchingContext,
flags_setter: &mut F)
-> bool
where E: Element,
F: FnMut(&E, ElementSelectorFlags),
{
// Use the bloom filter to fast-reject.
if let Some(hashes) = hashes {
if let Some(filter) = context.bloom_filter {
if !may_match::<E>(hashes, filter) {
return false;
}
}
}
let mut local_context = LocalMatchingContext::new(context, selector);
let iter = if offset == 0 {
selector.iter()
} else {
selector.iter_from(offset)
};
matches_complex_selector(iter, element, &mut local_context, flags_setter)
}
/// Whether a compound selector matched, and whether it was the rightmost
/// selector inside the complex selector.
pub enum CompoundSelectorMatchingResult {
/// The compound selector matched, and the next combinator offset is
/// `next_combinator_offset`.
///
/// If the next combinator offset is zero, it means that it's the rightmost
/// selector.
Matched { next_combinator_offset: usize, },
/// The selector didn't match.
NotMatched,
}
/// Matches a compound selector belonging to `selector`, starting at offset
/// `from_offset`, matching left to right.
///
/// Requires that `from_offset` points to a `Combinator`.
///
/// NOTE(emilio): This doesn't allow to match in the leftmost sequence of the
/// complex selector, but it happens to be the case we don't need it.
pub fn matches_compound_selector<E>(
selector: &Selector<E::Impl>,
mut from_offset: usize,
context: &mut MatchingContext,
element: &E,
) -> CompoundSelectorMatchingResult
where
E: Element
{
if cfg!(debug_assertions) {
selector.combinator_at(from_offset); // This asserts.
}
let mut local_context = LocalMatchingContext::new(context, selector);
for component in selector.iter_raw_parse_order_from(from_offset - 1) {
if matches!(*component, Component::Combinator(..)) {
return CompoundSelectorMatchingResult::Matched {
next_combinator_offset: from_offset - 1,
}
}
if !matches_simple_selector(
component,
element,
&mut local_context,
&RelevantLinkStatus::NotLooking,
&mut |_, _| {}) {
return CompoundSelectorMatchingResult::NotMatched;
}
from_offset -= 1;
}
return CompoundSelectorMatchingResult::Matched {
next_combinator_offset: 0,
}
}
/// Matches a complex selector.
pub fn matches_complex_selector<E, F>(mut iter: SelectorIter<E::Impl>,
element: &E,
context: &mut LocalMatchingContext<E::Impl>,
flags_setter: &mut F)
-> bool
where E: Element,
F: FnMut(&E, ElementSelectorFlags),
{
if cfg!(debug_assertions) {
if context.nesting_level == 0 &&
context.shared.matching_mode == MatchingMode::ForStatelessPseudoElement {
assert!(iter.clone().any(|c| {
matches!(*c, Component::PseudoElement(..))
}));
}
}
// If this is the special pseudo-element mode, consume the ::pseudo-element
// before proceeding, since the caller has already handled that part.
if context.nesting_level == 0 &&
context.shared.matching_mode == MatchingMode::ForStatelessPseudoElement {
// Consume the pseudo.
let pseudo = iter.next().unwrap();
debug_assert!(matches!(*pseudo, Component::PseudoElement(..)),
"Used MatchingMode::ForStatelessPseudoElement in a non-pseudo selector");
// The only other parser-allowed Component in this sequence is a state
// class. We just don't match in that case.
if let Some(s) = iter.next() {
debug_assert!(matches!(*s, Component::NonTSPseudoClass(..)),
"Someone messed up pseudo-element parsing");
return false;
}
// Advance to the non-pseudo-element part of the selector, and inform
// the context.
if iter.next_sequence().is_none() {
return true;
}
context.note_position(&iter);
}
match matches_complex_selector_internal(iter,
element,
context,
&mut RelevantLinkStatus::Looking,
flags_setter) {
SelectorMatchingResult::Matched => true,
_ => false
}
}
fn matches_complex_selector_internal<E, F>(mut selector_iter: SelectorIter<E::Impl>,
element: &E,
context: &mut LocalMatchingContext<E::Impl>,
relevant_link: &mut RelevantLinkStatus,
flags_setter: &mut F)
-> SelectorMatchingResult
where E: Element,
F: FnMut(&E, ElementSelectorFlags),
{
*relevant_link = relevant_link.examine_potential_link(element, &mut context.shared);
debug!("Matching complex selector {:?} for {:?}, relevant link {:?}",
selector_iter, element, relevant_link);
let matches_all_simple_selectors = selector_iter.all(|simple| {
matches_simple_selector(simple, element, context, &relevant_link, flags_setter)
});
let combinator = selector_iter.next_sequence();
let siblings = combinator.map_or(false, |c| c.is_sibling());
if siblings {
flags_setter(element, HAS_SLOW_SELECTOR_LATER_SIBLINGS);
}
if !matches_all_simple_selectors {
return SelectorMatchingResult::NotMatchedAndRestartFromClosestLaterSibling;
}
match combinator {
None => SelectorMatchingResult::Matched,
Some(c) => {
let (mut next_element, candidate_not_found) = match c {
Combinator::NextSibling | Combinator::LaterSibling => {
// Only ancestor combinators are allowed while looking for
// relevant links, so switch to not looking.
*relevant_link = RelevantLinkStatus::NotLooking;
(element.prev_sibling_element(),
SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant)
}
Combinator::Child | Combinator::Descendant => {
if element.blocks_ancestor_combinators() {
(None, SelectorMatchingResult::NotMatchedGlobally)
} else {
(element.parent_element(),
SelectorMatchingResult::NotMatchedGlobally)
}
}
Combinator::PseudoElement => {
(element.pseudo_element_originating_element(),
SelectorMatchingResult::NotMatchedGlobally)
}
};
loop {
let element = match next_element {
None => return candidate_not_found,
Some(next_element) => next_element,
};
// Note in which compound selector are we currently.
context.note_position(&selector_iter);
let result = matches_complex_selector_internal(selector_iter.clone(),
&element,
context,
relevant_link,
flags_setter);
match (result, c) {
// Return the status immediately.
(SelectorMatchingResult::Matched, _) => return result,
(SelectorMatchingResult::NotMatchedGlobally, _) => return result,
// Upgrade the failure status to
// NotMatchedAndRestartFromClosestDescendant.
(_, Combinator::PseudoElement) |
(_, Combinator::Child) => return SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant,
// Return the status directly.
(_, Combinator::NextSibling) => return result,
// If the failure status is NotMatchedAndRestartFromClosestDescendant
// and combinator is Combinator::LaterSibling, give up this Combinator::LaterSibling matching
// and restart from the closest descendant combinator.
(SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant, Combinator::LaterSibling)
=> return result,
// The Combinator::Descendant combinator and the status is
// NotMatchedAndRestartFromClosestLaterSibling or
// NotMatchedAndRestartFromClosestDescendant,
// or the Combinator::LaterSibling combinator and the status is
// NotMatchedAndRestartFromClosestDescendant
// can continue to matching on the next candidate element.
_ => {},
}
next_element = if siblings {
element.prev_sibling_element()
} else {
element.parent_element()
};
}
}
}
}
/// Determines whether the given element matches the given single selector.
#[inline]
fn matches_simple_selector<E, F>(
selector: &Component<E::Impl>,
element: &E,
context: &mut LocalMatchingContext<E::Impl>,
relevant_link: &RelevantLinkStatus,
flags_setter: &mut F)
-> bool
where E: Element,
F: FnMut(&E, ElementSelectorFlags),
{
match *selector {
Component::Combinator(_) => unreachable!(),
Component::PseudoElement(ref pseudo) => {
element.match_pseudo_element(pseudo, context.shared)
}
Component::LocalName(LocalName { ref name, ref lower_name }) => {
let is_html = element.is_html_element_in_html_document();
element.get_local_name() == select_name(is_html, name, lower_name).borrow()
}
Component::ExplicitUniversalType |
Component::ExplicitAnyNamespace => {
true
}
Component::Namespace(_, ref url) |
Component::DefaultNamespace(ref url) => {
element.get_namespace() == url.borrow()
}
Component::ExplicitNoNamespace => {
let ns = ::parser::namespace_empty_string::<E::Impl>();
element.get_namespace() == ns.borrow()
}
Component::ID(ref id) => {
element.has_id(id, context.shared.classes_and_ids_case_sensitivity())
}
Component::Class(ref class) => {
element.has_class(class, context.shared.classes_and_ids_case_sensitivity())
}
Component::AttributeInNoNamespaceExists { ref local_name, ref local_name_lower } => {
let is_html = element.is_html_element_in_html_document();
element.attr_matches(
&NamespaceConstraint::Specific(&::parser::namespace_empty_string::<E::Impl>()),
select_name(is_html, local_name, local_name_lower),
&AttrSelectorOperation::Exists
)
}
Component::AttributeInNoNamespace {
ref local_name,
ref local_name_lower,
ref value,
operator,
case_sensitivity,
never_matches,
} => {
if never_matches {
return false
}
let is_html = element.is_html_element_in_html_document();
element.attr_matches(
&NamespaceConstraint::Specific(&::parser::namespace_empty_string::<E::Impl>()),
select_name(is_html, local_name, local_name_lower),
&AttrSelectorOperation::WithValue {
operator: operator,
case_sensitivity: case_sensitivity.to_unconditional(is_html),
expected_value: value,
}
)
}
Component::AttributeOther(ref attr_sel) => {
if attr_sel.never_matches {
return false
}
let is_html = element.is_html_element_in_html_document();
element.attr_matches(
&attr_sel.namespace(),
select_name(is_html, &attr_sel.local_name, &attr_sel.local_name_lower),
&match attr_sel.operation {
ParsedAttrSelectorOperation::Exists => AttrSelectorOperation::Exists,
ParsedAttrSelectorOperation::WithValue {
operator,
case_sensitivity,
ref expected_value,
} => {
AttrSelectorOperation::WithValue {
operator: operator,
case_sensitivity: case_sensitivity.to_unconditional(is_html),
expected_value: expected_value,
}
}
}
)
}
Component::NonTSPseudoClass(ref pc) => {
element.match_non_ts_pseudo_class(pc, context, relevant_link, flags_setter)
}
Component::FirstChild => {
matches_first_child(element, flags_setter)
}
Component::LastChild => {
matches_last_child(element, flags_setter)
}
Component::OnlyChild => {
matches_first_child(element, flags_setter) &&
matches_last_child(element, flags_setter)
}
Component::Root => {
element.is_root()
}
Component::Empty => {
flags_setter(element, HAS_EMPTY_SELECTOR);
element.is_empty()
}
Component::NthChild(a, b) => {
matches_generic_nth_child(element, a, b, false, false, flags_setter)
}
Component::NthLastChild(a, b) => {
matches_generic_nth_child(element, a, b, false, true, flags_setter)
}
Component::NthOfType(a, b) => {
matches_generic_nth_child(element, a, b, true, false, flags_setter)
}
Component::NthLastOfType(a, b) => {
matches_generic_nth_child(element, a, b, true, true, flags_setter)
}
Component::FirstOfType => {
matches_generic_nth_child(element, 0, 1, true, false, flags_setter)
}
Component::LastOfType => {
matches_generic_nth_child(element, 0, 1, true, true, flags_setter)
}
Component::OnlyOfType => {
matches_generic_nth_child(element, 0, 1, true, false, flags_setter) &&
matches_generic_nth_child(element, 0, 1, true, true, flags_setter)
}
Component::Negation(ref negated) => {
context.nesting_level += 1;
let result = !negated.iter().all(|ss| {
matches_simple_selector(ss, element, context,
relevant_link, flags_setter)
});
context.nesting_level -= 1;
result
}
}
}
fn select_name<'a, T>(is_html: bool, local_name: &'a T, local_name_lower: &'a T) -> &'a T {
if is_html {
local_name_lower
} else {
local_name
}
}
#[inline]
fn matches_generic_nth_child<E, F>(element: &E,
a: i32,
b: i32,
is_of_type: bool,
is_from_end: bool,
flags_setter: &mut F)
-> bool
where E: Element,
F: FnMut(&E, ElementSelectorFlags),
{
if element.ignores_nth_child_selectors() {
return false;
}
flags_setter(element, if is_from_end {
HAS_SLOW_SELECTOR
} else {
HAS_SLOW_SELECTOR_LATER_SIBLINGS
});
let mut index: i32 = 1;
let mut next_sibling = if is_from_end {
element.next_sibling_element()
} else {
element.prev_sibling_element()
};
loop {
let sibling = match next_sibling {
None => break,
Some(next_sibling) => next_sibling
};
if is_of_type {
if element.get_local_name() == sibling.get_local_name() &&
element.get_namespace() == sibling.get_namespace() {
index += 1;
}
} else {
index += 1;
}
next_sibling = if is_from_end {
sibling.next_sibling_element()
} else {
sibling.prev_sibling_element()
};
}
// Is there a non-negative integer n such that An+B=index?
match index.checked_sub(b) {
None => false,
Some(an) => match an.checked_div(a) {
Some(n) => n >= 0 && a * n == an,
None /* a == 0 */ => an == 0,
},
}
}
#[inline]
fn matches_first_child<E, F>(element: &E, flags_setter: &mut F) -> bool
where E: Element,
F: FnMut(&E, ElementSelectorFlags),
{
flags_setter(element, HAS_EDGE_CHILD_SELECTOR);
element.prev_sibling_element().is_none()
}
#[inline]
fn matches_last_child<E, F>(element: &E, flags_setter: &mut F) -> bool
where E: Element,
F: FnMut(&E, ElementSelectorFlags),
{
flags_setter(element, HAS_EDGE_CHILD_SELECTOR);
element.next_sibling_element().is_none()
}