servo/components/style/traversal.rs
Emilio Cobos Álvarez 891bc7d174
style: Massage the resolver code so it's cleaner and prevents the problem.
This way all the borrows stay in the sharing code, and prevents an extra borrow
on a cache hit, which is not a big deal but nice.
2017-09-18 04:57:50 +02:00

923 lines
35 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Traversing the DOM tree; the bloom filter.
use context::{ElementCascadeInputs, StyleContext, SharedStyleContext};
use data::{ElementData, ElementStyles};
use dom::{NodeInfo, OpaqueNode, TElement, TNode};
use invalidation::element::restyle_hints::{RECASCADE_SELF, RECASCADE_DESCENDANTS, RestyleHint};
use matching::{ChildCascadeRequirement, MatchMethods};
use selector_parser::PseudoElement;
use sharing::StyleSharingTarget;
use smallvec::SmallVec;
use style_resolver::{PseudoElementResolution, StyleResolverForElement};
#[cfg(feature = "servo")] use style_traits::ToCss;
use stylist::RuleInclusion;
use traversal_flags::{TraversalFlags, self};
#[cfg(feature = "servo")] use values::Either;
#[cfg(feature = "servo")] use values::generics::image::Image;
/// A per-traversal-level chunk of data. This is sent down by the traversal, and
/// currently only holds the dom depth for the bloom filter.
///
/// NB: Keep this as small as possible, please!
#[derive(Clone, Debug)]
pub struct PerLevelTraversalData {
/// The current dom depth.
///
/// This is kept with cooperation from the traversal code and the bloom
/// filter.
pub current_dom_depth: usize,
}
/// We use this structure, rather than just returning a boolean from pre_traverse,
/// to enfore that callers process root invalidations before starting the traversal.
pub struct PreTraverseToken(bool);
impl PreTraverseToken {
/// Whether we should traverse children.
pub fn should_traverse(&self) -> bool { self.0 }
}
#[cfg(feature = "servo")]
#[inline]
fn is_servo_nonincremental_layout() -> bool {
use servo_config::opts;
opts::get().nonincremental_layout
}
#[cfg(not(feature = "servo"))]
#[inline]
fn is_servo_nonincremental_layout() -> bool {
false
}
/// A DOM Traversal trait, that is used to generically implement styling for
/// Gecko and Servo.
pub trait DomTraversal<E: TElement> : Sync {
/// Process `node` on the way down, before its children have been processed.
///
/// The callback is invoked for each child node that should be processed by
/// the traversal.
fn process_preorder<F>(&self,
data: &PerLevelTraversalData,
context: &mut StyleContext<E>,
node: E::ConcreteNode,
note_child: F)
where F: FnMut(E::ConcreteNode);
/// Process `node` on the way up, after its children have been processed.
///
/// This is only executed if `needs_postorder_traversal` returns true.
fn process_postorder(&self,
contect: &mut StyleContext<E>,
node: E::ConcreteNode);
/// Boolean that specifies whether a bottom up traversal should be
/// performed.
///
/// If it's false, then process_postorder has no effect at all.
fn needs_postorder_traversal() -> bool { true }
/// Handles the postorder step of the traversal, if it exists, by bubbling
/// up the parent chain.
///
/// If we are the last child that finished processing, recursively process
/// our parent. Else, stop. Also, stop at the root.
///
/// Thus, if we start with all the leaves of a tree, we end up traversing
/// the whole tree bottom-up because each parent will be processed exactly
/// once (by the last child that finishes processing).
///
/// The only communication between siblings is that they both
/// fetch-and-subtract the parent's children count. This makes it safe to
/// call durign the parallel traversal.
fn handle_postorder_traversal(
&self,
context: &mut StyleContext<E>,
root: OpaqueNode,
mut node: E::ConcreteNode,
children_to_process: isize
) {
// If the postorder step is a no-op, don't bother.
if !Self::needs_postorder_traversal() {
return;
}
if children_to_process == 0 {
// We are a leaf. Walk up the chain.
loop {
self.process_postorder(context, node);
if node.opaque() == root {
break;
}
let parent = node.traversal_parent().unwrap();
let remaining = parent.did_process_child();
if remaining != 0 {
// The parent has other unprocessed descendants. We only
// perform postorder processing after the last descendant
// has been processed.
break
}
node = parent.as_node();
}
} else {
// Otherwise record the number of children to process when the time
// comes.
node.as_element().unwrap()
.store_children_to_process(children_to_process);
}
}
/// Style invalidations happen when traversing from a parent to its children.
/// However, this mechanism can't handle style invalidations on the root. As
/// such, we have a pre-traversal step to handle that part and determine whether
/// a full traversal is needed.
fn pre_traverse(
root: E,
shared_context: &SharedStyleContext,
traversal_flags: TraversalFlags,
) -> PreTraverseToken {
// If this is an unstyled-only traversal, the caller has already verified
// that there's something to traverse, and we don't need to do any
// invalidation since we're not doing any restyling.
if traversal_flags.contains(traversal_flags::UnstyledOnly) {
return PreTraverseToken(true)
}
let flags = shared_context.traversal_flags;
let mut data = root.mutate_data();
let mut data = data.as_mut().map(|d| &mut **d);
if let Some(ref mut data) = data {
// Invalidate our style, and the one of our siblings and descendants
// as needed.
data.invalidate_style_if_needed(root, shared_context, None);
// Make sure we don't have any stale RECONSTRUCTED_ANCESTOR bits from
// the last traversal (at a potentially-higher root). From the
// perspective of this traversal, the root cannot have reconstructed
// ancestors.
data.set_reconstructed_ancestor(false);
};
let parent = root.traversal_parent();
let parent_data = parent.as_ref().and_then(|p| p.borrow_data());
let should_traverse = Self::element_needs_traversal(
root,
flags,
data.as_mut().map(|d| &**d),
parent_data.as_ref().map(|d| &**d)
);
// If we're not going to traverse at all, we may need to clear some state
// off the root (which would normally be done at the end of recalc_style_at).
if !should_traverse && data.is_some() {
clear_state_after_traversing(root, data.unwrap(), flags);
}
PreTraverseToken(should_traverse)
}
/// Returns true if traversal should visit a text node. The style system
/// never processes text nodes, but Servo overrides this to visit them for
/// flow construction when necessary.
fn text_node_needs_traversal(node: E::ConcreteNode, _parent_data: &ElementData) -> bool {
debug_assert!(node.is_text_node());
false
}
/// Returns true if traversal is needed for the given element and subtree.
///
/// The caller passes |parent_data|, which is only null if there is no
/// parent.
fn element_needs_traversal(
el: E,
traversal_flags: TraversalFlags,
data: Option<&ElementData>,
parent_data: Option<&ElementData>,
) -> bool {
debug!("element_needs_traversal({:?}, {:?}, {:?}, {:?})",
el, traversal_flags, data, parent_data);
if traversal_flags.contains(traversal_flags::UnstyledOnly) {
return data.map_or(true, |d| !d.has_styles()) || el.has_dirty_descendants();
}
// In case of animation-only traversal we need to traverse the element
// if the element has animation only dirty descendants bit,
// animation-only restyle hint or recascade.
if traversal_flags.for_animation_only() {
return data.map_or(false, |d| d.has_styles()) &&
(el.has_animation_only_dirty_descendants() ||
data.as_ref().unwrap().hint.has_animation_hint_or_recascade());
}
// Non-incremental layout visits every node.
if is_servo_nonincremental_layout() {
return true;
}
// Unwrap the data.
let data = match data {
Some(d) if d.has_styles() => d,
_ => return true,
};
// If the element is native-anonymous and an ancestor frame will be
// reconstructed, the child and all its descendants will be destroyed.
// In that case, we wouldn't need to traverse the subtree...
//
// Except if there could be transitions of pseudo-elements, in which
// case we still need to process them, unfortunately.
//
// We need to conservatively continue the traversal to style the
// pseudo-element in order to properly process potentially-new
// transitions that we won't see otherwise.
//
// But it may be that we no longer match, so detect that case and act
// appropriately here.
if el.is_native_anonymous() {
if let Some(parent_data) = parent_data {
let going_to_reframe =
parent_data.reconstructed_self_or_ancestor();
let mut is_before_or_after_pseudo = false;
if let Some(pseudo) = el.implemented_pseudo_element() {
if pseudo.is_before_or_after() {
is_before_or_after_pseudo = true;
let still_match =
parent_data.styles.pseudos.get(&pseudo).is_some();
if !still_match {
debug_assert!(going_to_reframe,
"We're removing a pseudo, so we \
should reframe!");
return false;
}
}
}
if going_to_reframe && !is_before_or_after_pseudo {
debug!("Element {:?} is in doomed NAC subtree, \
culling traversal", el);
return false;
}
}
}
// If the dirty descendants bit is set, we need to traverse no matter
// what. Skip examining the ElementData.
if el.has_dirty_descendants() {
return true;
}
// If we have a restyle hint or need to recascade, we need to visit the
// element.
//
// Note that this is different than checking has_current_styles_for_traversal(),
// since that can return true even if we have a restyle hint indicating
// that the element's descendants (but not necessarily the element) need
// restyling.
if !data.hint.is_empty() {
return true;
}
// Servo uses the post-order traversal for flow construction, so we need
// to traverse any element with damage so that we can perform fixup /
// reconstruction on our way back up the tree.
if cfg!(feature = "servo") && !data.damage.is_empty() {
return true;
}
trace!("{:?} doesn't need traversal", el);
false
}
/// Returns true if we want to cull this subtree from the travesal.
fn should_cull_subtree(
&self,
context: &mut StyleContext<E>,
parent: E,
parent_data: &ElementData,
) -> bool {
debug_assert!(cfg!(feature = "gecko") ||
parent.has_current_styles_for_traversal(parent_data, context.shared.traversal_flags));
// If the parent computed display:none, we don't style the subtree.
if parent_data.styles.is_display_none() {
debug!("Parent {:?} is display:none, culling traversal", parent);
return true;
}
// Gecko-only XBL handling.
//
// If we're computing initial styles and the parent has a Gecko XBL
// binding, that binding may inject anonymous children and remap the
// explicit children to an insertion point (or hide them entirely). It
// may also specify a scoped stylesheet, which changes the rules that
// apply within the subtree. These two effects can invalidate the result
// of property inheritance and selector matching (respectively) within
// the subtree.
//
// To avoid wasting work, we defer initial styling of XBL subtrees until
// frame construction, which does an explicit traversal of the unstyled
// children after shuffling the subtree. That explicit traversal may in
// turn find other bound elements, which get handled in the same way.
//
// We explicitly avoid handling restyles here (explicitly removing or
// changing bindings), since that adds complexity and is rarer. If it
// happens, we may just end up doing wasted work, since Gecko
// recursively drops Servo ElementData when the XBL insertion parent of
// an Element is changed.
if cfg!(feature = "gecko") && context.thread_local.is_initial_style() &&
parent_data.styles.primary().has_moz_binding()
{
debug!("Parent {:?} has XBL binding, deferring traversal", parent);
return true;
}
return false;
}
/// Return the shared style context common to all worker threads.
fn shared_context(&self) -> &SharedStyleContext;
}
/// Manually resolve style by sequentially walking up the parent chain to the
/// first styled Element, ignoring pending restyles. The resolved style is made
/// available via a callback, and can be dropped by the time this function
/// returns in the display:none subtree case.
pub fn resolve_style<E>(
context: &mut StyleContext<E>,
element: E,
rule_inclusion: RuleInclusion,
ignore_existing_style: bool,
pseudo: Option<&PseudoElement>,
) -> ElementStyles
where
E: TElement,
{
use style_resolver::StyleResolverForElement;
debug_assert!(rule_inclusion == RuleInclusion::DefaultOnly ||
ignore_existing_style ||
pseudo.map_or(false, |p| p.is_before_or_after()) ||
element.borrow_data().map_or(true, |d| !d.has_styles()),
"Why are we here?");
let mut ancestors_requiring_style_resolution = SmallVec::<[E; 16]>::new();
// Clear the bloom filter, just in case the caller is reusing TLS.
context.thread_local.bloom_filter.clear();
let mut style = None;
let mut ancestor = element.traversal_parent();
while let Some(current) = ancestor {
if rule_inclusion == RuleInclusion::All && !ignore_existing_style {
if let Some(data) = current.borrow_data() {
if let Some(ancestor_style) = data.styles.get_primary() {
style = Some(ancestor_style.clone());
break;
}
}
}
ancestors_requiring_style_resolution.push(current);
ancestor = current.traversal_parent();
}
if let Some(ancestor) = ancestor {
context.thread_local.bloom_filter.rebuild(ancestor);
context.thread_local.bloom_filter.push(ancestor);
}
let mut layout_parent_style = style.clone();
while let Some(style) = layout_parent_style.take() {
if !style.is_display_contents() {
layout_parent_style = Some(style);
break;
}
ancestor = ancestor.unwrap().traversal_parent();
layout_parent_style = ancestor.map(|a| {
a.borrow_data().unwrap().styles.primary().clone()
});
}
for ancestor in ancestors_requiring_style_resolution.iter().rev() {
context.thread_local.bloom_filter.assert_complete(*ancestor);
// Actually `PseudoElementResolution` doesn't really matter here.
// (but it does matter below!).
let primary_style =
StyleResolverForElement::new(*ancestor, context, rule_inclusion, PseudoElementResolution::IfApplicable)
.resolve_primary_style(
style.as_ref().map(|s| &**s),
layout_parent_style.as_ref().map(|s| &**s)
);
let is_display_contents = primary_style.style().is_display_contents();
style = Some(primary_style.style.0);
if !is_display_contents {
layout_parent_style = style.clone();
}
context.thread_local.bloom_filter.push(*ancestor);
}
context.thread_local.bloom_filter.assert_complete(element);
StyleResolverForElement::new(element, context, rule_inclusion, PseudoElementResolution::Force)
.resolve_style(
style.as_ref().map(|s| &**s),
layout_parent_style.as_ref().map(|s| &**s)
).into()
}
/// Calculates the style for a single node.
#[inline]
#[allow(unsafe_code)]
pub fn recalc_style_at<E, D, F>(
traversal: &D,
traversal_data: &PerLevelTraversalData,
context: &mut StyleContext<E>,
element: E,
data: &mut ElementData,
note_child: F,
)
where
E: TElement,
D: DomTraversal<E>,
F: FnMut(E::ConcreteNode),
{
use std::cmp;
use traversal_flags::*;
let flags = context.shared.traversal_flags;
context.thread_local.begin_element(element, data);
context.thread_local.statistics.elements_traversed += 1;
debug_assert!(flags.intersects(AnimationOnly | UnstyledOnly) ||
!element.has_snapshot() || element.handled_snapshot(),
"Should've handled snapshots here already");
let compute_self = !element.has_current_styles_for_traversal(data, flags);
debug!("recalc_style_at: {:?} (compute_self={:?}, \
dirty_descendants={:?}, data={:?})",
element, compute_self, element.has_dirty_descendants(), data);
let mut child_cascade_requirement = ChildCascadeRequirement::CanSkipCascade;
// Compute style for this element if necessary.
if compute_self {
child_cascade_requirement =
compute_style(traversal_data, context, element, data);
if element.is_native_anonymous() {
// We must always cascade native anonymous subtrees, since they inherit
// styles from their first non-NAC ancestor.
child_cascade_requirement = cmp::max(
child_cascade_requirement,
ChildCascadeRequirement::MustCascadeChildren,
);
}
// If we're restyling this element to display:none, throw away all style
// data in the subtree, notify the caller to early-return.
if data.styles.is_display_none() {
debug!("{:?} style is display:none - clearing data from descendants.",
element);
unsafe { clear_descendant_data(element); }
}
// Inform any paint worklets of changed style, to speculatively
// evaluate the worklet code. In the case that the size hasn't changed,
// this will result in increased concurrency between script and layout.
notify_paint_worklet(context, data);
} else {
debug_assert!(data.has_styles());
data.set_traversed_without_styling();
}
// Now that matching and cascading is done, clear the bits corresponding to
// those operations and compute the propagated restyle hint (unless we're
// not processing invalidations, in which case don't need to propagate it
// and must avoid clearing it).
let propagated_hint = if flags.contains(UnstyledOnly) {
RestyleHint::empty()
} else {
debug_assert!(flags.for_animation_only() ||
!data.hint.has_animation_hint(),
"animation restyle hint should be handled during \
animation-only restyles");
data.hint.propagate(&flags)
};
trace!("propagated_hint={:?}, cascade_requirement={:?}, \
is_display_none={:?}, implementing_pseudo={:?}",
propagated_hint,
child_cascade_requirement,
data.styles.is_display_none(),
element.implemented_pseudo_element());
debug_assert!(element.has_current_styles_for_traversal(data, flags),
"Should have computed style or haven't yet valid computed \
style in case of animation-only restyle");
let has_dirty_descendants_for_this_restyle =
if flags.for_animation_only() {
element.has_animation_only_dirty_descendants()
} else {
element.has_dirty_descendants()
};
// Before examining each child individually, try to prove that our children
// don't need style processing. They need processing if any of the following
// conditions hold:
// * We have the dirty descendants bit.
// * We're propagating a hint.
// * This is the initial style.
// * We generated a reconstruct hint on self (which could mean that we
// switched from display:none to something else, which means the children
// need initial styling).
// * This is a servo non-incremental traversal.
//
// Additionally, there are a few scenarios where we avoid traversing the
// subtree even if descendant styles are out of date. These cases are
// enumerated in should_cull_subtree().
let mut traverse_children = has_dirty_descendants_for_this_restyle ||
!propagated_hint.is_empty() ||
!child_cascade_requirement.can_skip_cascade() ||
context.thread_local.is_initial_style() ||
data.reconstructed_self() ||
is_servo_nonincremental_layout();
traverse_children = traverse_children &&
!traversal.should_cull_subtree(context, element, &data);
// Examine our children, and enqueue the appropriate ones for traversal.
if traverse_children {
note_children::<E, D, F>(
context,
element,
data,
propagated_hint,
child_cascade_requirement,
data.reconstructed_self_or_ancestor(),
note_child
);
}
// FIXME(bholley): Make these assertions pass for servo.
if cfg!(feature = "gecko") && cfg!(debug_assertions) && data.styles.is_display_none() {
debug_assert!(!element.has_dirty_descendants());
debug_assert!(!element.has_animation_only_dirty_descendants());
}
debug_assert!(flags.for_animation_only() ||
!flags.contains(ClearDirtyBits) ||
!element.has_animation_only_dirty_descendants(),
"Should have cleared animation bits already");
clear_state_after_traversing(element, data, flags);
context.thread_local.end_element(element);
}
fn clear_state_after_traversing<E>(
element: E,
data: &mut ElementData,
flags: TraversalFlags
)
where
E: TElement,
{
use traversal_flags::*;
// If we are in a forgetful traversal, drop the existing restyle
// data here, since we won't need to perform a post-traversal to pick up
// any change hints.
if flags.contains(Forgetful) {
data.clear_restyle_flags_and_damage();
}
// Clear dirty bits as appropriate.
if flags.for_animation_only() {
if flags.intersects(ClearDirtyBits | ClearAnimationOnlyDirtyDescendants) {
unsafe { element.unset_animation_only_dirty_descendants(); }
}
} else if flags.contains(ClearDirtyBits) {
// The animation traversal happens first, so we don't need to guard against
// clearing the animation bit on the regular traversal.
unsafe { element.clear_dirty_bits(); }
}
}
fn compute_style<E>(
traversal_data: &PerLevelTraversalData,
context: &mut StyleContext<E>,
element: E,
data: &mut ElementData
) -> ChildCascadeRequirement
where
E: TElement,
{
use data::RestyleKind::*;
context.thread_local.statistics.elements_styled += 1;
let kind = data.restyle_kind(context.shared);
debug!("compute_style: {:?} (kind={:?})", element, kind);
if data.has_styles() {
data.set_restyled();
}
let mut important_rules_changed = false;
let new_styles = match kind {
MatchAndCascade => {
debug_assert!(!context.shared.traversal_flags.for_animation_only(),
"MatchAndCascade shouldn't be processed during \
animation-only traversal");
// Ensure the bloom filter is up to date.
context.thread_local.bloom_filter
.insert_parents_recovering(element,
traversal_data.current_dom_depth);
context.thread_local.bloom_filter.assert_complete(element);
debug_assert_eq!(
context.thread_local.bloom_filter.matching_depth(),
traversal_data.current_dom_depth
);
// This is only relevant for animations as of right now.
important_rules_changed = true;
let mut target = StyleSharingTarget::new(element);
// Now that our bloom filter is set up, try the style sharing
// cache.
match target.share_style_if_possible(context) {
Some(shared_styles) => {
context.thread_local.statistics.styles_shared += 1;
shared_styles
}
None => {
context.thread_local.statistics.elements_matched += 1;
// Perform the matching and cascading.
let new_styles = {
let mut resolver =
StyleResolverForElement::new(
element,
context,
RuleInclusion::All,
PseudoElementResolution::IfApplicable
);
resolver.resolve_style_with_default_parents()
};
context.thread_local.sharing_cache.insert_if_possible(
&element,
&new_styles.primary,
Some(&mut target),
traversal_data.current_dom_depth,
);
new_styles
}
}
}
CascadeWithReplacements(flags) => {
// Skipping full matching, load cascade inputs from previous values.
let mut cascade_inputs =
ElementCascadeInputs::new_from_element_data(data);
important_rules_changed =
element.replace_rules(flags, context, &mut cascade_inputs);
let mut resolver =
StyleResolverForElement::new(
element,
context,
RuleInclusion::All,
PseudoElementResolution::IfApplicable
);
resolver.cascade_styles_with_default_parents(cascade_inputs)
}
CascadeOnly => {
// Skipping full matching, load cascade inputs from previous values.
let cascade_inputs =
ElementCascadeInputs::new_from_element_data(data);
let new_styles = {
let mut resolver =
StyleResolverForElement::new(
element,
context,
RuleInclusion::All,
PseudoElementResolution::IfApplicable
);
resolver.cascade_styles_with_default_parents(cascade_inputs)
};
// Insert into the cache, but only if this style isn't reused from a
// sibling or cousin. Otherwise, recascading a bunch of identical
// elements would unnecessarily flood the cache with identical entries.
//
// This is analagous to the obvious "don't insert an element that just
// got a hit in the style sharing cache" behavior in the MatchAndCascade
// handling above.
//
// Note that, for the MatchAndCascade path, we still insert elements that
// shared styles via the rule node, because we know that there's something
// different about them that caused them to miss the sharing cache before
// selector matching. If we didn't, we would still end up with the same
// number of eventual styles, but would potentially miss out on various
// opportunities for skipping selector matching, which could hurt
// performance.
if !new_styles.primary.reused_via_rule_node {
context.thread_local.sharing_cache.insert_if_possible(
&element,
&new_styles.primary,
None,
traversal_data.current_dom_depth,
);
}
new_styles
}
};
element.finish_restyle(
context,
data,
new_styles,
important_rules_changed
)
}
#[cfg(feature = "servo")]
fn notify_paint_worklet<E>(context: &StyleContext<E>, data: &ElementData)
where
E: TElement,
{
// We speculatively evaluate any paint worklets during styling.
// This allows us to run paint worklets in parallel with style and layout.
// Note that this is wasted effort if the size of the node has
// changed, but in may cases it won't have.
if let Some(ref values) = data.styles.primary {
for image in &values.get_background().background_image.0 {
let (name, arguments) = match *image {
Either::Second(Image::PaintWorklet(ref worklet)) => (&worklet.name, &worklet.arguments),
_ => continue,
};
let painter = match context.shared.registered_speculative_painters.get(name) {
Some(painter) => painter,
None => continue,
};
let properties = painter.properties().iter()
.filter_map(|(name, id)| id.as_shorthand().err().map(|id| (name, id)))
.map(|(name, id)| (name.clone(), values.computed_value_to_string(id)))
.collect();
let arguments = arguments.iter()
.map(|argument| argument.to_css_string())
.collect();
debug!("Notifying paint worklet {}.", painter.name());
painter.speculatively_draw_a_paint_image(properties, arguments);
}
}
}
#[cfg(feature = "gecko")]
fn notify_paint_worklet<E>(_context: &StyleContext<E>, _data: &ElementData)
where
E: TElement,
{
// The CSS paint API is Servo-only at the moment
}
fn note_children<E, D, F>(
context: &mut StyleContext<E>,
element: E,
data: &ElementData,
propagated_hint: RestyleHint,
cascade_requirement: ChildCascadeRequirement,
reconstructed_ancestor: bool,
mut note_child: F,
)
where
E: TElement,
D: DomTraversal<E>,
F: FnMut(E::ConcreteNode),
{
trace!("note_children: {:?}", element);
let flags = context.shared.traversal_flags;
let is_initial_style = context.thread_local.is_initial_style();
// Loop over all the traversal children.
for child_node in element.as_node().traversal_children() {
let child = match child_node.as_element() {
Some(el) => el,
None => {
if is_servo_nonincremental_layout() ||
D::text_node_needs_traversal(child_node, data) {
note_child(child_node);
}
continue;
},
};
let mut child_data = child.mutate_data();
let mut child_data = child_data.as_mut().map(|d| &mut **d);
trace!(" > {:?} -> {:?} + {:?}, pseudo: {:?}",
child,
child_data.as_ref().map(|d| d.hint),
propagated_hint,
child.implemented_pseudo_element());
if let Some(ref mut child_data) = child_data {
// Propagate the parent restyle hint, that may make us restyle the whole
// subtree.
child_data.set_reconstructed_ancestor(reconstructed_ancestor);
let mut child_hint = propagated_hint;
match cascade_requirement {
ChildCascadeRequirement::CanSkipCascade => {}
ChildCascadeRequirement::MustCascadeDescendants => {
child_hint |= RECASCADE_SELF | RECASCADE_DESCENDANTS;
}
ChildCascadeRequirement::MustCascadeChildrenIfInheritResetStyle => {
use properties::computed_value_flags::INHERITS_RESET_STYLE;
if child_data.styles.primary().flags.contains(INHERITS_RESET_STYLE) {
child_hint |= RECASCADE_SELF;
}
}
ChildCascadeRequirement::MustCascadeChildren => {
child_hint |= RECASCADE_SELF;
}
}
child_data.hint.insert(child_hint);
// Handle element snapshots and invalidation of descendants and siblings
// as needed.
//
// NB: This will be a no-op if there's no snapshot.
child_data.invalidate_style_if_needed(
child,
&context.shared,
Some(&context.thread_local.stack_limit_checker)
);
}
if D::element_needs_traversal(child, flags, child_data.map(|d| &*d), Some(data)) {
note_child(child_node);
// Set the dirty descendants bit on the parent as needed, so that we
// can find elements during the post-traversal.
//
// Note that these bits may be cleared again at the bottom of
// recalc_style_at if requested by the caller.
if !is_initial_style {
if flags.for_animation_only() {
unsafe { element.set_animation_only_dirty_descendants(); }
} else {
unsafe { element.set_dirty_descendants(); }
}
}
}
}
}
/// Clear style data for all the subtree under `root` (but not for root itself).
///
/// We use a list to avoid unbounded recursion, which we need to avoid in the
/// parallel traversal because the rayon stacks are small.
pub unsafe fn clear_descendant_data<E>(root: E)
where
E: TElement,
{
let mut parents = SmallVec::<[E; 32]>::new();
parents.push(root);
while let Some(p) = parents.pop() {
for kid in p.as_node().traversal_children() {
if let Some(kid) = kid.as_element() {
// We maintain an invariant that, if an element has data, all its
// ancestors have data as well.
//
// By consequence, any element without data has no descendants with
// data.
if kid.get_data().is_some() {
kid.clear_data();
parents.push(kid);
}
}
}
}
// Make sure not to clear NODE_NEEDS_FRAME on the root.
root.clear_descendant_bits();
}