mirror of
https://github.com/servo/servo.git
synced 2025-07-01 04:23:39 +01:00
3087 lines
89 KiB
Rust
3087 lines
89 KiB
Rust
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
|
||
// file at the top-level directory of this distribution and at
|
||
// http://rust-lang.org/COPYRIGHT.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||
// option. This file may not be copied, modified, or distributed
|
||
// except according to those terms.
|
||
|
||
use self::Entry::*;
|
||
use self::VacantEntryState::*;
|
||
|
||
use std::borrow::Borrow;
|
||
use std::cmp::max;
|
||
use std::fmt::{self, Debug};
|
||
#[allow(deprecated)]
|
||
use std::hash::{BuildHasher, Hash};
|
||
use std::iter::FromIterator;
|
||
use std::mem::{self, replace};
|
||
use std::ops::{Deref, Index};
|
||
|
||
use super::table::BucketState::{Empty, Full};
|
||
use super::table::{self, Bucket, EmptyBucket, FullBucket, FullBucketMut, RawTable, SafeHash};
|
||
|
||
use crate::FailedAllocationError;
|
||
|
||
const MIN_NONZERO_RAW_CAPACITY: usize = 32; // must be a power of two
|
||
|
||
/// The default behavior of HashMap implements a maximum load factor of 90.9%.
|
||
#[derive(Clone)]
|
||
struct DefaultResizePolicy;
|
||
|
||
impl DefaultResizePolicy {
|
||
fn new() -> DefaultResizePolicy {
|
||
DefaultResizePolicy
|
||
}
|
||
|
||
/// A hash map's "capacity" is the number of elements it can hold without
|
||
/// being resized. Its "raw capacity" is the number of slots required to
|
||
/// provide that capacity, accounting for maximum loading. The raw capacity
|
||
/// is always zero or a power of two.
|
||
#[inline]
|
||
fn raw_capacity(&self, len: usize) -> usize {
|
||
if len == 0 {
|
||
0
|
||
} else {
|
||
// 1. Account for loading: `raw_capacity >= len * 1.1`.
|
||
// 2. Ensure it is a power of two.
|
||
// 3. Ensure it is at least the minimum size.
|
||
let mut raw_cap = len * 11 / 10;
|
||
assert!(raw_cap >= len, "raw_cap overflow");
|
||
raw_cap = raw_cap
|
||
.checked_next_power_of_two()
|
||
.expect("raw_capacity overflow");
|
||
raw_cap = max(MIN_NONZERO_RAW_CAPACITY, raw_cap);
|
||
raw_cap
|
||
}
|
||
}
|
||
|
||
/// The capacity of the given raw capacity.
|
||
#[inline]
|
||
fn capacity(&self, raw_cap: usize) -> usize {
|
||
// This doesn't have to be checked for overflow since allocation size
|
||
// in bytes will overflow earlier than multiplication by 10.
|
||
//
|
||
// As per https://github.com/rust-lang/rust/pull/30991 this is updated
|
||
// to be: (raw_cap * den + den - 1) / num
|
||
(raw_cap * 10 + 10 - 1) / 11
|
||
}
|
||
}
|
||
|
||
// The main performance trick in this hashmap is called Robin Hood Hashing.
|
||
// It gains its excellent performance from one essential operation:
|
||
//
|
||
// If an insertion collides with an existing element, and that element's
|
||
// "probe distance" (how far away the element is from its ideal location)
|
||
// is higher than how far we've already probed, swap the elements.
|
||
//
|
||
// This massively lowers variance in probe distance, and allows us to get very
|
||
// high load factors with good performance. The 90% load factor I use is rather
|
||
// conservative.
|
||
//
|
||
// > Why a load factor of approximately 90%?
|
||
//
|
||
// In general, all the distances to initial buckets will converge on the mean.
|
||
// At a load factor of α, the odds of finding the target bucket after k
|
||
// probes is approximately 1-α^k. If we set this equal to 50% (since we converge
|
||
// on the mean) and set k=8 (64-byte cache line / 8-byte hash), α=0.92. I round
|
||
// this down to make the math easier on the CPU and avoid its FPU.
|
||
// Since on average we start the probing in the middle of a cache line, this
|
||
// strategy pulls in two cache lines of hashes on every lookup. I think that's
|
||
// pretty good, but if you want to trade off some space, it could go down to one
|
||
// cache line on average with an α of 0.84.
|
||
//
|
||
// > Wait, what? Where did you get 1-α^k from?
|
||
//
|
||
// On the first probe, your odds of a collision with an existing element is α.
|
||
// The odds of doing this twice in a row is approximately α^2. For three times,
|
||
// α^3, etc. Therefore, the odds of colliding k times is α^k. The odds of NOT
|
||
// colliding after k tries is 1-α^k.
|
||
//
|
||
// The paper from 1986 cited below mentions an implementation which keeps track
|
||
// of the distance-to-initial-bucket histogram. This approach is not suitable
|
||
// for modern architectures because it requires maintaining an internal data
|
||
// structure. This allows very good first guesses, but we are most concerned
|
||
// with guessing entire cache lines, not individual indexes. Furthermore, array
|
||
// accesses are no longer linear and in one direction, as we have now. There
|
||
// is also memory and cache pressure that this would entail that would be very
|
||
// difficult to properly see in a microbenchmark.
|
||
//
|
||
// ## Future Improvements (FIXME!)
|
||
//
|
||
// Allow the load factor to be changed dynamically and/or at initialization.
|
||
//
|
||
// Also, would it be possible for us to reuse storage when growing the
|
||
// underlying table? This is exactly the use case for 'realloc', and may
|
||
// be worth exploring.
|
||
//
|
||
// ## Future Optimizations (FIXME!)
|
||
//
|
||
// Another possible design choice that I made without any real reason is
|
||
// parameterizing the raw table over keys and values. Technically, all we need
|
||
// is the size and alignment of keys and values, and the code should be just as
|
||
// efficient (well, we might need one for power-of-two size and one for not...).
|
||
// This has the potential to reduce code bloat in rust executables, without
|
||
// really losing anything except 4 words (key size, key alignment, val size,
|
||
// val alignment) which can be passed in to every call of a `RawTable` function.
|
||
// This would definitely be an avenue worth exploring if people start complaining
|
||
// about the size of rust executables.
|
||
//
|
||
// Annotate exceedingly likely branches in `table::make_hash`
|
||
// and `search_hashed` to reduce instruction cache pressure
|
||
// and mispredictions once it becomes possible (blocked on issue #11092).
|
||
//
|
||
// Shrinking the table could simply reallocate in place after moving buckets
|
||
// to the first half.
|
||
//
|
||
// The growth algorithm (fragment of the Proof of Correctness)
|
||
// --------------------
|
||
//
|
||
// The growth algorithm is basically a fast path of the naive reinsertion-
|
||
// during-resize algorithm. Other paths should never be taken.
|
||
//
|
||
// Consider growing a robin hood hashtable of capacity n. Normally, we do this
|
||
// by allocating a new table of capacity `2n`, and then individually reinsert
|
||
// each element in the old table into the new one. This guarantees that the
|
||
// new table is a valid robin hood hashtable with all the desired statistical
|
||
// properties. Remark that the order we reinsert the elements in should not
|
||
// matter. For simplicity and efficiency, we will consider only linear
|
||
// reinsertions, which consist of reinserting all elements in the old table
|
||
// into the new one by increasing order of index. However we will not be
|
||
// starting our reinsertions from index 0 in general. If we start from index
|
||
// i, for the purpose of reinsertion we will consider all elements with real
|
||
// index j < i to have virtual index n + j.
|
||
//
|
||
// Our hash generation scheme consists of generating a 64-bit hash and
|
||
// truncating the most significant bits. When moving to the new table, we
|
||
// simply introduce a new bit to the front of the hash. Therefore, if an
|
||
// elements has ideal index i in the old table, it can have one of two ideal
|
||
// locations in the new table. If the new bit is 0, then the new ideal index
|
||
// is i. If the new bit is 1, then the new ideal index is n + i. Intuitively,
|
||
// we are producing two independent tables of size n, and for each element we
|
||
// independently choose which table to insert it into with equal probability.
|
||
// However the rather than wrapping around themselves on overflowing their
|
||
// indexes, the first table overflows into the first, and the first into the
|
||
// second. Visually, our new table will look something like:
|
||
//
|
||
// [yy_xxx_xxxx_xxx|xx_yyy_yyyy_yyy]
|
||
//
|
||
// Where x's are elements inserted into the first table, y's are elements
|
||
// inserted into the second, and _'s are empty sections. We now define a few
|
||
// key concepts that we will use later. Note that this is a very abstract
|
||
// perspective of the table. A real resized table would be at least half
|
||
// empty.
|
||
//
|
||
// Theorem: A linear robin hood reinsertion from the first ideal element
|
||
// produces identical results to a linear naive reinsertion from the same
|
||
// element.
|
||
//
|
||
// FIXME(Gankro, pczarn): review the proof and put it all in a separate README.md
|
||
//
|
||
// Adaptive early resizing
|
||
// ----------------------
|
||
// To protect against degenerate performance scenarios (including DOS attacks),
|
||
// the implementation includes an adaptive behavior that can resize the map
|
||
// early (before its capacity is exceeded) when suspiciously long probe sequences
|
||
// are encountered.
|
||
//
|
||
// With this algorithm in place it would be possible to turn a CPU attack into
|
||
// a memory attack due to the aggressive resizing. To prevent that the
|
||
// adaptive behavior only triggers when the map is at least half full.
|
||
// This reduces the effectiveness of the algorithm but also makes it completely safe.
|
||
//
|
||
// The previous safety measure also prevents degenerate interactions with
|
||
// really bad quality hash algorithms that can make normal inputs look like a
|
||
// DOS attack.
|
||
//
|
||
const DISPLACEMENT_THRESHOLD: usize = 128;
|
||
//
|
||
// The threshold of 128 is chosen to minimize the chance of exceeding it.
|
||
// In particular, we want that chance to be less than 10^-8 with a load of 90%.
|
||
// For displacement, the smallest constant that fits our needs is 90,
|
||
// so we round that up to 128.
|
||
//
|
||
// At a load factor of α, the odds of finding the target bucket after exactly n
|
||
// unsuccessful probes[1] are
|
||
//
|
||
// Pr_α{displacement = n} =
|
||
// (1 - α) / α * ∑_{k≥1} e^(-kα) * (kα)^(k+n) / (k + n)! * (1 - kα / (k + n + 1))
|
||
//
|
||
// We use this formula to find the probability of triggering the adaptive behavior
|
||
//
|
||
// Pr_0.909{displacement > 128} = 1.601 * 10^-11
|
||
//
|
||
// 1. Alfredo Viola (2005). Distributional analysis of Robin Hood linear probing
|
||
// hashing with buckets.
|
||
|
||
/// A hash map implemented with linear probing and Robin Hood bucket stealing.
|
||
///
|
||
/// By default, `HashMap` uses a hashing algorithm selected to provide
|
||
/// resistance against HashDoS attacks. The algorithm is randomly seeded, and a
|
||
/// reasonable best-effort is made to generate this seed from a high quality,
|
||
/// secure source of randomness provided by the host without blocking the
|
||
/// program. Because of this, the randomness of the seed depends on the output
|
||
/// quality of the system's random number generator when the seed is created.
|
||
/// In particular, seeds generated when the system's entropy pool is abnormally
|
||
/// low such as during system boot may be of a lower quality.
|
||
///
|
||
/// The default hashing algorithm is currently SipHash 1-3, though this is
|
||
/// subject to change at any point in the future. While its performance is very
|
||
/// competitive for medium sized keys, other hashing algorithms will outperform
|
||
/// it for small keys such as integers as well as large keys such as long
|
||
/// strings, though those algorithms will typically *not* protect against
|
||
/// attacks such as HashDoS.
|
||
///
|
||
/// The hashing algorithm can be replaced on a per-`HashMap` basis using the
|
||
/// [`default`], [`with_hasher`], and [`with_capacity_and_hasher`] methods. Many
|
||
/// alternative algorithms are available on crates.io, such as the [`fnv`] crate.
|
||
///
|
||
/// It is required that the keys implement the [`Eq`] and [`Hash`] traits, although
|
||
/// this can frequently be achieved by using `#[derive(PartialEq, Eq, Hash)]`.
|
||
/// If you implement these yourself, it is important that the following
|
||
/// property holds:
|
||
///
|
||
/// ```text
|
||
/// k1 == k2 -> hash(k1) == hash(k2)
|
||
/// ```
|
||
///
|
||
/// In other words, if two keys are equal, their hashes must be equal.
|
||
///
|
||
/// It is a logic error for a key to be modified in such a way that the key's
|
||
/// hash, as determined by the [`Hash`] trait, or its equality, as determined by
|
||
/// the [`Eq`] trait, changes while it is in the map. This is normally only
|
||
/// possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code.
|
||
///
|
||
/// Relevant papers/articles:
|
||
///
|
||
/// 1. Pedro Celis. ["Robin Hood Hashing"](https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf)
|
||
/// 2. Emmanuel Goossaert. ["Robin Hood
|
||
/// hashing"](http://codecapsule.com/2013/11/11/robin-hood-hashing/)
|
||
/// 3. Emmanuel Goossaert. ["Robin Hood hashing: backward shift
|
||
/// deletion"](http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/)
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// // type inference lets us omit an explicit type signature (which
|
||
/// // would be `HashMap<&str, &str>` in this example).
|
||
/// let mut book_reviews = HashMap::new();
|
||
///
|
||
/// // review some books.
|
||
/// book_reviews.insert("Adventures of Huckleberry Finn", "My favorite book.");
|
||
/// book_reviews.insert("Grimms' Fairy Tales", "Masterpiece.");
|
||
/// book_reviews.insert("Pride and Prejudice", "Very enjoyable.");
|
||
/// book_reviews.insert("The Adventures of Sherlock Holmes", "Eye lyked it alot.");
|
||
///
|
||
/// // check for a specific one.
|
||
/// if !book_reviews.contains_key("Les Misérables") {
|
||
/// println!("We've got {} reviews, but Les Misérables ain't one.",
|
||
/// book_reviews.len());
|
||
/// }
|
||
///
|
||
/// // oops, this review has a lot of spelling mistakes, let's delete it.
|
||
/// book_reviews.remove("The Adventures of Sherlock Holmes");
|
||
///
|
||
/// // look up the values associated with some keys.
|
||
/// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"];
|
||
/// for book in &to_find {
|
||
/// match book_reviews.get(book) {
|
||
/// Some(review) => println!("{}: {}", book, review),
|
||
/// None => println!("{} is unreviewed.", book)
|
||
/// }
|
||
/// }
|
||
///
|
||
/// // iterate over everything.
|
||
/// for (book, review) in &book_reviews {
|
||
/// println!("{}: \"{}\"", book, review);
|
||
/// }
|
||
/// ```
|
||
///
|
||
/// `HashMap` also implements an [`Entry API`](#method.entry), which allows
|
||
/// for more complex methods of getting, setting, updating and removing keys and
|
||
/// their values:
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// // type inference lets us omit an explicit type signature (which
|
||
/// // would be `HashMap<&str, u8>` in this example).
|
||
/// let mut player_stats = HashMap::new();
|
||
///
|
||
/// fn random_stat_buff() -> u8 {
|
||
/// // could actually return some random value here - let's just return
|
||
/// // some fixed value for now
|
||
/// 42
|
||
/// }
|
||
///
|
||
/// // insert a key only if it doesn't already exist
|
||
/// player_stats.entry("health").or_insert(100);
|
||
///
|
||
/// // insert a key using a function that provides a new value only if it
|
||
/// // doesn't already exist
|
||
/// player_stats.entry("defence").or_insert_with(random_stat_buff);
|
||
///
|
||
/// // update a key, guarding against the key possibly not being set
|
||
/// let stat = player_stats.entry("attack").or_insert(100);
|
||
/// *stat += random_stat_buff();
|
||
/// ```
|
||
///
|
||
/// The easiest way to use `HashMap` with a custom type as key is to derive [`Eq`] and [`Hash`].
|
||
/// We must also derive [`PartialEq`].
|
||
///
|
||
/// [`Eq`]: ../../std/cmp/trait.Eq.html
|
||
/// [`Hash`]: ../../std/hash/trait.Hash.html
|
||
/// [`PartialEq`]: ../../std/cmp/trait.PartialEq.html
|
||
/// [`RefCell`]: ../../std/cell/struct.RefCell.html
|
||
/// [`Cell`]: ../../std/cell/struct.Cell.html
|
||
/// [`default`]: #method.default
|
||
/// [`with_hasher`]: #method.with_hasher
|
||
/// [`with_capacity_and_hasher`]: #method.with_capacity_and_hasher
|
||
/// [`fnv`]: https://crates.io/crates/fnv
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// #[derive(Hash, Eq, PartialEq, Debug)]
|
||
/// struct Viking {
|
||
/// name: String,
|
||
/// country: String,
|
||
/// }
|
||
///
|
||
/// impl Viking {
|
||
/// /// Create a new Viking.
|
||
/// fn new(name: &str, country: &str) -> Viking {
|
||
/// Viking { name: name.to_string(), country: country.to_string() }
|
||
/// }
|
||
/// }
|
||
///
|
||
/// // Use a HashMap to store the vikings' health points.
|
||
/// let mut vikings = HashMap::new();
|
||
///
|
||
/// vikings.insert(Viking::new("Einar", "Norway"), 25);
|
||
/// vikings.insert(Viking::new("Olaf", "Denmark"), 24);
|
||
/// vikings.insert(Viking::new("Harald", "Iceland"), 12);
|
||
///
|
||
/// // Use derived implementation to print the status of the vikings.
|
||
/// for (viking, health) in &vikings {
|
||
/// println!("{:?} has {} hp", viking, health);
|
||
/// }
|
||
/// ```
|
||
///
|
||
/// A `HashMap` with fixed list of elements can be initialized from an array:
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// fn main() {
|
||
/// let timber_resources: HashMap<&str, i32> =
|
||
/// [("Norway", 100),
|
||
/// ("Denmark", 50),
|
||
/// ("Iceland", 10)]
|
||
/// .iter().cloned().collect();
|
||
/// // use the values stored in map
|
||
/// }
|
||
/// ```
|
||
|
||
#[derive(Clone)]
|
||
pub struct HashMap<K, V, S = RandomState> {
|
||
// All hashes are keyed on these values, to prevent hash collision attacks.
|
||
hash_builder: S,
|
||
|
||
table: RawTable<K, V>,
|
||
|
||
resize_policy: DefaultResizePolicy,
|
||
}
|
||
|
||
/// Search for a pre-hashed key.
|
||
#[inline]
|
||
fn search_hashed<K, V, M, F>(table: M, hash: SafeHash, mut is_match: F) -> InternalEntry<K, V, M>
|
||
where
|
||
M: Deref<Target = RawTable<K, V>>,
|
||
F: FnMut(&K) -> bool,
|
||
{
|
||
// This is the only function where capacity can be zero. To avoid
|
||
// undefined behavior when Bucket::new gets the raw bucket in this
|
||
// case, immediately return the appropriate search result.
|
||
if table.capacity() == 0 {
|
||
return InternalEntry::TableIsEmpty;
|
||
}
|
||
|
||
let size = table.size();
|
||
let mut probe = Bucket::new(table, hash);
|
||
let mut displacement = 0;
|
||
|
||
loop {
|
||
let full = match probe.peek() {
|
||
Empty(bucket) => {
|
||
// Found a hole!
|
||
return InternalEntry::Vacant {
|
||
hash,
|
||
elem: NoElem(bucket, displacement),
|
||
};
|
||
},
|
||
Full(bucket) => bucket,
|
||
};
|
||
|
||
let probe_displacement = full.displacement();
|
||
|
||
if probe_displacement < displacement {
|
||
// Found a luckier bucket than me.
|
||
// We can finish the search early if we hit any bucket
|
||
// with a lower distance to initial bucket than we've probed.
|
||
return InternalEntry::Vacant {
|
||
hash,
|
||
elem: NeqElem(full, probe_displacement),
|
||
};
|
||
}
|
||
|
||
// If the hash doesn't match, it can't be this one..
|
||
if hash == full.hash() {
|
||
// If the key doesn't match, it can't be this one..
|
||
if is_match(full.read().0) {
|
||
return InternalEntry::Occupied { elem: full };
|
||
}
|
||
}
|
||
displacement += 1;
|
||
probe = full.next();
|
||
debug_assert!(displacement <= size);
|
||
}
|
||
}
|
||
|
||
fn pop_internal<K, V>(starting_bucket: FullBucketMut<K, V>) -> (K, V, &mut RawTable<K, V>) {
|
||
let (empty, retkey, retval) = starting_bucket.take();
|
||
let mut gap = match empty.gap_peek() {
|
||
Ok(b) => b,
|
||
Err(b) => return (retkey, retval, b.into_table()),
|
||
};
|
||
|
||
while gap.full().displacement() != 0 {
|
||
gap = match gap.shift() {
|
||
Ok(b) => b,
|
||
Err(b) => {
|
||
return (retkey, retval, b.into_table());
|
||
},
|
||
};
|
||
}
|
||
|
||
// Now we've done all our shifting. Return the value we grabbed earlier.
|
||
(retkey, retval, gap.into_table())
|
||
}
|
||
|
||
/// Perform robin hood bucket stealing at the given `bucket`. You must
|
||
/// also pass that bucket's displacement so we don't have to recalculate it.
|
||
///
|
||
/// `hash`, `key`, and `val` are the elements to "robin hood" into the hashtable.
|
||
fn robin_hood<'a, K: 'a, V: 'a>(
|
||
bucket: FullBucketMut<'a, K, V>,
|
||
mut displacement: usize,
|
||
mut hash: SafeHash,
|
||
mut key: K,
|
||
mut val: V,
|
||
) -> FullBucketMut<'a, K, V> {
|
||
let size = bucket.table().size();
|
||
let raw_capacity = bucket.table().capacity();
|
||
// There can be at most `size - dib` buckets to displace, because
|
||
// in the worst case, there are `size` elements and we already are
|
||
// `displacement` buckets away from the initial one.
|
||
let idx_end = (bucket.index() + size - bucket.displacement()) % raw_capacity;
|
||
// Save the *starting point*.
|
||
let mut bucket = bucket.stash();
|
||
|
||
loop {
|
||
let (old_hash, old_key, old_val) = bucket.replace(hash, key, val);
|
||
hash = old_hash;
|
||
key = old_key;
|
||
val = old_val;
|
||
|
||
loop {
|
||
displacement += 1;
|
||
let probe = bucket.next();
|
||
debug_assert_ne!(probe.index(), idx_end);
|
||
|
||
let full_bucket = match probe.peek() {
|
||
Empty(bucket) => {
|
||
// Found a hole!
|
||
let bucket = bucket.put(hash, key, val);
|
||
// Now that it's stolen, just read the value's pointer
|
||
// right out of the table! Go back to the *starting point*.
|
||
//
|
||
// This use of `into_table` is misleading. It turns the
|
||
// bucket, which is a FullBucket on top of a
|
||
// FullBucketMut, into just one FullBucketMut. The "table"
|
||
// refers to the inner FullBucketMut in this context.
|
||
return bucket.into_table();
|
||
},
|
||
Full(bucket) => bucket,
|
||
};
|
||
|
||
let probe_displacement = full_bucket.displacement();
|
||
|
||
bucket = full_bucket;
|
||
|
||
// Robin hood! Steal the spot.
|
||
if probe_displacement < displacement {
|
||
displacement = probe_displacement;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<K, V, S> HashMap<K, V, S>
|
||
where
|
||
K: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
fn make_hash<X: ?Sized>(&self, x: &X) -> SafeHash
|
||
where
|
||
X: Hash,
|
||
{
|
||
table::make_hash(&self.hash_builder, x)
|
||
}
|
||
|
||
/// Search for a key, yielding the index if it's found in the hashtable.
|
||
/// If you already have the hash for the key lying around, use
|
||
/// search_hashed.
|
||
#[inline]
|
||
fn search<'a, Q: ?Sized>(&'a self, q: &Q) -> InternalEntry<K, V, &'a RawTable<K, V>>
|
||
where
|
||
K: Borrow<Q>,
|
||
Q: Eq + Hash,
|
||
{
|
||
let hash = self.make_hash(q);
|
||
search_hashed(&self.table, hash, |k| q.eq(k.borrow()))
|
||
}
|
||
|
||
#[inline]
|
||
fn search_mut<'a, Q: ?Sized>(&'a mut self, q: &Q) -> InternalEntry<K, V, &'a mut RawTable<K, V>>
|
||
where
|
||
K: Borrow<Q>,
|
||
Q: Eq + Hash,
|
||
{
|
||
let hash = self.make_hash(q);
|
||
search_hashed(&mut self.table, hash, |k| q.eq(k.borrow()))
|
||
}
|
||
|
||
// The caller should ensure that invariants by Robin Hood Hashing hold
|
||
// and that there's space in the underlying table.
|
||
fn insert_hashed_ordered(&mut self, hash: SafeHash, k: K, v: V) {
|
||
let mut buckets = Bucket::new(&mut self.table, hash);
|
||
let start_index = buckets.index();
|
||
|
||
loop {
|
||
// We don't need to compare hashes for value swap.
|
||
// Not even DIBs for Robin Hood.
|
||
buckets = match buckets.peek() {
|
||
Empty(empty) => {
|
||
empty.put(hash, k, v);
|
||
return;
|
||
},
|
||
Full(b) => b.into_bucket(),
|
||
};
|
||
buckets.next();
|
||
debug_assert_ne!(buckets.index(), start_index);
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<K, V, S> HashMap<K, V, S>
|
||
where
|
||
K: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
/// Creates an empty `HashMap` which will use the given hash builder to hash
|
||
/// keys.
|
||
///
|
||
/// The created map has the default initial capacity.
|
||
///
|
||
/// Warning: `hash_builder` is normally randomly generated, and
|
||
/// is designed to allow HashMaps to be resistant to attacks that
|
||
/// cause many collisions and very poor performance. Setting it
|
||
/// manually using this function can expose a DoS attack vector.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// use std::collections::hash_map::RandomState;
|
||
///
|
||
/// let s = RandomState::new();
|
||
/// let mut map = HashMap::with_hasher(s);
|
||
/// map.insert(1, 2);
|
||
/// ```
|
||
#[inline]
|
||
pub fn try_with_hasher(hash_builder: S) -> Result<HashMap<K, V, S>, FailedAllocationError> {
|
||
Ok(HashMap {
|
||
hash_builder,
|
||
resize_policy: DefaultResizePolicy::new(),
|
||
table: RawTable::new(0)?,
|
||
})
|
||
}
|
||
|
||
#[inline]
|
||
pub fn with_hasher(hash_builder: S) -> HashMap<K, V, S> {
|
||
Self::try_with_hasher(hash_builder).unwrap()
|
||
}
|
||
|
||
/// Creates an empty `HashMap` with the specified capacity, using `hash_builder`
|
||
/// to hash the keys.
|
||
///
|
||
/// The hash map will be able to hold at least `capacity` elements without
|
||
/// reallocating. If `capacity` is 0, the hash map will not allocate.
|
||
///
|
||
/// Warning: `hash_builder` is normally randomly generated, and
|
||
/// is designed to allow HashMaps to be resistant to attacks that
|
||
/// cause many collisions and very poor performance. Setting it
|
||
/// manually using this function can expose a DoS attack vector.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// use std::collections::hash_map::RandomState;
|
||
///
|
||
/// let s = RandomState::new();
|
||
/// let mut map = HashMap::with_capacity_and_hasher(10, s);
|
||
/// map.insert(1, 2);
|
||
/// ```
|
||
#[inline]
|
||
pub fn try_with_capacity_and_hasher(
|
||
capacity: usize,
|
||
hash_builder: S,
|
||
) -> Result<HashMap<K, V, S>, FailedAllocationError> {
|
||
let resize_policy = DefaultResizePolicy::new();
|
||
let raw_cap = resize_policy.raw_capacity(capacity);
|
||
Ok(HashMap {
|
||
hash_builder,
|
||
resize_policy,
|
||
table: RawTable::new(raw_cap)?,
|
||
})
|
||
}
|
||
|
||
pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> HashMap<K, V, S> {
|
||
Self::try_with_capacity_and_hasher(capacity, hash_builder).unwrap()
|
||
}
|
||
|
||
/// Returns a reference to the map's [`BuildHasher`].
|
||
///
|
||
/// [`BuildHasher`]: ../../std/hash/trait.BuildHasher.html
|
||
pub fn hasher(&self) -> &S {
|
||
&self.hash_builder
|
||
}
|
||
|
||
/// Returns the number of elements the map can hold without reallocating.
|
||
///
|
||
/// This number is a lower bound; the `HashMap<K, V>` might be able to hold
|
||
/// more, but is guaranteed to be able to hold at least this many.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// let map: HashMap<isize, isize> = HashMap::with_capacity(100);
|
||
/// assert!(map.capacity() >= 100);
|
||
/// ```
|
||
#[inline]
|
||
pub fn capacity(&self) -> usize {
|
||
self.resize_policy.capacity(self.raw_capacity())
|
||
}
|
||
|
||
/// Returns the hash map's raw capacity.
|
||
#[inline]
|
||
fn raw_capacity(&self) -> usize {
|
||
self.table.capacity()
|
||
}
|
||
|
||
/// Reserves capacity for at least `additional` more elements to be inserted
|
||
/// in the `HashMap`. The collection may reserve more space to avoid
|
||
/// frequent reallocations.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if the new allocation size overflows [`usize`].
|
||
///
|
||
/// [`usize`]: ../../std/primitive.usize.html
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// let mut map: HashMap<&str, isize> = HashMap::new();
|
||
/// map.reserve(10);
|
||
/// ```
|
||
pub fn reserve(&mut self, additional: usize) {
|
||
self.try_reserve(additional).unwrap();
|
||
}
|
||
|
||
#[inline]
|
||
pub fn try_reserve(&mut self, additional: usize) -> Result<(), FailedAllocationError> {
|
||
let remaining = self.capacity() - self.len(); // this can't overflow
|
||
if remaining < additional {
|
||
let min_cap = self
|
||
.len()
|
||
.checked_add(additional)
|
||
.expect("reserve overflow");
|
||
let raw_cap = self.resize_policy.raw_capacity(min_cap);
|
||
self.try_resize(raw_cap)?;
|
||
} else if self.table.tag() && remaining <= self.len() {
|
||
// Probe sequence is too long and table is half full,
|
||
// resize early to reduce probing length.
|
||
let new_capacity = self.table.capacity() * 2;
|
||
self.try_resize(new_capacity)?;
|
||
}
|
||
Ok(())
|
||
}
|
||
|
||
#[cold]
|
||
#[inline(never)]
|
||
fn try_resize(&mut self, new_raw_cap: usize) -> Result<(), FailedAllocationError> {
|
||
assert!(self.table.size() <= new_raw_cap);
|
||
assert!(new_raw_cap.is_power_of_two() || new_raw_cap == 0);
|
||
|
||
let mut old_table = replace(&mut self.table, RawTable::new(new_raw_cap)?);
|
||
let old_size = old_table.size();
|
||
|
||
if old_table.size() == 0 {
|
||
return Ok(());
|
||
}
|
||
|
||
let mut bucket = Bucket::head_bucket(&mut old_table);
|
||
|
||
// This is how the buckets might be laid out in memory:
|
||
// ($ marks an initialized bucket)
|
||
// ________________
|
||
// |$$$_$$$$$$_$$$$$|
|
||
//
|
||
// But we've skipped the entire initial cluster of buckets
|
||
// and will continue iteration in this order:
|
||
// ________________
|
||
// |$$$$$$_$$$$$
|
||
// ^ wrap around once end is reached
|
||
// ________________
|
||
// $$$_____________|
|
||
// ^ exit once table.size == 0
|
||
loop {
|
||
bucket = match bucket.peek() {
|
||
Full(bucket) => {
|
||
let h = bucket.hash();
|
||
let (b, k, v) = bucket.take();
|
||
self.insert_hashed_ordered(h, k, v);
|
||
if b.table().size() == 0 {
|
||
break;
|
||
}
|
||
b.into_bucket()
|
||
},
|
||
Empty(b) => b.into_bucket(),
|
||
};
|
||
bucket.next();
|
||
}
|
||
|
||
assert_eq!(self.table.size(), old_size);
|
||
Ok(())
|
||
}
|
||
|
||
/// Shrinks the capacity of the map as much as possible. It will drop
|
||
/// down as much as possible while maintaining the internal rules
|
||
/// and possibly leaving some space in accordance with the resize policy.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map: HashMap<isize, isize> = HashMap::with_capacity(100);
|
||
/// map.insert(1, 2);
|
||
/// map.insert(3, 4);
|
||
/// assert!(map.capacity() >= 100);
|
||
/// map.shrink_to_fit();
|
||
/// assert!(map.capacity() >= 2);
|
||
/// ```
|
||
pub fn shrink_to_fit(&mut self) {
|
||
self.try_shrink_to_fit().unwrap();
|
||
}
|
||
|
||
pub fn try_shrink_to_fit(&mut self) -> Result<(), FailedAllocationError> {
|
||
let new_raw_cap = self.resize_policy.raw_capacity(self.len());
|
||
if self.raw_capacity() != new_raw_cap {
|
||
let old_table = replace(&mut self.table, RawTable::new(new_raw_cap)?);
|
||
let old_size = old_table.size();
|
||
|
||
// Shrink the table. Naive algorithm for resizing:
|
||
for (h, k, v) in old_table.into_iter() {
|
||
self.insert_hashed_nocheck(h, k, v);
|
||
}
|
||
|
||
debug_assert_eq!(self.table.size(), old_size);
|
||
}
|
||
Ok(())
|
||
}
|
||
|
||
/// Insert a pre-hashed key-value pair, without first checking
|
||
/// that there's enough room in the buckets. Returns a reference to the
|
||
/// newly insert value.
|
||
///
|
||
/// If the key already exists, the hashtable will be returned untouched
|
||
/// and a reference to the existing element will be returned.
|
||
fn insert_hashed_nocheck(&mut self, hash: SafeHash, k: K, v: V) -> Option<V> {
|
||
let entry = search_hashed(&mut self.table, hash, |key| *key == k).into_entry(k);
|
||
match entry {
|
||
Some(Occupied(mut elem)) => Some(elem.insert(v)),
|
||
Some(Vacant(elem)) => {
|
||
elem.insert(v);
|
||
None
|
||
},
|
||
None => unreachable!(),
|
||
}
|
||
}
|
||
|
||
/// An iterator visiting all keys in arbitrary order.
|
||
/// The iterator element type is `&'a K`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert("a", 1);
|
||
/// map.insert("b", 2);
|
||
/// map.insert("c", 3);
|
||
///
|
||
/// for key in map.keys() {
|
||
/// println!("{}", key);
|
||
/// }
|
||
/// ```
|
||
pub fn keys(&self) -> Keys<K, V> {
|
||
Keys { inner: self.iter() }
|
||
}
|
||
|
||
/// An iterator visiting all values in arbitrary order.
|
||
/// The iterator element type is `&'a V`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert("a", 1);
|
||
/// map.insert("b", 2);
|
||
/// map.insert("c", 3);
|
||
///
|
||
/// for val in map.values() {
|
||
/// println!("{}", val);
|
||
/// }
|
||
/// ```
|
||
pub fn values(&self) -> Values<K, V> {
|
||
Values { inner: self.iter() }
|
||
}
|
||
|
||
/// An iterator visiting all values mutably in arbitrary order.
|
||
/// The iterator element type is `&'a mut V`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
///
|
||
/// map.insert("a", 1);
|
||
/// map.insert("b", 2);
|
||
/// map.insert("c", 3);
|
||
///
|
||
/// for val in map.values_mut() {
|
||
/// *val = *val + 10;
|
||
/// }
|
||
///
|
||
/// for val in map.values() {
|
||
/// println!("{}", val);
|
||
/// }
|
||
/// ```
|
||
pub fn values_mut(&mut self) -> ValuesMut<K, V> {
|
||
ValuesMut {
|
||
inner: self.iter_mut(),
|
||
}
|
||
}
|
||
|
||
/// An iterator visiting all key-value pairs in arbitrary order.
|
||
/// The iterator element type is `(&'a K, &'a V)`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert("a", 1);
|
||
/// map.insert("b", 2);
|
||
/// map.insert("c", 3);
|
||
///
|
||
/// for (key, val) in map.iter() {
|
||
/// println!("key: {} val: {}", key, val);
|
||
/// }
|
||
/// ```
|
||
pub fn iter(&self) -> Iter<K, V> {
|
||
Iter {
|
||
inner: self.table.iter(),
|
||
}
|
||
}
|
||
|
||
/// An iterator visiting all key-value pairs in arbitrary order,
|
||
/// with mutable references to the values.
|
||
/// The iterator element type is `(&'a K, &'a mut V)`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert("a", 1);
|
||
/// map.insert("b", 2);
|
||
/// map.insert("c", 3);
|
||
///
|
||
/// // Update all values
|
||
/// for (_, val) in map.iter_mut() {
|
||
/// *val *= 2;
|
||
/// }
|
||
///
|
||
/// for (key, val) in &map {
|
||
/// println!("key: {} val: {}", key, val);
|
||
/// }
|
||
/// ```
|
||
pub fn iter_mut(&mut self) -> IterMut<K, V> {
|
||
IterMut {
|
||
inner: self.table.iter_mut(),
|
||
}
|
||
}
|
||
|
||
/// Gets the given key's corresponding entry in the map for in-place manipulation.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut letters = HashMap::new();
|
||
///
|
||
/// for ch in "a short treatise on fungi".chars() {
|
||
/// let counter = letters.entry(ch).or_insert(0);
|
||
/// *counter += 1;
|
||
/// }
|
||
///
|
||
/// assert_eq!(letters[&'s'], 2);
|
||
/// assert_eq!(letters[&'t'], 3);
|
||
/// assert_eq!(letters[&'u'], 1);
|
||
/// assert_eq!(letters.get(&'y'), None);
|
||
/// ```
|
||
pub fn entry(&mut self, key: K) -> Entry<K, V> {
|
||
self.try_entry(key).unwrap()
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn try_entry(&mut self, key: K) -> Result<Entry<K, V>, FailedAllocationError> {
|
||
// Gotta resize now.
|
||
self.try_reserve(1)?;
|
||
let hash = self.make_hash(&key);
|
||
Ok(search_hashed(&mut self.table, hash, |q| q.eq(&key))
|
||
.into_entry(key)
|
||
.expect("unreachable"))
|
||
}
|
||
|
||
/// Returns the number of elements in the map.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut a = HashMap::new();
|
||
/// assert_eq!(a.len(), 0);
|
||
/// a.insert(1, "a");
|
||
/// assert_eq!(a.len(), 1);
|
||
/// ```
|
||
pub fn len(&self) -> usize {
|
||
self.table.size()
|
||
}
|
||
|
||
/// Returns true if the map contains no elements.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut a = HashMap::new();
|
||
/// assert!(a.is_empty());
|
||
/// a.insert(1, "a");
|
||
/// assert!(!a.is_empty());
|
||
/// ```
|
||
#[inline]
|
||
pub fn is_empty(&self) -> bool {
|
||
self.len() == 0
|
||
}
|
||
|
||
/// Clears the map, returning all key-value pairs as an iterator. Keeps the
|
||
/// allocated memory for reuse.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut a = HashMap::new();
|
||
/// a.insert(1, "a");
|
||
/// a.insert(2, "b");
|
||
///
|
||
/// for (k, v) in a.drain().take(1) {
|
||
/// assert!(k == 1 || k == 2);
|
||
/// assert!(v == "a" || v == "b");
|
||
/// }
|
||
///
|
||
/// assert!(a.is_empty());
|
||
/// ```
|
||
#[inline]
|
||
pub fn drain(&mut self) -> Drain<K, V>
|
||
where
|
||
K: 'static,
|
||
V: 'static,
|
||
{
|
||
Drain {
|
||
inner: self.table.drain(),
|
||
}
|
||
}
|
||
|
||
/// Clears the map, removing all key-value pairs. Keeps the allocated memory
|
||
/// for reuse.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut a = HashMap::new();
|
||
/// a.insert(1, "a");
|
||
/// a.clear();
|
||
/// assert!(a.is_empty());
|
||
/// ```
|
||
#[inline]
|
||
pub fn clear(&mut self)
|
||
where
|
||
K: 'static,
|
||
V: 'static,
|
||
{
|
||
self.drain();
|
||
}
|
||
|
||
/// Returns a reference to the value corresponding to the key.
|
||
///
|
||
/// The key may be any borrowed form of the map's key type, but
|
||
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
|
||
/// the key type.
|
||
///
|
||
/// [`Eq`]: ../../std/cmp/trait.Eq.html
|
||
/// [`Hash`]: ../../std/hash/trait.Hash.html
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert(1, "a");
|
||
/// assert_eq!(map.get(&1), Some(&"a"));
|
||
/// assert_eq!(map.get(&2), None);
|
||
/// ```
|
||
pub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V>
|
||
where
|
||
K: Borrow<Q>,
|
||
Q: Hash + Eq,
|
||
{
|
||
self.search(k)
|
||
.into_occupied_bucket()
|
||
.map(|bucket| bucket.into_refs().1)
|
||
}
|
||
|
||
/// Returns true if the map contains a value for the specified key.
|
||
///
|
||
/// The key may be any borrowed form of the map's key type, but
|
||
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
|
||
/// the key type.
|
||
///
|
||
/// [`Eq`]: ../../std/cmp/trait.Eq.html
|
||
/// [`Hash`]: ../../std/hash/trait.Hash.html
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert(1, "a");
|
||
/// assert_eq!(map.contains_key(&1), true);
|
||
/// assert_eq!(map.contains_key(&2), false);
|
||
/// ```
|
||
pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool
|
||
where
|
||
K: Borrow<Q>,
|
||
Q: Hash + Eq,
|
||
{
|
||
self.search(k).into_occupied_bucket().is_some()
|
||
}
|
||
|
||
/// Returns a mutable reference to the value corresponding to the key.
|
||
///
|
||
/// The key may be any borrowed form of the map's key type, but
|
||
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
|
||
/// the key type.
|
||
///
|
||
/// [`Eq`]: ../../std/cmp/trait.Eq.html
|
||
/// [`Hash`]: ../../std/hash/trait.Hash.html
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert(1, "a");
|
||
/// if let Some(x) = map.get_mut(&1) {
|
||
/// *x = "b";
|
||
/// }
|
||
/// assert_eq!(map[&1], "b");
|
||
/// ```
|
||
pub fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V>
|
||
where
|
||
K: Borrow<Q>,
|
||
Q: Hash + Eq,
|
||
{
|
||
self.search_mut(k)
|
||
.into_occupied_bucket()
|
||
.map(|bucket| bucket.into_mut_refs().1)
|
||
}
|
||
|
||
/// Inserts a key-value pair into the map.
|
||
///
|
||
/// If the map did not have this key present, [`None`] is returned.
|
||
///
|
||
/// If the map did have this key present, the value is updated, and the old
|
||
/// value is returned. The key is not updated, though; this matters for
|
||
/// types that can be `==` without being identical. See the [module-level
|
||
/// documentation] for more.
|
||
///
|
||
/// [`None`]: ../../std/option/enum.Option.html#variant.None
|
||
/// [module-level documentation]: index.html#insert-and-complex-keys
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// assert_eq!(map.insert(37, "a"), None);
|
||
/// assert_eq!(map.is_empty(), false);
|
||
///
|
||
/// map.insert(37, "b");
|
||
/// assert_eq!(map.insert(37, "c"), Some("b"));
|
||
/// assert_eq!(map[&37], "c");
|
||
/// ```
|
||
pub fn insert(&mut self, k: K, v: V) -> Option<V> {
|
||
self.try_insert(k, v).unwrap()
|
||
}
|
||
|
||
#[inline]
|
||
pub fn try_insert(&mut self, k: K, v: V) -> Result<Option<V>, FailedAllocationError> {
|
||
let hash = self.make_hash(&k);
|
||
self.try_reserve(1)?;
|
||
Ok(self.insert_hashed_nocheck(hash, k, v))
|
||
}
|
||
|
||
/// Removes a key from the map, returning the value at the key if the key
|
||
/// was previously in the map.
|
||
///
|
||
/// The key may be any borrowed form of the map's key type, but
|
||
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
|
||
/// the key type.
|
||
///
|
||
/// [`Eq`]: ../../std/cmp/trait.Eq.html
|
||
/// [`Hash`]: ../../std/hash/trait.Hash.html
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert(1, "a");
|
||
/// assert_eq!(map.remove(&1), Some("a"));
|
||
/// assert_eq!(map.remove(&1), None);
|
||
/// ```
|
||
pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V>
|
||
where
|
||
K: Borrow<Q>,
|
||
Q: Hash + Eq,
|
||
{
|
||
if self.table.size() == 0 {
|
||
return None;
|
||
}
|
||
|
||
self.search_mut(k)
|
||
.into_occupied_bucket()
|
||
.map(|bucket| pop_internal(bucket).1)
|
||
}
|
||
|
||
/// Retains only the elements specified by the predicate.
|
||
///
|
||
/// In other words, remove all pairs `(k, v)` such that `f(&k,&mut v)` returns `false`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map: HashMap<isize, isize> = (0..8).map(|x|(x, x*10)).collect();
|
||
/// map.retain(|&k, _| k % 2 == 0);
|
||
/// assert_eq!(map.len(), 4);
|
||
/// ```
|
||
pub fn retain<F>(&mut self, mut f: F)
|
||
where
|
||
F: FnMut(&K, &mut V) -> bool,
|
||
{
|
||
if self.table.size() == 0 {
|
||
return;
|
||
}
|
||
let mut elems_left = self.table.size();
|
||
let mut bucket = Bucket::head_bucket(&mut self.table);
|
||
bucket.prev();
|
||
let start_index = bucket.index();
|
||
while elems_left != 0 {
|
||
bucket = match bucket.peek() {
|
||
Full(mut full) => {
|
||
elems_left -= 1;
|
||
let should_remove = {
|
||
let (k, v) = full.read_mut();
|
||
!f(k, v)
|
||
};
|
||
if should_remove {
|
||
let prev_raw = full.raw();
|
||
let (_, _, t) = pop_internal(full);
|
||
Bucket::new_from(prev_raw, t)
|
||
} else {
|
||
full.into_bucket()
|
||
}
|
||
},
|
||
Empty(b) => b.into_bucket(),
|
||
};
|
||
bucket.prev(); // reverse iteration
|
||
debug_assert!(elems_left == 0 || bucket.index() != start_index);
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<K, V, S> PartialEq for HashMap<K, V, S>
|
||
where
|
||
K: Eq + Hash,
|
||
V: PartialEq,
|
||
S: BuildHasher,
|
||
{
|
||
fn eq(&self, other: &HashMap<K, V, S>) -> bool {
|
||
if self.len() != other.len() {
|
||
return false;
|
||
}
|
||
|
||
self.iter()
|
||
.all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
|
||
}
|
||
}
|
||
|
||
impl<K, V, S> Eq for HashMap<K, V, S>
|
||
where
|
||
K: Eq + Hash,
|
||
V: Eq,
|
||
S: BuildHasher,
|
||
{
|
||
}
|
||
|
||
impl<K, V, S> Debug for HashMap<K, V, S>
|
||
where
|
||
K: Eq + Hash + Debug,
|
||
V: Debug,
|
||
S: BuildHasher,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
f.debug_map().entries(self.iter()).finish()
|
||
}
|
||
}
|
||
|
||
impl<K, V, S> Default for HashMap<K, V, S>
|
||
where
|
||
K: Eq + Hash,
|
||
S: BuildHasher + Default,
|
||
{
|
||
/// Creates an empty `HashMap<K, V, S>`, with the `Default` value for the hasher.
|
||
fn default() -> HashMap<K, V, S> {
|
||
HashMap::with_hasher(Default::default())
|
||
}
|
||
}
|
||
|
||
impl<'a, K, Q: ?Sized, V, S> Index<&'a Q> for HashMap<K, V, S>
|
||
where
|
||
K: Eq + Hash + Borrow<Q>,
|
||
Q: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
type Output = V;
|
||
|
||
#[inline]
|
||
fn index(&self, index: &Q) -> &V {
|
||
self.get(index).expect("no entry found for key")
|
||
}
|
||
}
|
||
|
||
/// An iterator over the entries of a `HashMap`.
|
||
///
|
||
/// This `struct` is created by the [`iter`] method on [`HashMap`]. See its
|
||
/// documentation for more.
|
||
///
|
||
/// [`iter`]: struct.HashMap.html#method.iter
|
||
/// [`HashMap`]: struct.HashMap.html
|
||
pub struct Iter<'a, K: 'a, V: 'a> {
|
||
inner: table::Iter<'a, K, V>,
|
||
}
|
||
|
||
// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
|
||
impl<'a, K, V> Clone for Iter<'a, K, V> {
|
||
fn clone(&self) -> Iter<'a, K, V> {
|
||
Iter {
|
||
inner: self.inner.clone(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, K: Debug, V: Debug> fmt::Debug for Iter<'a, K, V> {
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
f.debug_list().entries(self.clone()).finish()
|
||
}
|
||
}
|
||
|
||
/// A mutable iterator over the entries of a `HashMap`.
|
||
///
|
||
/// This `struct` is created by the [`iter_mut`] method on [`HashMap`]. See its
|
||
/// documentation for more.
|
||
///
|
||
/// [`iter_mut`]: struct.HashMap.html#method.iter_mut
|
||
/// [`HashMap`]: struct.HashMap.html
|
||
pub struct IterMut<'a, K: 'a, V: 'a> {
|
||
inner: table::IterMut<'a, K, V>,
|
||
}
|
||
|
||
/// An owning iterator over the entries of a `HashMap`.
|
||
///
|
||
/// This `struct` is created by the [`into_iter`] method on [`HashMap`][`HashMap`]
|
||
/// (provided by the `IntoIterator` trait). See its documentation for more.
|
||
///
|
||
/// [`into_iter`]: struct.HashMap.html#method.into_iter
|
||
/// [`HashMap`]: struct.HashMap.html
|
||
pub struct IntoIter<K, V> {
|
||
pub(super) inner: table::IntoIter<K, V>,
|
||
}
|
||
|
||
/// An iterator over the keys of a `HashMap`.
|
||
///
|
||
/// This `struct` is created by the [`keys`] method on [`HashMap`]. See its
|
||
/// documentation for more.
|
||
///
|
||
/// [`keys`]: struct.HashMap.html#method.keys
|
||
/// [`HashMap`]: struct.HashMap.html
|
||
pub struct Keys<'a, K: 'a, V: 'a> {
|
||
inner: Iter<'a, K, V>,
|
||
}
|
||
|
||
// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
|
||
impl<'a, K, V> Clone for Keys<'a, K, V> {
|
||
fn clone(&self) -> Keys<'a, K, V> {
|
||
Keys {
|
||
inner: self.inner.clone(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, K: Debug, V> fmt::Debug for Keys<'a, K, V> {
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
f.debug_list().entries(self.clone()).finish()
|
||
}
|
||
}
|
||
|
||
/// An iterator over the values of a `HashMap`.
|
||
///
|
||
/// This `struct` is created by the [`values`] method on [`HashMap`]. See its
|
||
/// documentation for more.
|
||
///
|
||
/// [`values`]: struct.HashMap.html#method.values
|
||
/// [`HashMap`]: struct.HashMap.html
|
||
pub struct Values<'a, K: 'a, V: 'a> {
|
||
inner: Iter<'a, K, V>,
|
||
}
|
||
|
||
// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
|
||
impl<'a, K, V> Clone for Values<'a, K, V> {
|
||
fn clone(&self) -> Values<'a, K, V> {
|
||
Values {
|
||
inner: self.inner.clone(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, K, V: Debug> fmt::Debug for Values<'a, K, V> {
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
f.debug_list().entries(self.clone()).finish()
|
||
}
|
||
}
|
||
|
||
/// A draining iterator over the entries of a `HashMap`.
|
||
///
|
||
/// This `struct` is created by the [`drain`] method on [`HashMap`]. See its
|
||
/// documentation for more.
|
||
///
|
||
/// [`drain`]: struct.HashMap.html#method.drain
|
||
/// [`HashMap`]: struct.HashMap.html
|
||
pub struct Drain<'a, K: 'static, V: 'static> {
|
||
pub(super) inner: table::Drain<'a, K, V>,
|
||
}
|
||
|
||
/// A mutable iterator over the values of a `HashMap`.
|
||
///
|
||
/// This `struct` is created by the [`values_mut`] method on [`HashMap`]. See its
|
||
/// documentation for more.
|
||
///
|
||
/// [`values_mut`]: struct.HashMap.html#method.values_mut
|
||
/// [`HashMap`]: struct.HashMap.html
|
||
pub struct ValuesMut<'a, K: 'a, V: 'a> {
|
||
inner: IterMut<'a, K, V>,
|
||
}
|
||
|
||
enum InternalEntry<K, V, M> {
|
||
Occupied {
|
||
elem: FullBucket<K, V, M>,
|
||
},
|
||
Vacant {
|
||
hash: SafeHash,
|
||
elem: VacantEntryState<K, V, M>,
|
||
},
|
||
TableIsEmpty,
|
||
}
|
||
|
||
impl<K, V, M> InternalEntry<K, V, M> {
|
||
#[inline]
|
||
fn into_occupied_bucket(self) -> Option<FullBucket<K, V, M>> {
|
||
match self {
|
||
InternalEntry::Occupied { elem } => Some(elem),
|
||
_ => None,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, K, V> InternalEntry<K, V, &'a mut RawTable<K, V>> {
|
||
#[inline]
|
||
fn into_entry(self, key: K) -> Option<Entry<'a, K, V>> {
|
||
match self {
|
||
InternalEntry::Occupied { elem } => Some(Occupied(OccupiedEntry {
|
||
key: Some(key),
|
||
elem,
|
||
})),
|
||
InternalEntry::Vacant { hash, elem } => Some(Vacant(VacantEntry { hash, key, elem })),
|
||
InternalEntry::TableIsEmpty => None,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// A view into a single entry in a map, which may either be vacant or occupied.
|
||
///
|
||
/// This `enum` is constructed from the [`entry`] method on [`HashMap`].
|
||
///
|
||
/// [`HashMap`]: struct.HashMap.html
|
||
/// [`entry`]: struct.HashMap.html#method.entry
|
||
pub enum Entry<'a, K: 'a, V: 'a> {
|
||
/// An occupied entry.
|
||
Occupied(OccupiedEntry<'a, K, V>),
|
||
|
||
/// A vacant entry.
|
||
Vacant(VacantEntry<'a, K, V>),
|
||
}
|
||
|
||
impl<'a, K: 'a + Debug, V: 'a + Debug> Debug for Entry<'a, K, V> {
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
match *self {
|
||
Vacant(ref v) => f.debug_tuple("Entry").field(v).finish(),
|
||
Occupied(ref o) => f.debug_tuple("Entry").field(o).finish(),
|
||
}
|
||
}
|
||
}
|
||
|
||
/// A view into an occupied entry in a `HashMap`.
|
||
/// It is part of the [`Entry`] enum.
|
||
///
|
||
/// [`Entry`]: enum.Entry.html
|
||
pub struct OccupiedEntry<'a, K: 'a, V: 'a> {
|
||
key: Option<K>,
|
||
elem: FullBucket<K, V, &'a mut RawTable<K, V>>,
|
||
}
|
||
|
||
impl<'a, K: 'a + Debug, V: 'a + Debug> Debug for OccupiedEntry<'a, K, V> {
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
f.debug_struct("OccupiedEntry")
|
||
.field("key", self.key())
|
||
.field("value", self.get())
|
||
.finish()
|
||
}
|
||
}
|
||
|
||
/// A view into a vacant entry in a `HashMap`.
|
||
/// It is part of the [`Entry`] enum.
|
||
///
|
||
/// [`Entry`]: enum.Entry.html
|
||
pub struct VacantEntry<'a, K: 'a, V: 'a> {
|
||
hash: SafeHash,
|
||
key: K,
|
||
elem: VacantEntryState<K, V, &'a mut RawTable<K, V>>,
|
||
}
|
||
|
||
impl<'a, K: 'a + Debug, V: 'a> Debug for VacantEntry<'a, K, V> {
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
f.debug_tuple("VacantEntry").field(self.key()).finish()
|
||
}
|
||
}
|
||
|
||
/// Possible states of a VacantEntry.
|
||
enum VacantEntryState<K, V, M> {
|
||
/// The index is occupied, but the key to insert has precedence,
|
||
/// and will kick the current one out on insertion.
|
||
NeqElem(FullBucket<K, V, M>, usize),
|
||
/// The index is genuinely vacant.
|
||
NoElem(EmptyBucket<K, V, M>, usize),
|
||
}
|
||
|
||
impl<'a, K, V, S> IntoIterator for &'a HashMap<K, V, S>
|
||
where
|
||
K: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
type Item = (&'a K, &'a V);
|
||
type IntoIter = Iter<'a, K, V>;
|
||
|
||
fn into_iter(self) -> Iter<'a, K, V> {
|
||
self.iter()
|
||
}
|
||
}
|
||
|
||
impl<'a, K, V, S> IntoIterator for &'a mut HashMap<K, V, S>
|
||
where
|
||
K: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
type Item = (&'a K, &'a mut V);
|
||
type IntoIter = IterMut<'a, K, V>;
|
||
|
||
fn into_iter(self) -> IterMut<'a, K, V> {
|
||
self.iter_mut()
|
||
}
|
||
}
|
||
|
||
impl<K, V, S> IntoIterator for HashMap<K, V, S>
|
||
where
|
||
K: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
type Item = (K, V);
|
||
type IntoIter = IntoIter<K, V>;
|
||
|
||
/// Creates a consuming iterator, that is, one that moves each key-value
|
||
/// pair out of the map in arbitrary order. The map cannot be used after
|
||
/// calling this.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert("a", 1);
|
||
/// map.insert("b", 2);
|
||
/// map.insert("c", 3);
|
||
///
|
||
/// // Not possible with .iter()
|
||
/// let vec: Vec<(&str, isize)> = map.into_iter().collect();
|
||
/// ```
|
||
fn into_iter(self) -> IntoIter<K, V> {
|
||
IntoIter {
|
||
inner: self.table.into_iter(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, K, V> Iterator for Iter<'a, K, V> {
|
||
type Item = (&'a K, &'a V);
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<(&'a K, &'a V)> {
|
||
self.inner.next()
|
||
}
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
self.inner.size_hint()
|
||
}
|
||
}
|
||
impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> {
|
||
#[inline]
|
||
fn len(&self) -> usize {
|
||
self.inner.len()
|
||
}
|
||
}
|
||
|
||
impl<'a, K, V> Iterator for IterMut<'a, K, V> {
|
||
type Item = (&'a K, &'a mut V);
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
|
||
self.inner.next()
|
||
}
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
self.inner.size_hint()
|
||
}
|
||
}
|
||
impl<'a, K, V> ExactSizeIterator for IterMut<'a, K, V> {
|
||
#[inline]
|
||
fn len(&self) -> usize {
|
||
self.inner.len()
|
||
}
|
||
}
|
||
|
||
impl<'a, K, V> fmt::Debug for IterMut<'a, K, V>
|
||
where
|
||
K: fmt::Debug,
|
||
V: fmt::Debug,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
f.debug_list().entries(self.inner.iter()).finish()
|
||
}
|
||
}
|
||
|
||
impl<K, V> Iterator for IntoIter<K, V> {
|
||
type Item = (K, V);
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<(K, V)> {
|
||
self.inner.next().map(|(_, k, v)| (k, v))
|
||
}
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
self.inner.size_hint()
|
||
}
|
||
}
|
||
impl<K, V> ExactSizeIterator for IntoIter<K, V> {
|
||
#[inline]
|
||
fn len(&self) -> usize {
|
||
self.inner.len()
|
||
}
|
||
}
|
||
|
||
impl<K: Debug, V: Debug> fmt::Debug for IntoIter<K, V> {
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
f.debug_list().entries(self.inner.iter()).finish()
|
||
}
|
||
}
|
||
|
||
impl<'a, K, V> Iterator for Keys<'a, K, V> {
|
||
type Item = &'a K;
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<(&'a K)> {
|
||
self.inner.next().map(|(k, _)| k)
|
||
}
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
self.inner.size_hint()
|
||
}
|
||
}
|
||
impl<'a, K, V> ExactSizeIterator for Keys<'a, K, V> {
|
||
#[inline]
|
||
fn len(&self) -> usize {
|
||
self.inner.len()
|
||
}
|
||
}
|
||
|
||
impl<'a, K, V> Iterator for Values<'a, K, V> {
|
||
type Item = &'a V;
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<(&'a V)> {
|
||
self.inner.next().map(|(_, v)| v)
|
||
}
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
self.inner.size_hint()
|
||
}
|
||
}
|
||
impl<'a, K, V> ExactSizeIterator for Values<'a, K, V> {
|
||
#[inline]
|
||
fn len(&self) -> usize {
|
||
self.inner.len()
|
||
}
|
||
}
|
||
impl<'a, K, V> Iterator for ValuesMut<'a, K, V> {
|
||
type Item = &'a mut V;
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<(&'a mut V)> {
|
||
self.inner.next().map(|(_, v)| v)
|
||
}
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
self.inner.size_hint()
|
||
}
|
||
}
|
||
impl<'a, K, V> ExactSizeIterator for ValuesMut<'a, K, V> {
|
||
#[inline]
|
||
fn len(&self) -> usize {
|
||
self.inner.len()
|
||
}
|
||
}
|
||
|
||
impl<'a, K, V> fmt::Debug for ValuesMut<'a, K, V>
|
||
where
|
||
K: fmt::Debug,
|
||
V: fmt::Debug,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
f.debug_list().entries(self.inner.inner.iter()).finish()
|
||
}
|
||
}
|
||
|
||
impl<'a, K, V> Iterator for Drain<'a, K, V> {
|
||
type Item = (K, V);
|
||
|
||
#[inline]
|
||
fn next(&mut self) -> Option<(K, V)> {
|
||
self.inner.next().map(|(_, k, v)| (k, v))
|
||
}
|
||
#[inline]
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
self.inner.size_hint()
|
||
}
|
||
}
|
||
impl<'a, K, V> ExactSizeIterator for Drain<'a, K, V> {
|
||
#[inline]
|
||
fn len(&self) -> usize {
|
||
self.inner.len()
|
||
}
|
||
}
|
||
|
||
impl<'a, K, V> fmt::Debug for Drain<'a, K, V>
|
||
where
|
||
K: fmt::Debug,
|
||
V: fmt::Debug,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
f.debug_list().entries(self.inner.iter()).finish()
|
||
}
|
||
}
|
||
|
||
// FORK NOTE: Removed Placer impl
|
||
|
||
impl<'a, K, V> Entry<'a, K, V> {
|
||
/// Ensures a value is in the entry by inserting the default if empty, and returns
|
||
/// a mutable reference to the value in the entry.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map: HashMap<&str, u32> = HashMap::new();
|
||
/// map.entry("poneyland").or_insert(12);
|
||
///
|
||
/// assert_eq!(map["poneyland"], 12);
|
||
///
|
||
/// *map.entry("poneyland").or_insert(12) += 10;
|
||
/// assert_eq!(map["poneyland"], 22);
|
||
/// ```
|
||
pub fn or_insert(self, default: V) -> &'a mut V {
|
||
match self {
|
||
Occupied(entry) => entry.into_mut(),
|
||
Vacant(entry) => entry.insert(default),
|
||
}
|
||
}
|
||
|
||
/// Ensures a value is in the entry by inserting the result of the default function if empty,
|
||
/// and returns a mutable reference to the value in the entry.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map: HashMap<&str, String> = HashMap::new();
|
||
/// let s = "hoho".to_string();
|
||
///
|
||
/// map.entry("poneyland").or_insert_with(|| s);
|
||
///
|
||
/// assert_eq!(map["poneyland"], "hoho".to_string());
|
||
/// ```
|
||
pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V {
|
||
match self {
|
||
Occupied(entry) => entry.into_mut(),
|
||
Vacant(entry) => entry.insert(default()),
|
||
}
|
||
}
|
||
|
||
/// Returns a reference to this entry's key.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map: HashMap<&str, u32> = HashMap::new();
|
||
/// assert_eq!(map.entry("poneyland").key(), &"poneyland");
|
||
/// ```
|
||
pub fn key(&self) -> &K {
|
||
match *self {
|
||
Occupied(ref entry) => entry.key(),
|
||
Vacant(ref entry) => entry.key(),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, K, V> OccupiedEntry<'a, K, V> {
|
||
/// Gets a reference to the key in the entry.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map: HashMap<&str, u32> = HashMap::new();
|
||
/// map.entry("poneyland").or_insert(12);
|
||
/// assert_eq!(map.entry("poneyland").key(), &"poneyland");
|
||
/// ```
|
||
pub fn key(&self) -> &K {
|
||
self.elem.read().0
|
||
}
|
||
|
||
/// Take the ownership of the key and value from the map.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// use std::collections::hash_map::Entry;
|
||
///
|
||
/// let mut map: HashMap<&str, u32> = HashMap::new();
|
||
/// map.entry("poneyland").or_insert(12);
|
||
///
|
||
/// if let Entry::Occupied(o) = map.entry("poneyland") {
|
||
/// // We delete the entry from the map.
|
||
/// o.remove_entry();
|
||
/// }
|
||
///
|
||
/// assert_eq!(map.contains_key("poneyland"), false);
|
||
/// ```
|
||
pub fn remove_entry(self) -> (K, V) {
|
||
let (k, v, _) = pop_internal(self.elem);
|
||
(k, v)
|
||
}
|
||
|
||
/// Gets a reference to the value in the entry.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// use std::collections::hash_map::Entry;
|
||
///
|
||
/// let mut map: HashMap<&str, u32> = HashMap::new();
|
||
/// map.entry("poneyland").or_insert(12);
|
||
///
|
||
/// if let Entry::Occupied(o) = map.entry("poneyland") {
|
||
/// assert_eq!(o.get(), &12);
|
||
/// }
|
||
/// ```
|
||
pub fn get(&self) -> &V {
|
||
self.elem.read().1
|
||
}
|
||
|
||
/// Gets a mutable reference to the value in the entry.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// use std::collections::hash_map::Entry;
|
||
///
|
||
/// let mut map: HashMap<&str, u32> = HashMap::new();
|
||
/// map.entry("poneyland").or_insert(12);
|
||
///
|
||
/// assert_eq!(map["poneyland"], 12);
|
||
/// if let Entry::Occupied(mut o) = map.entry("poneyland") {
|
||
/// *o.get_mut() += 10;
|
||
/// }
|
||
///
|
||
/// assert_eq!(map["poneyland"], 22);
|
||
/// ```
|
||
pub fn get_mut(&mut self) -> &mut V {
|
||
self.elem.read_mut().1
|
||
}
|
||
|
||
/// Converts the OccupiedEntry into a mutable reference to the value in the entry
|
||
/// with a lifetime bound to the map itself.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// use std::collections::hash_map::Entry;
|
||
///
|
||
/// let mut map: HashMap<&str, u32> = HashMap::new();
|
||
/// map.entry("poneyland").or_insert(12);
|
||
///
|
||
/// assert_eq!(map["poneyland"], 12);
|
||
/// if let Entry::Occupied(o) = map.entry("poneyland") {
|
||
/// *o.into_mut() += 10;
|
||
/// }
|
||
///
|
||
/// assert_eq!(map["poneyland"], 22);
|
||
/// ```
|
||
pub fn into_mut(self) -> &'a mut V {
|
||
self.elem.into_mut_refs().1
|
||
}
|
||
|
||
/// Sets the value of the entry, and returns the entry's old value.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// use std::collections::hash_map::Entry;
|
||
///
|
||
/// let mut map: HashMap<&str, u32> = HashMap::new();
|
||
/// map.entry("poneyland").or_insert(12);
|
||
///
|
||
/// if let Entry::Occupied(mut o) = map.entry("poneyland") {
|
||
/// assert_eq!(o.insert(15), 12);
|
||
/// }
|
||
///
|
||
/// assert_eq!(map["poneyland"], 15);
|
||
/// ```
|
||
pub fn insert(&mut self, mut value: V) -> V {
|
||
let old_value = self.get_mut();
|
||
mem::swap(&mut value, old_value);
|
||
value
|
||
}
|
||
|
||
/// Takes the value out of the entry, and returns it.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// use std::collections::hash_map::Entry;
|
||
///
|
||
/// let mut map: HashMap<&str, u32> = HashMap::new();
|
||
/// map.entry("poneyland").or_insert(12);
|
||
///
|
||
/// if let Entry::Occupied(o) = map.entry("poneyland") {
|
||
/// assert_eq!(o.remove(), 12);
|
||
/// }
|
||
///
|
||
/// assert_eq!(map.contains_key("poneyland"), false);
|
||
/// ```
|
||
pub fn remove(self) -> V {
|
||
pop_internal(self.elem).1
|
||
}
|
||
|
||
/// Returns a key that was used for search.
|
||
///
|
||
/// The key was retained for further use.
|
||
fn take_key(&mut self) -> Option<K> {
|
||
self.key.take()
|
||
}
|
||
}
|
||
|
||
impl<'a, K: 'a, V: 'a> VacantEntry<'a, K, V> {
|
||
/// Gets a reference to the key that would be used when inserting a value
|
||
/// through the `VacantEntry`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map: HashMap<&str, u32> = HashMap::new();
|
||
/// assert_eq!(map.entry("poneyland").key(), &"poneyland");
|
||
/// ```
|
||
pub fn key(&self) -> &K {
|
||
&self.key
|
||
}
|
||
|
||
/// Take ownership of the key.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// use std::collections::hash_map::Entry;
|
||
///
|
||
/// let mut map: HashMap<&str, u32> = HashMap::new();
|
||
///
|
||
/// if let Entry::Vacant(v) = map.entry("poneyland") {
|
||
/// v.into_key();
|
||
/// }
|
||
/// ```
|
||
pub fn into_key(self) -> K {
|
||
self.key
|
||
}
|
||
|
||
/// Sets the value of the entry with the VacantEntry's key,
|
||
/// and returns a mutable reference to it.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// use std::collections::hash_map::Entry;
|
||
///
|
||
/// let mut map: HashMap<&str, u32> = HashMap::new();
|
||
///
|
||
/// if let Entry::Vacant(o) = map.entry("poneyland") {
|
||
/// o.insert(37);
|
||
/// }
|
||
/// assert_eq!(map["poneyland"], 37);
|
||
/// ```
|
||
pub fn insert(self, value: V) -> &'a mut V {
|
||
let b = match self.elem {
|
||
NeqElem(mut bucket, disp) => {
|
||
if disp >= DISPLACEMENT_THRESHOLD {
|
||
bucket.table_mut().set_tag(true);
|
||
}
|
||
robin_hood(bucket, disp, self.hash, self.key, value)
|
||
},
|
||
NoElem(mut bucket, disp) => {
|
||
if disp >= DISPLACEMENT_THRESHOLD {
|
||
bucket.table_mut().set_tag(true);
|
||
}
|
||
bucket.put(self.hash, self.key, value)
|
||
},
|
||
};
|
||
b.into_mut_refs().1
|
||
}
|
||
}
|
||
|
||
impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S>
|
||
where
|
||
K: Eq + Hash,
|
||
S: BuildHasher + Default,
|
||
{
|
||
fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> HashMap<K, V, S> {
|
||
let mut map = HashMap::with_hasher(Default::default());
|
||
map.extend(iter);
|
||
map
|
||
}
|
||
}
|
||
|
||
impl<K, V, S> Extend<(K, V)> for HashMap<K, V, S>
|
||
where
|
||
K: Eq + Hash,
|
||
S: BuildHasher,
|
||
{
|
||
fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) {
|
||
// Keys may be already present or show multiple times in the iterator.
|
||
// Reserve the entire hint lower bound if the map is empty.
|
||
// Otherwise reserve half the hint (rounded up), so the map
|
||
// will only resize twice in the worst case.
|
||
let iter = iter.into_iter();
|
||
let reserve = if self.is_empty() {
|
||
iter.size_hint().0
|
||
} else {
|
||
(iter.size_hint().0 + 1) / 2
|
||
};
|
||
self.reserve(reserve);
|
||
for (k, v) in iter {
|
||
self.insert(k, v);
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, K, V, S> Extend<(&'a K, &'a V)> for HashMap<K, V, S>
|
||
where
|
||
K: Eq + Hash + Copy,
|
||
V: Copy,
|
||
S: BuildHasher,
|
||
{
|
||
fn extend<T: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: T) {
|
||
self.extend(iter.into_iter().map(|(&key, &value)| (key, value)));
|
||
}
|
||
}
|
||
|
||
// FORK NOTE: These can be reused
|
||
pub use std::collections::hash_map::{DefaultHasher, RandomState};
|
||
|
||
impl<K, S, Q: ?Sized> super::Recover<Q> for HashMap<K, (), S>
|
||
where
|
||
K: Eq + Hash + Borrow<Q>,
|
||
S: BuildHasher,
|
||
Q: Eq + Hash,
|
||
{
|
||
type Key = K;
|
||
|
||
fn get(&self, key: &Q) -> Option<&K> {
|
||
self.search(key)
|
||
.into_occupied_bucket()
|
||
.map(|bucket| bucket.into_refs().0)
|
||
}
|
||
|
||
fn take(&mut self, key: &Q) -> Option<K> {
|
||
if self.table.size() == 0 {
|
||
return None;
|
||
}
|
||
|
||
self.search_mut(key)
|
||
.into_occupied_bucket()
|
||
.map(|bucket| pop_internal(bucket).0)
|
||
}
|
||
|
||
fn replace(&mut self, key: K) -> Option<K> {
|
||
self.reserve(1);
|
||
|
||
match self.entry(key) {
|
||
Occupied(mut occupied) => {
|
||
let key = occupied.take_key().unwrap();
|
||
Some(mem::replace(occupied.elem.read_mut().0, key))
|
||
},
|
||
Vacant(vacant) => {
|
||
vacant.insert(());
|
||
None
|
||
},
|
||
}
|
||
}
|
||
}
|
||
|
||
#[allow(dead_code)]
|
||
fn assert_covariance() {
|
||
fn map_key<'new>(v: HashMap<&'static str, u8>) -> HashMap<&'new str, u8> {
|
||
v
|
||
}
|
||
fn map_val<'new>(v: HashMap<u8, &'static str>) -> HashMap<u8, &'new str> {
|
||
v
|
||
}
|
||
fn iter_key<'a, 'new>(v: Iter<'a, &'static str, u8>) -> Iter<'a, &'new str, u8> {
|
||
v
|
||
}
|
||
fn iter_val<'a, 'new>(v: Iter<'a, u8, &'static str>) -> Iter<'a, u8, &'new str> {
|
||
v
|
||
}
|
||
fn into_iter_key<'new>(v: IntoIter<&'static str, u8>) -> IntoIter<&'new str, u8> {
|
||
v
|
||
}
|
||
fn into_iter_val<'new>(v: IntoIter<u8, &'static str>) -> IntoIter<u8, &'new str> {
|
||
v
|
||
}
|
||
fn keys_key<'a, 'new>(v: Keys<'a, &'static str, u8>) -> Keys<'a, &'new str, u8> {
|
||
v
|
||
}
|
||
fn keys_val<'a, 'new>(v: Keys<'a, u8, &'static str>) -> Keys<'a, u8, &'new str> {
|
||
v
|
||
}
|
||
fn values_key<'a, 'new>(v: Values<'a, &'static str, u8>) -> Values<'a, &'new str, u8> {
|
||
v
|
||
}
|
||
fn values_val<'a, 'new>(v: Values<'a, u8, &'static str>) -> Values<'a, u8, &'new str> {
|
||
v
|
||
}
|
||
fn drain<'new>(
|
||
d: Drain<'static, &'static str, &'static str>,
|
||
) -> Drain<'new, &'new str, &'new str> {
|
||
d
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod test_map {
|
||
extern crate rand;
|
||
use self::rand::{thread_rng, Rng};
|
||
use super::Entry::{Occupied, Vacant};
|
||
use super::HashMap;
|
||
use super::RandomState;
|
||
use cell::RefCell;
|
||
|
||
#[test]
|
||
fn test_zero_capacities() {
|
||
type HM = HashMap<i32, i32>;
|
||
|
||
let m = HM::new();
|
||
assert_eq!(m.capacity(), 0);
|
||
|
||
let m = HM::default();
|
||
assert_eq!(m.capacity(), 0);
|
||
|
||
let m = HM::with_hasher(RandomState::new());
|
||
assert_eq!(m.capacity(), 0);
|
||
|
||
let m = HM::with_capacity(0);
|
||
assert_eq!(m.capacity(), 0);
|
||
|
||
let m = HM::with_capacity_and_hasher(0, RandomState::new());
|
||
assert_eq!(m.capacity(), 0);
|
||
|
||
let mut m = HM::new();
|
||
m.insert(1, 1);
|
||
m.insert(2, 2);
|
||
m.remove(&1);
|
||
m.remove(&2);
|
||
m.shrink_to_fit();
|
||
assert_eq!(m.capacity(), 0);
|
||
|
||
let mut m = HM::new();
|
||
m.reserve(0);
|
||
assert_eq!(m.capacity(), 0);
|
||
}
|
||
|
||
#[test]
|
||
fn test_create_capacity_zero() {
|
||
let mut m = HashMap::with_capacity(0);
|
||
|
||
assert!(m.insert(1, 1).is_none());
|
||
|
||
assert!(m.contains_key(&1));
|
||
assert!(!m.contains_key(&0));
|
||
}
|
||
|
||
#[test]
|
||
fn test_insert() {
|
||
let mut m = HashMap::new();
|
||
assert_eq!(m.len(), 0);
|
||
assert!(m.insert(1, 2).is_none());
|
||
assert_eq!(m.len(), 1);
|
||
assert!(m.insert(2, 4).is_none());
|
||
assert_eq!(m.len(), 2);
|
||
assert_eq!(*m.get(&1).unwrap(), 2);
|
||
assert_eq!(*m.get(&2).unwrap(), 4);
|
||
}
|
||
|
||
#[test]
|
||
fn test_clone() {
|
||
let mut m = HashMap::new();
|
||
assert_eq!(m.len(), 0);
|
||
assert!(m.insert(1, 2).is_none());
|
||
assert_eq!(m.len(), 1);
|
||
assert!(m.insert(2, 4).is_none());
|
||
assert_eq!(m.len(), 2);
|
||
let m2 = m.clone();
|
||
assert_eq!(*m2.get(&1).unwrap(), 2);
|
||
assert_eq!(*m2.get(&2).unwrap(), 4);
|
||
assert_eq!(m2.len(), 2);
|
||
}
|
||
|
||
thread_local! { static DROP_VECTOR: RefCell<Vec<isize>> = RefCell::new(Vec::new()) }
|
||
|
||
#[derive(Hash, PartialEq, Eq)]
|
||
struct Dropable {
|
||
k: usize,
|
||
}
|
||
|
||
impl Dropable {
|
||
fn new(k: usize) -> Dropable {
|
||
DROP_VECTOR.with(|slot| {
|
||
slot.borrow_mut()[k] += 1;
|
||
});
|
||
|
||
Dropable { k: k }
|
||
}
|
||
}
|
||
|
||
impl Drop for Dropable {
|
||
fn drop(&mut self) {
|
||
DROP_VECTOR.with(|slot| {
|
||
slot.borrow_mut()[self.k] -= 1;
|
||
});
|
||
}
|
||
}
|
||
|
||
impl Clone for Dropable {
|
||
fn clone(&self) -> Dropable {
|
||
Dropable::new(self.k)
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_drops() {
|
||
DROP_VECTOR.with(|slot| {
|
||
*slot.borrow_mut() = vec![0; 200];
|
||
});
|
||
|
||
{
|
||
let mut m = HashMap::new();
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..200 {
|
||
assert_eq!(v.borrow()[i], 0);
|
||
}
|
||
});
|
||
|
||
for i in 0..100 {
|
||
let d1 = Dropable::new(i);
|
||
let d2 = Dropable::new(i + 100);
|
||
m.insert(d1, d2);
|
||
}
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..200 {
|
||
assert_eq!(v.borrow()[i], 1);
|
||
}
|
||
});
|
||
|
||
for i in 0..50 {
|
||
let k = Dropable::new(i);
|
||
let v = m.remove(&k);
|
||
|
||
assert!(v.is_some());
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
assert_eq!(v.borrow()[i], 1);
|
||
assert_eq!(v.borrow()[i + 100], 1);
|
||
});
|
||
}
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..50 {
|
||
assert_eq!(v.borrow()[i], 0);
|
||
assert_eq!(v.borrow()[i + 100], 0);
|
||
}
|
||
|
||
for i in 50..100 {
|
||
assert_eq!(v.borrow()[i], 1);
|
||
assert_eq!(v.borrow()[i + 100], 1);
|
||
}
|
||
});
|
||
}
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..200 {
|
||
assert_eq!(v.borrow()[i], 0);
|
||
}
|
||
});
|
||
}
|
||
|
||
#[test]
|
||
fn test_into_iter_drops() {
|
||
DROP_VECTOR.with(|v| {
|
||
*v.borrow_mut() = vec![0; 200];
|
||
});
|
||
|
||
let hm = {
|
||
let mut hm = HashMap::new();
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..200 {
|
||
assert_eq!(v.borrow()[i], 0);
|
||
}
|
||
});
|
||
|
||
for i in 0..100 {
|
||
let d1 = Dropable::new(i);
|
||
let d2 = Dropable::new(i + 100);
|
||
hm.insert(d1, d2);
|
||
}
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..200 {
|
||
assert_eq!(v.borrow()[i], 1);
|
||
}
|
||
});
|
||
|
||
hm
|
||
};
|
||
|
||
// By the way, ensure that cloning doesn't screw up the dropping.
|
||
drop(hm.clone());
|
||
|
||
{
|
||
let mut half = hm.into_iter().take(50);
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..200 {
|
||
assert_eq!(v.borrow()[i], 1);
|
||
}
|
||
});
|
||
|
||
for _ in half.by_ref() {}
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
let nk = (0..100).filter(|&i| v.borrow()[i] == 1).count();
|
||
|
||
let nv = (0..100).filter(|&i| v.borrow()[i + 100] == 1).count();
|
||
|
||
assert_eq!(nk, 50);
|
||
assert_eq!(nv, 50);
|
||
});
|
||
};
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..200 {
|
||
assert_eq!(v.borrow()[i], 0);
|
||
}
|
||
});
|
||
}
|
||
|
||
#[test]
|
||
fn test_empty_remove() {
|
||
let mut m: HashMap<isize, bool> = HashMap::new();
|
||
assert_eq!(m.remove(&0), None);
|
||
}
|
||
|
||
#[test]
|
||
fn test_empty_entry() {
|
||
let mut m: HashMap<isize, bool> = HashMap::new();
|
||
match m.entry(0) {
|
||
Occupied(_) => panic!(),
|
||
Vacant(_) => {},
|
||
}
|
||
assert!(*m.entry(0).or_insert(true));
|
||
assert_eq!(m.len(), 1);
|
||
}
|
||
|
||
#[test]
|
||
fn test_empty_iter() {
|
||
let mut m: HashMap<isize, bool> = HashMap::new();
|
||
assert_eq!(m.drain().next(), None);
|
||
assert_eq!(m.keys().next(), None);
|
||
assert_eq!(m.values().next(), None);
|
||
assert_eq!(m.values_mut().next(), None);
|
||
assert_eq!(m.iter().next(), None);
|
||
assert_eq!(m.iter_mut().next(), None);
|
||
assert_eq!(m.len(), 0);
|
||
assert!(m.is_empty());
|
||
assert_eq!(m.into_iter().next(), None);
|
||
}
|
||
|
||
#[test]
|
||
fn test_lots_of_insertions() {
|
||
let mut m = HashMap::new();
|
||
|
||
// Try this a few times to make sure we never screw up the hashmap's
|
||
// internal state.
|
||
for _ in 0..10 {
|
||
assert!(m.is_empty());
|
||
|
||
for i in 1..1001 {
|
||
assert!(m.insert(i, i).is_none());
|
||
|
||
for j in 1..i + 1 {
|
||
let r = m.get(&j);
|
||
assert_eq!(r, Some(&j));
|
||
}
|
||
|
||
for j in i + 1..1001 {
|
||
let r = m.get(&j);
|
||
assert_eq!(r, None);
|
||
}
|
||
}
|
||
|
||
for i in 1001..2001 {
|
||
assert!(!m.contains_key(&i));
|
||
}
|
||
|
||
// remove forwards
|
||
for i in 1..1001 {
|
||
assert!(m.remove(&i).is_some());
|
||
|
||
for j in 1..i + 1 {
|
||
assert!(!m.contains_key(&j));
|
||
}
|
||
|
||
for j in i + 1..1001 {
|
||
assert!(m.contains_key(&j));
|
||
}
|
||
}
|
||
|
||
for i in 1..1001 {
|
||
assert!(!m.contains_key(&i));
|
||
}
|
||
|
||
for i in 1..1001 {
|
||
assert!(m.insert(i, i).is_none());
|
||
}
|
||
|
||
// remove backwards
|
||
for i in (1..1001).rev() {
|
||
assert!(m.remove(&i).is_some());
|
||
|
||
for j in i..1001 {
|
||
assert!(!m.contains_key(&j));
|
||
}
|
||
|
||
for j in 1..i {
|
||
assert!(m.contains_key(&j));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_find_mut() {
|
||
let mut m = HashMap::new();
|
||
assert!(m.insert(1, 12).is_none());
|
||
assert!(m.insert(2, 8).is_none());
|
||
assert!(m.insert(5, 14).is_none());
|
||
let new = 100;
|
||
match m.get_mut(&5) {
|
||
None => panic!(),
|
||
Some(x) => *x = new,
|
||
}
|
||
assert_eq!(m.get(&5), Some(&new));
|
||
}
|
||
|
||
#[test]
|
||
fn test_insert_overwrite() {
|
||
let mut m = HashMap::new();
|
||
assert!(m.insert(1, 2).is_none());
|
||
assert_eq!(*m.get(&1).unwrap(), 2);
|
||
assert!(!m.insert(1, 3).is_none());
|
||
assert_eq!(*m.get(&1).unwrap(), 3);
|
||
}
|
||
|
||
#[test]
|
||
fn test_insert_conflicts() {
|
||
let mut m = HashMap::with_capacity(4);
|
||
assert!(m.insert(1, 2).is_none());
|
||
assert!(m.insert(5, 3).is_none());
|
||
assert!(m.insert(9, 4).is_none());
|
||
assert_eq!(*m.get(&9).unwrap(), 4);
|
||
assert_eq!(*m.get(&5).unwrap(), 3);
|
||
assert_eq!(*m.get(&1).unwrap(), 2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_conflict_remove() {
|
||
let mut m = HashMap::with_capacity(4);
|
||
assert!(m.insert(1, 2).is_none());
|
||
assert_eq!(*m.get(&1).unwrap(), 2);
|
||
assert!(m.insert(5, 3).is_none());
|
||
assert_eq!(*m.get(&1).unwrap(), 2);
|
||
assert_eq!(*m.get(&5).unwrap(), 3);
|
||
assert!(m.insert(9, 4).is_none());
|
||
assert_eq!(*m.get(&1).unwrap(), 2);
|
||
assert_eq!(*m.get(&5).unwrap(), 3);
|
||
assert_eq!(*m.get(&9).unwrap(), 4);
|
||
assert!(m.remove(&1).is_some());
|
||
assert_eq!(*m.get(&9).unwrap(), 4);
|
||
assert_eq!(*m.get(&5).unwrap(), 3);
|
||
}
|
||
|
||
#[test]
|
||
fn test_is_empty() {
|
||
let mut m = HashMap::with_capacity(4);
|
||
assert!(m.insert(1, 2).is_none());
|
||
assert!(!m.is_empty());
|
||
assert!(m.remove(&1).is_some());
|
||
assert!(m.is_empty());
|
||
}
|
||
|
||
#[test]
|
||
fn test_pop() {
|
||
let mut m = HashMap::new();
|
||
m.insert(1, 2);
|
||
assert_eq!(m.remove(&1), Some(2));
|
||
assert_eq!(m.remove(&1), None);
|
||
}
|
||
|
||
#[test]
|
||
fn test_iterate() {
|
||
let mut m = HashMap::with_capacity(4);
|
||
for i in 0..32 {
|
||
assert!(m.insert(i, i * 2).is_none());
|
||
}
|
||
assert_eq!(m.len(), 32);
|
||
|
||
let mut observed: u32 = 0;
|
||
|
||
for (k, v) in &m {
|
||
assert_eq!(*v, *k * 2);
|
||
observed |= 1 << *k;
|
||
}
|
||
assert_eq!(observed, 0xFFFF_FFFF);
|
||
}
|
||
|
||
#[test]
|
||
fn test_keys() {
|
||
let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
|
||
let map: HashMap<_, _> = vec.into_iter().collect();
|
||
let keys: Vec<_> = map.keys().cloned().collect();
|
||
assert_eq!(keys.len(), 3);
|
||
assert!(keys.contains(&1));
|
||
assert!(keys.contains(&2));
|
||
assert!(keys.contains(&3));
|
||
}
|
||
|
||
#[test]
|
||
fn test_values() {
|
||
let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
|
||
let map: HashMap<_, _> = vec.into_iter().collect();
|
||
let values: Vec<_> = map.values().cloned().collect();
|
||
assert_eq!(values.len(), 3);
|
||
assert!(values.contains(&'a'));
|
||
assert!(values.contains(&'b'));
|
||
assert!(values.contains(&'c'));
|
||
}
|
||
|
||
#[test]
|
||
fn test_values_mut() {
|
||
let vec = vec![(1, 1), (2, 2), (3, 3)];
|
||
let mut map: HashMap<_, _> = vec.into_iter().collect();
|
||
for value in map.values_mut() {
|
||
*value = (*value) * 2
|
||
}
|
||
let values: Vec<_> = map.values().cloned().collect();
|
||
assert_eq!(values.len(), 3);
|
||
assert!(values.contains(&2));
|
||
assert!(values.contains(&4));
|
||
assert!(values.contains(&6));
|
||
}
|
||
|
||
#[test]
|
||
fn test_find() {
|
||
let mut m = HashMap::new();
|
||
assert!(m.get(&1).is_none());
|
||
m.insert(1, 2);
|
||
match m.get(&1) {
|
||
None => panic!(),
|
||
Some(v) => assert_eq!(*v, 2),
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_eq() {
|
||
let mut m1 = HashMap::new();
|
||
m1.insert(1, 2);
|
||
m1.insert(2, 3);
|
||
m1.insert(3, 4);
|
||
|
||
let mut m2 = HashMap::new();
|
||
m2.insert(1, 2);
|
||
m2.insert(2, 3);
|
||
|
||
assert_ne!(m1, m2);
|
||
|
||
m2.insert(3, 4);
|
||
|
||
assert_eq!(m1, m2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_show() {
|
||
let mut map = HashMap::new();
|
||
let empty: HashMap<i32, i32> = HashMap::new();
|
||
|
||
map.insert(1, 2);
|
||
map.insert(3, 4);
|
||
|
||
let map_str = format!("{:?}", map);
|
||
|
||
assert!(map_str == "{1: 2, 3: 4}" || map_str == "{3: 4, 1: 2}");
|
||
assert_eq!(format!("{:?}", empty), "{}");
|
||
}
|
||
|
||
#[test]
|
||
fn test_expand() {
|
||
let mut m = HashMap::new();
|
||
|
||
assert_eq!(m.len(), 0);
|
||
assert!(m.is_empty());
|
||
|
||
let mut i = 0;
|
||
let old_raw_cap = m.raw_capacity();
|
||
while old_raw_cap == m.raw_capacity() {
|
||
m.insert(i, i);
|
||
i += 1;
|
||
}
|
||
|
||
assert_eq!(m.len(), i);
|
||
assert!(!m.is_empty());
|
||
}
|
||
|
||
#[test]
|
||
fn test_behavior_resize_policy() {
|
||
let mut m = HashMap::new();
|
||
|
||
assert_eq!(m.len(), 0);
|
||
assert_eq!(m.raw_capacity(), 0);
|
||
assert!(m.is_empty());
|
||
|
||
m.insert(0, 0);
|
||
m.remove(&0);
|
||
assert!(m.is_empty());
|
||
let initial_raw_cap = m.raw_capacity();
|
||
m.reserve(initial_raw_cap);
|
||
let raw_cap = m.raw_capacity();
|
||
|
||
assert_eq!(raw_cap, initial_raw_cap * 2);
|
||
|
||
let mut i = 0;
|
||
for _ in 0..raw_cap * 3 / 4 {
|
||
m.insert(i, i);
|
||
i += 1;
|
||
}
|
||
// three quarters full
|
||
|
||
assert_eq!(m.len(), i);
|
||
assert_eq!(m.raw_capacity(), raw_cap);
|
||
|
||
for _ in 0..raw_cap / 4 {
|
||
m.insert(i, i);
|
||
i += 1;
|
||
}
|
||
// half full
|
||
|
||
let new_raw_cap = m.raw_capacity();
|
||
assert_eq!(new_raw_cap, raw_cap * 2);
|
||
|
||
for _ in 0..raw_cap / 2 - 1 {
|
||
i -= 1;
|
||
m.remove(&i);
|
||
assert_eq!(m.raw_capacity(), new_raw_cap);
|
||
}
|
||
// A little more than one quarter full.
|
||
m.shrink_to_fit();
|
||
assert_eq!(m.raw_capacity(), raw_cap);
|
||
// again, a little more than half full
|
||
for _ in 0..raw_cap / 2 - 1 {
|
||
i -= 1;
|
||
m.remove(&i);
|
||
}
|
||
m.shrink_to_fit();
|
||
|
||
assert_eq!(m.len(), i);
|
||
assert!(!m.is_empty());
|
||
assert_eq!(m.raw_capacity(), initial_raw_cap);
|
||
}
|
||
|
||
#[test]
|
||
fn test_reserve_shrink_to_fit() {
|
||
let mut m = HashMap::new();
|
||
m.insert(0, 0);
|
||
m.remove(&0);
|
||
assert!(m.capacity() >= m.len());
|
||
for i in 0..128 {
|
||
m.insert(i, i);
|
||
}
|
||
m.reserve(256);
|
||
|
||
let usable_cap = m.capacity();
|
||
for i in 128..(128 + 256) {
|
||
m.insert(i, i);
|
||
assert_eq!(m.capacity(), usable_cap);
|
||
}
|
||
|
||
for i in 100..(128 + 256) {
|
||
assert_eq!(m.remove(&i), Some(i));
|
||
}
|
||
m.shrink_to_fit();
|
||
|
||
assert_eq!(m.len(), 100);
|
||
assert!(!m.is_empty());
|
||
assert!(m.capacity() >= m.len());
|
||
|
||
for i in 0..100 {
|
||
assert_eq!(m.remove(&i), Some(i));
|
||
}
|
||
m.shrink_to_fit();
|
||
m.insert(0, 0);
|
||
|
||
assert_eq!(m.len(), 1);
|
||
assert!(m.capacity() >= m.len());
|
||
assert_eq!(m.remove(&0), Some(0));
|
||
}
|
||
|
||
#[test]
|
||
fn test_from_iter() {
|
||
let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
|
||
|
||
let map: HashMap<_, _> = xs.iter().cloned().collect();
|
||
|
||
for &(k, v) in &xs {
|
||
assert_eq!(map.get(&k), Some(&v));
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_size_hint() {
|
||
let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
|
||
|
||
let map: HashMap<_, _> = xs.iter().cloned().collect();
|
||
|
||
let mut iter = map.iter();
|
||
|
||
for _ in iter.by_ref().take(3) {}
|
||
|
||
assert_eq!(iter.size_hint(), (3, Some(3)));
|
||
}
|
||
|
||
#[test]
|
||
fn test_iter_len() {
|
||
let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
|
||
|
||
let map: HashMap<_, _> = xs.iter().cloned().collect();
|
||
|
||
let mut iter = map.iter();
|
||
|
||
for _ in iter.by_ref().take(3) {}
|
||
|
||
assert_eq!(iter.len(), 3);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_size_hint() {
|
||
let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
|
||
|
||
let mut map: HashMap<_, _> = xs.iter().cloned().collect();
|
||
|
||
let mut iter = map.iter_mut();
|
||
|
||
for _ in iter.by_ref().take(3) {}
|
||
|
||
assert_eq!(iter.size_hint(), (3, Some(3)));
|
||
}
|
||
|
||
#[test]
|
||
fn test_iter_mut_len() {
|
||
let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
|
||
|
||
let mut map: HashMap<_, _> = xs.iter().cloned().collect();
|
||
|
||
let mut iter = map.iter_mut();
|
||
|
||
for _ in iter.by_ref().take(3) {}
|
||
|
||
assert_eq!(iter.len(), 3);
|
||
}
|
||
|
||
#[test]
|
||
fn test_index() {
|
||
let mut map = HashMap::new();
|
||
|
||
map.insert(1, 2);
|
||
map.insert(2, 1);
|
||
map.insert(3, 4);
|
||
|
||
assert_eq!(map[&2], 1);
|
||
}
|
||
|
||
#[test]
|
||
#[should_panic]
|
||
fn test_index_nonexistent() {
|
||
let mut map = HashMap::new();
|
||
|
||
map.insert(1, 2);
|
||
map.insert(2, 1);
|
||
map.insert(3, 4);
|
||
|
||
map[&4];
|
||
}
|
||
|
||
#[test]
|
||
fn test_entry() {
|
||
let xs = [(1, 10), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)];
|
||
|
||
let mut map: HashMap<_, _> = xs.iter().cloned().collect();
|
||
|
||
// Existing key (insert)
|
||
match map.entry(1) {
|
||
Vacant(_) => unreachable!(),
|
||
Occupied(mut view) => {
|
||
assert_eq!(view.get(), &10);
|
||
assert_eq!(view.insert(100), 10);
|
||
},
|
||
}
|
||
assert_eq!(map.get(&1).unwrap(), &100);
|
||
assert_eq!(map.len(), 6);
|
||
|
||
// Existing key (update)
|
||
match map.entry(2) {
|
||
Vacant(_) => unreachable!(),
|
||
Occupied(mut view) => {
|
||
let v = view.get_mut();
|
||
let new_v = (*v) * 10;
|
||
*v = new_v;
|
||
},
|
||
}
|
||
assert_eq!(map.get(&2).unwrap(), &200);
|
||
assert_eq!(map.len(), 6);
|
||
|
||
// Existing key (take)
|
||
match map.entry(3) {
|
||
Vacant(_) => unreachable!(),
|
||
Occupied(view) => {
|
||
assert_eq!(view.remove(), 30);
|
||
},
|
||
}
|
||
assert_eq!(map.get(&3), None);
|
||
assert_eq!(map.len(), 5);
|
||
|
||
// Inexistent key (insert)
|
||
match map.entry(10) {
|
||
Occupied(_) => unreachable!(),
|
||
Vacant(view) => {
|
||
assert_eq!(*view.insert(1000), 1000);
|
||
},
|
||
}
|
||
assert_eq!(map.get(&10).unwrap(), &1000);
|
||
assert_eq!(map.len(), 6);
|
||
}
|
||
|
||
#[test]
|
||
fn test_entry_take_doesnt_corrupt() {
|
||
#![allow(deprecated)] //rand
|
||
// Test for #19292
|
||
fn check(m: &HashMap<isize, ()>) {
|
||
for k in m.keys() {
|
||
assert!(m.contains_key(k), "{} is in keys() but not in the map?", k);
|
||
}
|
||
}
|
||
|
||
let mut m = HashMap::new();
|
||
let mut rng = thread_rng();
|
||
|
||
// Populate the map with some items.
|
||
for _ in 0..50 {
|
||
let x = rng.gen_range(-10, 10);
|
||
m.insert(x, ());
|
||
}
|
||
|
||
for i in 0..1000 {
|
||
let x = rng.gen_range(-10, 10);
|
||
match m.entry(x) {
|
||
Vacant(_) => {},
|
||
Occupied(e) => {
|
||
println!("{}: remove {}", i, x);
|
||
e.remove();
|
||
},
|
||
}
|
||
|
||
check(&m);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_extend_ref() {
|
||
let mut a = HashMap::new();
|
||
a.insert(1, "one");
|
||
let mut b = HashMap::new();
|
||
b.insert(2, "two");
|
||
b.insert(3, "three");
|
||
|
||
a.extend(&b);
|
||
|
||
assert_eq!(a.len(), 3);
|
||
assert_eq!(a[&1], "one");
|
||
assert_eq!(a[&2], "two");
|
||
assert_eq!(a[&3], "three");
|
||
}
|
||
|
||
#[test]
|
||
fn test_capacity_not_less_than_len() {
|
||
let mut a = HashMap::new();
|
||
let mut item = 0;
|
||
|
||
for _ in 0..116 {
|
||
a.insert(item, 0);
|
||
item += 1;
|
||
}
|
||
|
||
assert!(a.capacity() > a.len());
|
||
|
||
let free = a.capacity() - a.len();
|
||
for _ in 0..free {
|
||
a.insert(item, 0);
|
||
item += 1;
|
||
}
|
||
|
||
assert_eq!(a.len(), a.capacity());
|
||
|
||
// Insert at capacity should cause allocation.
|
||
a.insert(item, 0);
|
||
assert!(a.capacity() > a.len());
|
||
}
|
||
|
||
#[test]
|
||
fn test_occupied_entry_key() {
|
||
let mut a = HashMap::new();
|
||
let key = "hello there";
|
||
let value = "value goes here";
|
||
assert!(a.is_empty());
|
||
a.insert(key.clone(), value.clone());
|
||
assert_eq!(a.len(), 1);
|
||
assert_eq!(a[key], value);
|
||
|
||
match a.entry(key.clone()) {
|
||
Vacant(_) => panic!(),
|
||
Occupied(e) => assert_eq!(key, *e.key()),
|
||
}
|
||
assert_eq!(a.len(), 1);
|
||
assert_eq!(a[key], value);
|
||
}
|
||
|
||
#[test]
|
||
fn test_vacant_entry_key() {
|
||
let mut a = HashMap::new();
|
||
let key = "hello there";
|
||
let value = "value goes here";
|
||
|
||
assert!(a.is_empty());
|
||
match a.entry(key.clone()) {
|
||
Occupied(_) => panic!(),
|
||
Vacant(e) => {
|
||
assert_eq!(key, *e.key());
|
||
e.insert(value.clone());
|
||
},
|
||
}
|
||
assert_eq!(a.len(), 1);
|
||
assert_eq!(a[key], value);
|
||
}
|
||
|
||
#[test]
|
||
fn test_retain() {
|
||
let mut map: HashMap<isize, isize> = (0..100).map(|x| (x, x * 10)).collect();
|
||
|
||
map.retain(|&k, _| k % 2 == 0);
|
||
assert_eq!(map.len(), 50);
|
||
assert_eq!(map[&2], 20);
|
||
assert_eq!(map[&4], 40);
|
||
assert_eq!(map[&6], 60);
|
||
}
|
||
|
||
#[test]
|
||
fn test_adaptive() {
|
||
const TEST_LEN: usize = 5000;
|
||
// by cloning we get maps with the same hasher seed
|
||
let mut first = HashMap::new();
|
||
let mut second = first.clone();
|
||
first.extend((0..TEST_LEN).map(|i| (i, i)));
|
||
second.extend((TEST_LEN..TEST_LEN * 2).map(|i| (i, i)));
|
||
|
||
for (&k, &v) in &second {
|
||
let prev_cap = first.capacity();
|
||
let expect_grow = first.len() == prev_cap;
|
||
first.insert(k, v);
|
||
if !expect_grow && first.capacity() != prev_cap {
|
||
return;
|
||
}
|
||
}
|
||
panic!("Adaptive early resize failed");
|
||
}
|
||
}
|