servo/resources/shaders/prim_shared.glsl
2016-10-18 12:27:34 +10:00

565 lines
15 KiB
GLSL

#line 1
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#define PST_TOP_LEFT uint(0)
#define PST_TOP_RIGHT uint(1)
#define PST_BOTTOM_LEFT uint(2)
#define PST_BOTTOM_RIGHT uint(3)
#define PST_TOP uint(4)
#define PST_LEFT uint(5)
#define PST_BOTTOM uint(6)
#define PST_RIGHT uint(7)
#define UV_NORMALIZED uint(0)
#define UV_PIXEL uint(1)
// Border styles as defined in webrender_traits/types.rs
#define BORDER_STYLE_NONE uint(0)
#define BORDER_STYLE_SOLID uint(1)
#define BORDER_STYLE_DOUBLE uint(2)
#define BORDER_STYLE_DOTTED uint(3)
#define BORDER_STYLE_DASHED uint(4)
#define BORDER_STYLE_HIDDEN uint(5)
#define BORDER_STYLE_GROOVE uint(6)
#define BORDER_STYLE_RIDGE uint(7)
#define BORDER_STYLE_INSET uint(8)
#define BORDER_STYLE_OUTSET uint(9)
#define MAX_STOPS_PER_ANGLE_GRADIENT 8
#ifdef WR_VERTEX_SHADER
#define VECS_PER_LAYER 13
#define LAYERS_PER_ROW (WR_MAX_VERTEX_TEXTURE_WIDTH / VECS_PER_LAYER)
#define VECS_PER_TILE 2
#define TILES_PER_ROW (WR_MAX_VERTEX_TEXTURE_WIDTH / VECS_PER_TILE)
uniform sampler2D sLayers;
uniform sampler2D sRenderTasks;
struct Layer {
mat4 transform;
mat4 inv_transform;
vec4 local_clip_rect;
vec4 screen_vertices[4];
};
layout(std140) uniform Data {
vec4 data[WR_MAX_UBO_VECTORS];
};
Layer fetch_layer(int index) {
Layer layer;
// Create a UV base coord for each 8 texels.
// This is required because trying to use an offset
// of more than 8 texels doesn't work on some versions
// of OSX.
int y = index / LAYERS_PER_ROW;
int x = VECS_PER_LAYER * (index % LAYERS_PER_ROW);
ivec2 uv0 = ivec2(x + 0, y);
ivec2 uv1 = ivec2(x + 8, y);
layer.transform[0] = texelFetchOffset(sLayers, uv0, 0, ivec2(0, 0));
layer.transform[1] = texelFetchOffset(sLayers, uv0, 0, ivec2(1, 0));
layer.transform[2] = texelFetchOffset(sLayers, uv0, 0, ivec2(2, 0));
layer.transform[3] = texelFetchOffset(sLayers, uv0, 0, ivec2(3, 0));
layer.inv_transform[0] = texelFetchOffset(sLayers, uv0, 0, ivec2(4, 0));
layer.inv_transform[1] = texelFetchOffset(sLayers, uv0, 0, ivec2(5, 0));
layer.inv_transform[2] = texelFetchOffset(sLayers, uv0, 0, ivec2(6, 0));
layer.inv_transform[3] = texelFetchOffset(sLayers, uv0, 0, ivec2(7, 0));
layer.local_clip_rect = texelFetchOffset(sLayers, uv1, 0, ivec2(0, 0));
layer.screen_vertices[0] = texelFetchOffset(sLayers, uv1, 0, ivec2(1, 0));
layer.screen_vertices[1] = texelFetchOffset(sLayers, uv1, 0, ivec2(2, 0));
layer.screen_vertices[2] = texelFetchOffset(sLayers, uv1, 0, ivec2(2, 0));
layer.screen_vertices[3] = texelFetchOffset(sLayers, uv1, 0, ivec2(3, 0));
return layer;
}
struct Tile {
vec4 actual_rect;
vec4 target_rect;
};
Tile fetch_tile(int index) {
Tile tile;
int y = index / TILES_PER_ROW;
int x = VECS_PER_TILE * (index % TILES_PER_ROW);
ivec2 uv = ivec2(x + 0, y);
tile.actual_rect = texelFetchOffset(sRenderTasks, uv, 0, ivec2(0, 0));
tile.target_rect = texelFetchOffset(sRenderTasks, uv, 0, ivec2(1, 0));
return tile;
}
struct PrimitiveInfo {
vec4 layer_tile;
vec4 local_clip_rect;
vec4 local_rect;
};
PrimitiveInfo unpack_prim_info(int offset) {
PrimitiveInfo info;
info.layer_tile = data[offset + 0];
info.local_clip_rect = data[offset + 1];
info.local_rect = data[offset + 2];
return info;
}
struct ClipCorner {
vec4 rect;
vec4 outer_inner_radius;
};
ClipCorner unpack_clip_corner(int offset) {
ClipCorner corner;
corner.rect = data[offset + 0];
corner.outer_inner_radius = data[offset + 1];
return corner;
}
struct Clip {
vec4 rect;
ClipCorner top_left;
ClipCorner top_right;
ClipCorner bottom_left;
ClipCorner bottom_right;
};
Clip unpack_clip(int offset) {
Clip clip;
clip.rect = data[offset + 0];
clip.top_left = unpack_clip_corner(offset + 1);
clip.top_right = unpack_clip_corner(offset + 3);
clip.bottom_left = unpack_clip_corner(offset + 5);
clip.bottom_right = unpack_clip_corner(offset + 7);
return clip;
}
bool ray_plane(vec3 normal, vec3 point, vec3 ray_origin, vec3 ray_dir, out float t)
{
float denom = dot(normal, ray_dir);
if (denom > 1e-6) {
vec3 d = point - ray_origin;
t = dot(d, normal) / denom;
return t >= 0.0;
}
return false;
}
vec4 untransform(vec2 ref, vec3 n, vec3 a, mat4 inv_transform) {
vec3 p = vec3(ref, -10000.0);
vec3 d = vec3(0, 0, 1.0);
float t;
ray_plane(n, a, p, d, t);
vec3 c = p + d * t;
vec4 r = inv_transform * vec4(c, 1.0);
return r;
}
vec3 get_layer_pos(vec2 pos, Layer layer) {
vec3 a = layer.screen_vertices[0].xyz / layer.screen_vertices[0].w;
vec3 b = layer.screen_vertices[3].xyz / layer.screen_vertices[3].w;
vec3 c = layer.screen_vertices[2].xyz / layer.screen_vertices[2].w;
vec3 n = normalize(cross(b-a, c-a));
vec4 local_pos = untransform(pos, n, a, layer.inv_transform);
return local_pos.xyw;
}
struct Rect {
vec2 p0;
vec2 p1;
};
struct VertexInfo {
Rect local_rect;
vec2 local_clamped_pos;
vec2 global_clamped_pos;
};
VertexInfo write_vertex(PrimitiveInfo info) {
Layer layer = fetch_layer(int(info.layer_tile.x));
Tile tile = fetch_tile(int(info.layer_tile.y));
vec2 p0 = floor(0.5 + info.local_rect.xy * uDevicePixelRatio) / uDevicePixelRatio;
vec2 p1 = floor(0.5 + (info.local_rect.xy + info.local_rect.zw) * uDevicePixelRatio) / uDevicePixelRatio;
vec2 local_pos = mix(p0, p1, aPosition.xy);
vec2 cp0 = floor(0.5 + info.local_clip_rect.xy * uDevicePixelRatio) / uDevicePixelRatio;
vec2 cp1 = floor(0.5 + (info.local_clip_rect.xy + info.local_clip_rect.zw) * uDevicePixelRatio) / uDevicePixelRatio;
local_pos = clamp(local_pos, cp0, cp1);
local_pos = clamp(local_pos,
vec2(layer.local_clip_rect.xy),
vec2(layer.local_clip_rect.xy + layer.local_clip_rect.zw));
vec4 world_pos = layer.transform * vec4(local_pos, 0, 1);
world_pos.xyz /= world_pos.w;
vec2 device_pos = world_pos.xy * uDevicePixelRatio;
vec2 clamped_pos = clamp(device_pos,
vec2(tile.actual_rect.xy),
vec2(tile.actual_rect.xy + tile.actual_rect.zw));
vec4 local_clamped_pos = layer.inv_transform * vec4(clamped_pos / uDevicePixelRatio, world_pos.z, 1);
local_clamped_pos.xyz /= local_clamped_pos.w;
vec2 final_pos = clamped_pos + vec2(tile.target_rect.xy) - vec2(tile.actual_rect.xy);
gl_Position = uTransform * vec4(final_pos, 0, 1);
VertexInfo vi = VertexInfo(Rect(p0, p1), local_clamped_pos.xy, clamped_pos.xy);
return vi;
}
struct TransformVertexInfo {
vec3 local_pos;
vec4 clipped_local_rect;
};
TransformVertexInfo write_transform_vertex(PrimitiveInfo info) {
Layer layer = fetch_layer(int(info.layer_tile.x));
Tile tile = fetch_tile(int(info.layer_tile.y));
vec2 lp0 = info.local_rect.xy;
vec2 lp1 = info.local_rect.xy + info.local_rect.zw;
lp0 = clamp(lp0,
layer.local_clip_rect.xy,
layer.local_clip_rect.xy + layer.local_clip_rect.zw);
lp1 = clamp(lp1,
layer.local_clip_rect.xy,
layer.local_clip_rect.xy + layer.local_clip_rect.zw);
vec4 clipped_local_rect = vec4(lp0, lp1 - lp0);
vec2 p0 = lp0;
vec2 p1 = vec2(lp1.x, lp0.y);
vec2 p2 = vec2(lp0.x, lp1.y);
vec2 p3 = lp1;
vec4 t0 = layer.transform * vec4(p0, 0, 1);
vec4 t1 = layer.transform * vec4(p1, 0, 1);
vec4 t2 = layer.transform * vec4(p2, 0, 1);
vec4 t3 = layer.transform * vec4(p3, 0, 1);
vec2 tp0 = t0.xy / t0.w;
vec2 tp1 = t1.xy / t1.w;
vec2 tp2 = t2.xy / t2.w;
vec2 tp3 = t3.xy / t3.w;
vec2 min_pos = min(tp0.xy, min(tp1.xy, min(tp2.xy, tp3.xy)));
vec2 max_pos = max(tp0.xy, max(tp1.xy, max(tp2.xy, tp3.xy)));
vec2 min_pos_clamped = clamp(min_pos * uDevicePixelRatio,
vec2(tile.actual_rect.xy),
vec2(tile.actual_rect.xy + tile.actual_rect.zw));
vec2 max_pos_clamped = clamp(max_pos * uDevicePixelRatio,
vec2(tile.actual_rect.xy),
vec2(tile.actual_rect.xy + tile.actual_rect.zw));
vec2 clamped_pos = mix(min_pos_clamped,
max_pos_clamped,
aPosition.xy);
vec3 layer_pos = get_layer_pos(clamped_pos / uDevicePixelRatio, layer);
vec2 final_pos = clamped_pos + vec2(tile.target_rect.xy) - vec2(tile.actual_rect.xy);
gl_Position = uTransform * vec4(final_pos, 0, 1);
return TransformVertexInfo(layer_pos, clipped_local_rect);
}
struct Rectangle {
PrimitiveInfo info;
vec4 color;
};
Rectangle fetch_rectangle(int index) {
Rectangle rect;
int offset = index * 4;
rect.info = unpack_prim_info(offset);
rect.color = data[offset + 3];
return rect;
}
struct RectangleClip {
PrimitiveInfo info;
vec4 color;
Clip clip;
};
RectangleClip fetch_rectangle_clip(int index) {
RectangleClip rect;
int offset = index * 13;
rect.info = unpack_prim_info(offset);
rect.color = data[offset + 3];
rect.clip = unpack_clip(offset + 4);
return rect;
}
struct Glyph {
PrimitiveInfo info;
vec4 color;
vec4 uv_rect;
};
Glyph fetch_glyph(int index) {
Glyph glyph;
int offset = index * 5;
glyph.info = unpack_prim_info(offset);
glyph.color = data[offset + 3];
glyph.uv_rect = data[offset + 4];
return glyph;
}
struct TextRunGlyph {
vec4 local_rect;
vec4 uv_rect;
};
struct TextRun {
PrimitiveInfo info;
vec4 color;
TextRunGlyph glyphs[WR_GLYPHS_PER_TEXT_RUN];
};
PrimitiveInfo fetch_text_run_glyph(int index, out vec4 color, out vec4 uv_rect) {
int offset = 20 * (index / WR_GLYPHS_PER_TEXT_RUN);
int glyph_index = index % WR_GLYPHS_PER_TEXT_RUN;
int glyph_offset = offset + 4 + 2 * glyph_index;
PrimitiveInfo info;
info.layer_tile = data[offset + 0];
info.local_clip_rect = data[offset + 1];
info.local_rect = data[glyph_offset + 0];
color = data[offset + 3];
uv_rect = data[glyph_offset + 1];
return info;
}
struct Image {
PrimitiveInfo info;
vec4 st_rect; // Location of the image texture in the texture atlas.
vec4 stretch_size_and_tile_spacing; // Size of the actual image and amount of space between
// tiled instances of this image.
vec4 uvkind; // Type of texture coordinates.
};
Image fetch_image(int index) {
Image image;
int offset = index * 6;
image.info = unpack_prim_info(offset);
image.st_rect = data[offset + 3];
image.stretch_size_and_tile_spacing = data[offset + 4];
image.uvkind = data[offset + 5];
return image;
}
struct ImageClip {
PrimitiveInfo info;
vec4 st_rect; // Location of the image texture in the texture atlas.
vec4 stretch_size_and_tile_spacing; // Size of the actual image and amount of space between
// tiled instances of this image.
vec4 uvkind; // Type of texture coordinates.
Clip clip;
};
ImageClip fetch_image_clip(int index) {
ImageClip image;
int offset = index * 15;
image.info = unpack_prim_info(offset);
image.st_rect = data[offset + 3];
image.stretch_size_and_tile_spacing = data[offset + 4];
image.uvkind = data[offset + 5];
image.clip = unpack_clip(offset + 6);
return image;
}
struct Border {
PrimitiveInfo info;
vec4 verticalColor;
vec4 horizontalColor;
vec4 radii;
vec4 border_style_trbl;
vec4 part;
};
Border fetch_border(int index) {
Border border;
int offset = index * 8;
border.info = unpack_prim_info(offset);
border.verticalColor = data[offset + 3];
border.horizontalColor = data[offset + 4];
border.radii = data[offset + 5];
border.border_style_trbl = data[offset + 6];
border.part = data[offset + 7];
return border;
}
struct BoxShadow {
PrimitiveInfo info;
vec4 color;
vec4 border_radii_blur_radius_inverted;
vec4 bs_rect;
vec4 src_rect;
};
BoxShadow fetch_boxshadow(int index) {
BoxShadow bs;
int offset = index * 7;
bs.info = unpack_prim_info(offset);
bs.color = data[offset + 3];
bs.border_radii_blur_radius_inverted = data[offset + 4];
bs.bs_rect = data[offset + 5];
bs.src_rect = data[offset + 6];
return bs;
}
struct AlignedGradient {
PrimitiveInfo info;
vec4 color0;
vec4 color1;
vec4 dir;
Clip clip;
};
AlignedGradient fetch_aligned_gradient(int index) {
AlignedGradient gradient;
int offset = index * 15;
gradient.info = unpack_prim_info(offset);
gradient.color0 = data[offset + 3];
gradient.color1 = data[offset + 4];
gradient.dir = data[offset + 5];
gradient.clip = unpack_clip(offset + 6);
return gradient;
}
struct AngleGradient {
PrimitiveInfo info;
vec4 start_end_point;
vec4 stop_count;
vec4 colors[MAX_STOPS_PER_ANGLE_GRADIENT];
vec4 offsets[MAX_STOPS_PER_ANGLE_GRADIENT/4];
};
AngleGradient fetch_angle_gradient(int index) {
AngleGradient gradient;
int offset = index * 15;
gradient.info = unpack_prim_info(offset);
gradient.start_end_point = data[offset + 3];
gradient.stop_count = data[offset + 4];
for (int i=0 ; i < MAX_STOPS_PER_ANGLE_GRADIENT ; ++i) {
gradient.colors[i] = data[offset + 5 + i];
}
for (int i=0 ; i < MAX_STOPS_PER_ANGLE_GRADIENT/4 ; ++i) {
gradient.offsets[i] = data[offset + 5 + MAX_STOPS_PER_ANGLE_GRADIENT + i];
}
return gradient;
}
struct Blend {
vec4 src_id_target_id_opacity;
};
Blend fetch_blend(int index) {
Blend blend;
int offset = index * 1;
blend.src_id_target_id_opacity = data[offset + 0];
return blend;
}
struct Composite {
vec4 src0_src1_target_id;
vec4 info_amount;
};
Composite fetch_composite(int index) {
Composite composite;
int offset = index * 2;
composite.src0_src1_target_id = data[offset + 0];
composite.info_amount = data[offset + 1];
return composite;
}
#endif
#ifdef WR_FRAGMENT_SHADER
float squared_distance_from_rect(vec2 p, vec2 origin, vec2 size) {
vec2 clamped = clamp(p, origin, origin + size);
return distance(clamped, p);
}
vec2 init_transform_fs(vec3 local_pos, vec4 local_rect, out float fragment_alpha) {
fragment_alpha = 1.0;
vec2 pos = local_pos.xy / local_pos.z;
float squared_distance = squared_distance_from_rect(pos, local_rect.xy, local_rect.zw);
if (squared_distance != 0.0) {
float delta = length(fwidth(local_pos.xy));
fragment_alpha = smoothstep(1.0, 0.0, squared_distance / delta * 2.0);
}
return pos;
}
#endif