servo/components/script/dom/bindings/root.rs
2017-09-26 09:48:55 +02:00

683 lines
20 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Smart pointers for the JS-managed DOM objects.
//!
//! The DOM is made up of DOM objects whose lifetime is entirely controlled by
//! the whims of the SpiderMonkey garbage collector. The types in this module
//! are designed to ensure that any interactions with said Rust types only
//! occur on values that will remain alive the entire time.
//!
//! Here is a brief overview of the important types:
//!
//! - `Root<T>`: a stack-based reference to a rooted DOM object.
//! - `Dom<T>`: a reference to a DOM object that can automatically be traced by
//! the GC when encountered as a field of a Rust structure.
//!
//! `Dom<T>` does not allow access to their inner value without explicitly
//! creating a stack-based root via the `root` method. This returns a `Root<T>`,
//! which causes the JS-owned value to be uncollectable for the duration of the
//! `Root` object's lifetime. A reference to the object can then be obtained
//! from the `Root` object. These references are not allowed to outlive their
//! originating `Root<T>`.
//!
use core::nonzero::NonZero;
use dom::bindings::conversions::DerivedFrom;
use dom::bindings::inheritance::Castable;
use dom::bindings::reflector::{DomObject, Reflector};
use dom::bindings::trace::JSTraceable;
use dom::bindings::trace::trace_reflector;
use dom::node::Node;
use heapsize::HeapSizeOf;
use js::jsapi::{JSObject, JSTracer, Heap};
use js::rust::GCMethods;
use mitochondria::OnceCell;
use script_layout_interface::TrustedNodeAddress;
use script_thread::STACK_ROOTS;
use std::cell::UnsafeCell;
use std::default::Default;
use std::hash::{Hash, Hasher};
#[cfg(debug_assertions)]
use std::intrinsics::type_name;
use std::mem;
use std::ops::Deref;
use std::ptr;
use std::rc::Rc;
use style::thread_state;
/// A traced reference to a DOM object
///
/// This type is critical to making garbage collection work with the DOM,
/// but it is very dangerous; if garbage collection happens with a `Dom<T>`
/// on the stack, the `Dom<T>` can point to freed memory.
///
/// This should only be used as a field in other DOM objects.
#[must_root]
pub struct Dom<T> {
ptr: NonZero<*const T>,
}
// Dom<T> is similar to Rc<T>, in that it's not always clear how to avoid double-counting.
// For now, we choose not to follow any such pointers.
impl<T> HeapSizeOf for Dom<T> {
fn heap_size_of_children(&self) -> usize {
0
}
}
impl<T> Dom<T> {
/// Returns `LayoutJS<T>` containing the same pointer.
pub unsafe fn to_layout(&self) -> LayoutJS<T> {
debug_assert!(thread_state::get().is_layout());
LayoutJS {
ptr: self.ptr.clone(),
}
}
}
impl<T: DomObject> Dom<T> {
/// Create a Dom<T> from a &T
#[allow(unrooted_must_root)]
pub fn from_ref(obj: &T) -> Dom<T> {
debug_assert!(thread_state::get().is_script());
Dom {
ptr: unsafe { NonZero::new_unchecked(&*obj) },
}
}
}
impl<'root, T: DomObject + 'root> RootedReference<'root> for Dom<T> {
type Ref = &'root T;
fn r(&'root self) -> &'root T {
&self
}
}
impl<T: DomObject> Deref for Dom<T> {
type Target = T;
fn deref(&self) -> &T {
debug_assert!(thread_state::get().is_script());
// We can only have &Dom<T> from a rooted thing, so it's safe to deref
// it to &T.
unsafe { &*self.ptr.get() }
}
}
unsafe impl<T: DomObject> JSTraceable for Dom<T> {
unsafe fn trace(&self, trc: *mut JSTracer) {
#[cfg(debug_assertions)]
let trace_str = format!("for {} on heap", type_name::<T>());
#[cfg(debug_assertions)]
let trace_info = &trace_str[..];
#[cfg(not(debug_assertions))]
let trace_info = "for DOM object on heap";
trace_reflector(trc,
trace_info,
(*self.ptr.get()).reflector());
}
}
/// An unrooted reference to a DOM object for use in layout. `Layout*Helpers`
/// traits must be implemented on this.
#[allow_unrooted_interior]
pub struct LayoutJS<T> {
ptr: NonZero<*const T>,
}
impl<T: Castable> LayoutJS<T> {
/// Cast a DOM object root upwards to one of the interfaces it derives from.
pub fn upcast<U>(&self) -> LayoutJS<U>
where U: Castable,
T: DerivedFrom<U>
{
debug_assert!(thread_state::get().is_layout());
let ptr: *const T = self.ptr.get();
LayoutJS {
ptr: unsafe { NonZero::new_unchecked(ptr as *const U) },
}
}
/// Cast a DOM object downwards to one of the interfaces it might implement.
pub fn downcast<U>(&self) -> Option<LayoutJS<U>>
where U: DerivedFrom<T>
{
debug_assert!(thread_state::get().is_layout());
unsafe {
if (*self.unsafe_get()).is::<U>() {
let ptr: *const T = self.ptr.get();
Some(LayoutJS {
ptr: NonZero::new_unchecked(ptr as *const U),
})
} else {
None
}
}
}
}
impl<T: DomObject> LayoutJS<T> {
/// Get the reflector.
pub unsafe fn get_jsobject(&self) -> *mut JSObject {
debug_assert!(thread_state::get().is_layout());
(*self.ptr.get()).reflector().get_jsobject().get()
}
}
impl<T> Copy for LayoutJS<T> {}
impl<T> PartialEq for Dom<T> {
fn eq(&self, other: &Dom<T>) -> bool {
self.ptr == other.ptr
}
}
impl<T> Eq for Dom<T> {}
impl<T> PartialEq for LayoutJS<T> {
fn eq(&self, other: &LayoutJS<T>) -> bool {
self.ptr == other.ptr
}
}
impl<T> Eq for LayoutJS<T> {}
impl<T> Hash for Dom<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.ptr.hash(state)
}
}
impl<T> Hash for LayoutJS<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.ptr.hash(state)
}
}
impl <T> Clone for Dom<T> {
#[inline]
#[allow(unrooted_must_root)]
fn clone(&self) -> Dom<T> {
debug_assert!(thread_state::get().is_script());
Dom {
ptr: self.ptr.clone(),
}
}
}
impl <T> Clone for LayoutJS<T> {
#[inline]
fn clone(&self) -> LayoutJS<T> {
debug_assert!(thread_state::get().is_layout());
LayoutJS {
ptr: self.ptr.clone(),
}
}
}
impl LayoutJS<Node> {
/// Create a new JS-owned value wrapped from an address known to be a
/// `Node` pointer.
pub unsafe fn from_trusted_node_address(inner: TrustedNodeAddress) -> LayoutJS<Node> {
debug_assert!(thread_state::get().is_layout());
let TrustedNodeAddress(addr) = inner;
LayoutJS {
ptr: NonZero::new_unchecked(addr as *const Node),
}
}
}
/// A holder that provides interior mutability for GC-managed values such as
/// `Dom<T>`. Essentially a `Cell<Dom<T>>`, but safer.
///
/// This should only be used as a field in other DOM objects; see warning
/// on `Dom<T>`.
#[must_root]
#[derive(JSTraceable)]
pub struct MutJS<T: DomObject> {
val: UnsafeCell<Dom<T>>,
}
impl<T: DomObject> MutJS<T> {
/// Create a new `MutJS`.
pub fn new(initial: &T) -> MutJS<T> {
debug_assert!(thread_state::get().is_script());
MutJS {
val: UnsafeCell::new(Dom::from_ref(initial)),
}
}
/// Set this `MutJS` to the given value.
pub fn set(&self, val: &T) {
debug_assert!(thread_state::get().is_script());
unsafe {
*self.val.get() = Dom::from_ref(val);
}
}
/// Get the value in this `MutJS`.
pub fn get(&self) -> Root<T> {
debug_assert!(thread_state::get().is_script());
unsafe {
Root::from_ref(&*ptr::read(self.val.get()))
}
}
}
impl<T: DomObject> HeapSizeOf for MutJS<T> {
fn heap_size_of_children(&self) -> usize {
// See comment on HeapSizeOf for Dom<T>.
0
}
}
impl<T: DomObject> PartialEq for MutJS<T> {
fn eq(&self, other: &Self) -> bool {
unsafe {
*self.val.get() == *other.val.get()
}
}
}
impl<T: DomObject + PartialEq> PartialEq<T> for MutJS<T> {
fn eq(&self, other: &T) -> bool {
unsafe {
**self.val.get() == *other
}
}
}
/// A holder that provides interior mutability for GC-managed values such as
/// `Dom<T>`, with nullability represented by an enclosing Option wrapper.
/// Essentially a `Cell<Option<Dom<T>>>`, but safer.
///
/// This should only be used as a field in other DOM objects; see warning
/// on `Dom<T>`.
#[must_root]
#[derive(JSTraceable)]
pub struct MutNullableJS<T: DomObject> {
ptr: UnsafeCell<Option<Dom<T>>>,
}
impl<T: DomObject> MutNullableJS<T> {
/// Create a new `MutNullableJS`.
pub fn new(initial: Option<&T>) -> MutNullableJS<T> {
debug_assert!(thread_state::get().is_script());
MutNullableJS {
ptr: UnsafeCell::new(initial.map(Dom::from_ref)),
}
}
/// Retrieve a copy of the current inner value. If it is `None`, it is
/// initialized with the result of `cb` first.
pub fn or_init<F>(&self, cb: F) -> Root<T>
where F: FnOnce() -> Root<T>
{
debug_assert!(thread_state::get().is_script());
match self.get() {
Some(inner) => inner,
None => {
let inner = cb();
self.set(Some(&inner));
inner
},
}
}
/// Retrieve a copy of the inner optional `Dom<T>` as `LayoutJS<T>`.
/// For use by layout, which can't use safe types like Temporary.
#[allow(unrooted_must_root)]
pub unsafe fn get_inner_as_layout(&self) -> Option<LayoutJS<T>> {
debug_assert!(thread_state::get().is_layout());
ptr::read(self.ptr.get()).map(|js| js.to_layout())
}
/// Get a rooted value out of this object
#[allow(unrooted_must_root)]
pub fn get(&self) -> Option<Root<T>> {
debug_assert!(thread_state::get().is_script());
unsafe {
ptr::read(self.ptr.get()).map(|o| Root::from_ref(&*o))
}
}
/// Set this `MutNullableJS` to the given value.
pub fn set(&self, val: Option<&T>) {
debug_assert!(thread_state::get().is_script());
unsafe {
*self.ptr.get() = val.map(|p| Dom::from_ref(p));
}
}
/// Gets the current value out of this object and sets it to `None`.
pub fn take(&self) -> Option<Root<T>> {
let value = self.get();
self.set(None);
value
}
}
impl<T: DomObject> PartialEq for MutNullableJS<T> {
fn eq(&self, other: &Self) -> bool {
unsafe {
*self.ptr.get() == *other.ptr.get()
}
}
}
impl<'a, T: DomObject> PartialEq<Option<&'a T>> for MutNullableJS<T> {
fn eq(&self, other: &Option<&T>) -> bool {
unsafe {
*self.ptr.get() == other.map(Dom::from_ref)
}
}
}
impl<T: DomObject> Default for MutNullableJS<T> {
#[allow(unrooted_must_root)]
fn default() -> MutNullableJS<T> {
debug_assert!(thread_state::get().is_script());
MutNullableJS {
ptr: UnsafeCell::new(None),
}
}
}
impl<T: DomObject> HeapSizeOf for MutNullableJS<T> {
fn heap_size_of_children(&self) -> usize {
// See comment on HeapSizeOf for Dom<T>.
0
}
}
/// A holder that allows to lazily initialize the value only once
/// `Dom<T>`, using OnceCell
/// Essentially a `OnceCell<Dom<T>>`.
///
/// This should only be used as a field in other DOM objects; see warning
/// on `Dom<T>`.
#[must_root]
pub struct OnceCellJS<T: DomObject> {
ptr: OnceCell<Dom<T>>,
}
impl<T: DomObject> OnceCellJS<T> {
/// Retrieve a copy of the current inner value. If it is `None`, it is
/// initialized with the result of `cb` first.
#[allow(unrooted_must_root)]
pub fn init_once<F>(&self, cb: F) -> &T
where F: FnOnce() -> Root<T>
{
debug_assert!(thread_state::get().is_script());
&self.ptr.init_once(|| Dom::from_ref(&cb()))
}
}
impl<T: DomObject> Default for OnceCellJS<T> {
#[allow(unrooted_must_root)]
fn default() -> OnceCellJS<T> {
debug_assert!(thread_state::get().is_script());
OnceCellJS {
ptr: OnceCell::new(),
}
}
}
impl<T: DomObject> HeapSizeOf for OnceCellJS<T> {
fn heap_size_of_children(&self) -> usize {
// See comment on HeapSizeOf for Dom<T>.
0
}
}
#[allow(unrooted_must_root)]
unsafe impl<T: DomObject> JSTraceable for OnceCellJS<T> {
unsafe fn trace(&self, trc: *mut JSTracer) {
if let Some(ptr) = self.ptr.as_ref() {
ptr.trace(trc);
}
}
}
impl<T: DomObject> LayoutJS<T> {
/// Returns an unsafe pointer to the interior of this JS object. This is
/// the only method that be safely accessed from layout. (The fact that
/// this is unsafe is what necessitates the layout wrappers.)
pub unsafe fn unsafe_get(&self) -> *const T {
debug_assert!(thread_state::get().is_layout());
self.ptr.get()
}
/// Returns a reference to the interior of this JS object. This method is
/// safe to call because it originates from the layout thread, and it cannot
/// mutate DOM nodes.
pub fn get_for_script(&self) -> &T {
debug_assert!(thread_state::get().is_script());
unsafe { &*self.ptr.get() }
}
}
/// Get a reference out of a rooted value.
pub trait RootedReference<'root> {
/// The type of the reference.
type Ref: 'root;
/// Obtain a reference out of the rooted value.
fn r(&'root self) -> Self::Ref;
}
impl<'root, T: JSTraceable + DomObject + 'root> RootedReference<'root> for [Dom<T>] {
type Ref = &'root [&'root T];
fn r(&'root self) -> &'root [&'root T] {
unsafe { mem::transmute(self) }
}
}
impl<'root, T: DomObject + 'root> RootedReference<'root> for Rc<T> {
type Ref = &'root T;
fn r(&'root self) -> &'root T {
self
}
}
impl<'root, T: RootedReference<'root> + 'root> RootedReference<'root> for Option<T> {
type Ref = Option<T::Ref>;
fn r(&'root self) -> Option<T::Ref> {
self.as_ref().map(RootedReference::r)
}
}
/// A rooting mechanism for reflectors on the stack.
/// LIFO is not required.
///
/// See also [*Exact Stack Rooting - Storing a GCPointer on the CStack*]
/// (https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals/GC/Exact_Stack_Rooting).
pub struct RootCollection {
roots: UnsafeCell<Vec<*const Reflector>>,
}
/// A pointer to a RootCollection, for use in global variables.
pub struct RootCollectionPtr(pub *const RootCollection);
impl Copy for RootCollectionPtr {}
impl Clone for RootCollectionPtr {
fn clone(&self) -> RootCollectionPtr {
*self
}
}
impl RootCollection {
/// Create an empty collection of roots
pub fn new() -> RootCollection {
debug_assert!(thread_state::get().is_script());
RootCollection {
roots: UnsafeCell::new(vec![]),
}
}
/// Start tracking a stack-based root
unsafe fn root(&self, untracked_reflector: *const Reflector) {
debug_assert!(thread_state::get().is_script());
let roots = &mut *self.roots.get();
roots.push(untracked_reflector);
assert!(!(*untracked_reflector).get_jsobject().is_null())
}
/// Stop tracking a stack-based reflector, asserting if it isn't found.
unsafe fn unroot(&self, tracked_reflector: *const Reflector) {
assert!(!tracked_reflector.is_null());
assert!(!(*tracked_reflector).get_jsobject().is_null());
debug_assert!(thread_state::get().is_script());
let roots = &mut *self.roots.get();
match roots.iter().rposition(|r| *r == tracked_reflector) {
Some(idx) => {
roots.remove(idx);
},
None => panic!("Can't remove a root that was never rooted!"),
}
}
}
/// SM Callback that traces the rooted reflectors
pub unsafe fn trace_roots(tracer: *mut JSTracer) {
debug!("tracing stack roots");
STACK_ROOTS.with(|ref collection| {
let RootCollectionPtr(collection) = collection.get().unwrap();
let collection = &*(*collection).roots.get();
for root in collection {
trace_reflector(tracer, "on stack", &**root);
}
});
}
/// A rooted reference to a DOM object.
///
/// The JS value is pinned for the duration of this object's lifetime; roots
/// are additive, so this object's destruction will not invalidate other roots
/// for the same JS value. `Root`s cannot outlive the associated
/// `RootCollection` object.
#[allow_unrooted_interior]
pub struct Root<T: DomObject> {
/// Reference to rooted value that must not outlive this container
ptr: NonZero<*const T>,
/// List that ensures correct dynamic root ordering
root_list: *const RootCollection,
}
impl<T: Castable> Root<T> {
/// Cast a DOM object root upwards to one of the interfaces it derives from.
pub fn upcast<U>(root: Root<T>) -> Root<U>
where U: Castable,
T: DerivedFrom<U>
{
unsafe { mem::transmute(root) }
}
/// Cast a DOM object root downwards to one of the interfaces it might implement.
pub fn downcast<U>(root: Root<T>) -> Option<Root<U>>
where U: DerivedFrom<T>
{
if root.is::<U>() {
Some(unsafe { mem::transmute(root) })
} else {
None
}
}
}
impl<T: DomObject> Root<T> {
/// Create a new stack-bounded root for the provided JS-owned value.
/// It cannot outlive its associated `RootCollection`, and it gives
/// out references which cannot outlive this new `Root`.
pub fn new(unrooted: NonZero<*const T>) -> Root<T> {
debug_assert!(thread_state::get().is_script());
STACK_ROOTS.with(|ref collection| {
let RootCollectionPtr(collection) = collection.get().unwrap();
unsafe { (*collection).root(&*(*unrooted.get()).reflector()) }
Root {
ptr: unrooted,
root_list: collection,
}
})
}
/// Generate a new root from a reference
pub fn from_ref(unrooted: &T) -> Root<T> {
Root::new(unsafe { NonZero::new_unchecked(unrooted) })
}
}
impl<'root, T: DomObject + 'root> RootedReference<'root> for Root<T> {
type Ref = &'root T;
fn r(&'root self) -> &'root T {
self
}
}
impl<T: DomObject> Deref for Root<T> {
type Target = T;
fn deref(&self) -> &T {
debug_assert!(thread_state::get().is_script());
unsafe { &*self.ptr.get() }
}
}
impl<T: DomObject + HeapSizeOf> HeapSizeOf for Root<T> {
fn heap_size_of_children(&self) -> usize {
(**self).heap_size_of_children()
}
}
impl<T: DomObject> PartialEq for Root<T> {
fn eq(&self, other: &Self) -> bool {
self.ptr == other.ptr
}
}
impl<T: DomObject> Clone for Root<T> {
fn clone(&self) -> Root<T> {
Root::from_ref(&*self)
}
}
impl<T: DomObject> Drop for Root<T> {
fn drop(&mut self) {
unsafe {
(*self.root_list).unroot(self.reflector());
}
}
}
unsafe impl<T: DomObject> JSTraceable for Root<T> {
unsafe fn trace(&self, _: *mut JSTracer) {
// Already traced.
}
}
/// Helper trait for safer manipulations of Option<Heap<T>> values.
pub trait OptionalHeapSetter {
type Value;
/// Update this optional heap value with a new value.
fn set(&mut self, v: Option<Self::Value>);
}
impl<T: GCMethods + Copy> OptionalHeapSetter for Option<Heap<T>> where Heap<T>: Default {
type Value = T;
fn set(&mut self, v: Option<T>) {
let v = match v {
None => {
*self = None;
return;
}
Some(v) => v,
};
if self.is_none() {
*self = Some(Heap::default());
}
self.as_ref().unwrap().set(v);
}
}