servo/components/style/values/specified/svg_path.rs
Emilio Cobos Álvarez 0e8b1853a7
style: Expand and simplify a macro that's not very useful.
Skip whitespace upfront rather than on each individual branch. The only
difference in behavior is that we would've consumed some extra whitespace in the
error case, but I don't think that matters at all.

We were consuming some extra whitespace as well after the close path command for
example, which wasn't parsing anything.

Differential Revision: https://phabricator.services.mozilla.com/D40539
2019-08-15 16:58:37 +02:00

872 lines
26 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Specified types for SVG Path.
use crate::parser::{Parse, ParserContext};
use crate::values::animated::{Animate, Procedure, ToAnimatedZero};
use crate::values::distance::{ComputeSquaredDistance, SquaredDistance};
use crate::values::CSSFloat;
use cssparser::Parser;
use std::fmt::{self, Write};
use std::iter::{Cloned, Peekable};
use std::slice;
use style_traits::values::SequenceWriter;
use style_traits::{CssWriter, ParseError, StyleParseErrorKind, ToCss};
/// The SVG path data.
///
/// https://www.w3.org/TR/SVG11/paths.html#PathData
#[derive(
Clone,
Debug,
MallocSizeOf,
PartialEq,
SpecifiedValueInfo,
ToAnimatedZero,
ToComputedValue,
ToResolvedValue,
ToShmem,
)]
#[repr(C)]
pub struct SVGPathData(
// TODO(emilio): Should probably measure this somehow only from the
// specified values.
#[ignore_malloc_size_of = "Arc"] pub crate::ArcSlice<PathCommand>,
);
impl SVGPathData {
/// Get the array of PathCommand.
#[inline]
pub fn commands(&self) -> &[PathCommand] {
debug_assert!(!self.0.is_empty());
&self.0
}
/// Create a normalized copy of this path by converting each relative
/// command to an absolute command.
fn normalize(&self) -> Box<[PathCommand]> {
let mut state = PathTraversalState {
subpath_start: CoordPair::new(0.0, 0.0),
pos: CoordPair::new(0.0, 0.0),
};
let result = self
.0
.iter()
.map(|seg| seg.normalize(&mut state))
.collect::<Vec<_>>();
result.into_boxed_slice()
}
}
impl ToCss for SVGPathData {
#[inline]
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: fmt::Write,
{
dest.write_char('"')?;
{
let mut writer = SequenceWriter::new(dest, " ");
for command in self.commands() {
writer.item(command)?;
}
}
dest.write_char('"')
}
}
impl Parse for SVGPathData {
// We cannot use cssparser::Parser to parse a SVG path string because the spec wants to make
// the SVG path string as compact as possible. (i.e. The whitespaces may be dropped.)
// e.g. "M100 200L100 200" is a valid SVG path string. If we use tokenizer, the first ident
// is "M100", instead of "M", and this is not correct. Therefore, we use a Peekable
// str::Char iterator to check each character.
fn parse<'i, 't>(
_context: &ParserContext,
input: &mut Parser<'i, 't>,
) -> Result<Self, ParseError<'i>> {
let location = input.current_source_location();
let path_string = input.expect_string()?.as_ref();
if path_string.is_empty() {
// Treat an empty string as invalid, so we will not set it.
return Err(location.new_custom_error(StyleParseErrorKind::UnspecifiedError));
}
// Parse the svg path string as multiple sub-paths.
let mut path_parser = PathParser::new(path_string);
while skip_wsp(&mut path_parser.chars) {
if path_parser.parse_subpath().is_err() {
return Err(location.new_custom_error(StyleParseErrorKind::UnspecifiedError));
}
}
Ok(SVGPathData(crate::ArcSlice::from_iter(
path_parser.path.into_iter(),
)))
}
}
impl Animate for SVGPathData {
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
if self.0.len() != other.0.len() {
return Err(());
}
// FIXME(emilio): This allocates three copies of the path, that's not
// great! Specially, once we're normalized once, we don't need to
// re-normalize again.
let result = self
.normalize()
.iter()
.zip(other.normalize().iter())
.map(|(a, b)| a.animate(&b, procedure))
.collect::<Result<Vec<_>, _>>()?;
Ok(SVGPathData(crate::ArcSlice::from_iter(result.into_iter())))
}
}
impl ComputeSquaredDistance for SVGPathData {
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
if self.0.len() != other.0.len() {
return Err(());
}
self.normalize()
.iter()
.zip(other.normalize().iter())
.map(|(this, other)| this.compute_squared_distance(&other))
.sum()
}
}
/// The SVG path command.
/// The fields of these commands are self-explanatory, so we skip the documents.
/// Note: the index of the control points, e.g. control1, control2, are mapping to the control
/// points of the Bézier curve in the spec.
///
/// https://www.w3.org/TR/SVG11/paths.html#PathData
#[derive(
Animate,
Clone,
ComputeSquaredDistance,
Copy,
Debug,
MallocSizeOf,
PartialEq,
SpecifiedValueInfo,
ToAnimatedZero,
ToShmem,
)]
#[allow(missing_docs)]
#[repr(C, u8)]
pub enum PathCommand {
/// The unknown type.
/// https://www.w3.org/TR/SVG/paths.html#__svg__SVGPathSeg__PATHSEG_UNKNOWN
Unknown,
/// The "moveto" command.
MoveTo {
point: CoordPair,
absolute: IsAbsolute,
},
/// The "lineto" command.
LineTo {
point: CoordPair,
absolute: IsAbsolute,
},
/// The horizontal "lineto" command.
HorizontalLineTo { x: CSSFloat, absolute: IsAbsolute },
/// The vertical "lineto" command.
VerticalLineTo { y: CSSFloat, absolute: IsAbsolute },
/// The cubic Bézier curve command.
CurveTo {
control1: CoordPair,
control2: CoordPair,
point: CoordPair,
absolute: IsAbsolute,
},
/// The smooth curve command.
SmoothCurveTo {
control2: CoordPair,
point: CoordPair,
absolute: IsAbsolute,
},
/// The quadratic Bézier curve command.
QuadBezierCurveTo {
control1: CoordPair,
point: CoordPair,
absolute: IsAbsolute,
},
/// The smooth quadratic Bézier curve command.
SmoothQuadBezierCurveTo {
point: CoordPair,
absolute: IsAbsolute,
},
/// The elliptical arc curve command.
EllipticalArc {
rx: CSSFloat,
ry: CSSFloat,
angle: CSSFloat,
large_arc_flag: ArcFlag,
sweep_flag: ArcFlag,
point: CoordPair,
absolute: IsAbsolute,
},
/// The "closepath" command.
ClosePath,
}
/// For internal SVGPath normalization.
#[allow(missing_docs)]
struct PathTraversalState {
subpath_start: CoordPair,
pos: CoordPair,
}
impl PathCommand {
/// Create a normalized copy of this PathCommand. Absolute commands will be copied as-is while
/// for relative commands an equivalent absolute command will be returned.
///
/// See discussion: https://github.com/w3c/svgwg/issues/321
fn normalize(&self, state: &mut PathTraversalState) -> Self {
use self::PathCommand::*;
match *self {
Unknown => Unknown,
ClosePath => {
state.pos = state.subpath_start;
ClosePath
},
MoveTo {
mut point,
absolute,
} => {
if !absolute.is_yes() {
point += state.pos;
}
state.pos = point;
state.subpath_start = point;
MoveTo {
point,
absolute: IsAbsolute::Yes,
}
},
LineTo {
mut point,
absolute,
} => {
if !absolute.is_yes() {
point += state.pos;
}
state.pos = point;
LineTo {
point,
absolute: IsAbsolute::Yes,
}
},
HorizontalLineTo { mut x, absolute } => {
if !absolute.is_yes() {
x += state.pos.0;
}
state.pos.0 = x;
HorizontalLineTo {
x,
absolute: IsAbsolute::Yes,
}
},
VerticalLineTo { mut y, absolute } => {
if !absolute.is_yes() {
y += state.pos.1;
}
state.pos.1 = y;
VerticalLineTo {
y,
absolute: IsAbsolute::Yes,
}
},
CurveTo {
mut control1,
mut control2,
mut point,
absolute,
} => {
if !absolute.is_yes() {
control1 += state.pos;
control2 += state.pos;
point += state.pos;
}
state.pos = point;
CurveTo {
control1,
control2,
point,
absolute: IsAbsolute::Yes,
}
},
SmoothCurveTo {
mut control2,
mut point,
absolute,
} => {
if !absolute.is_yes() {
control2 += state.pos;
point += state.pos;
}
state.pos = point;
SmoothCurveTo {
control2,
point,
absolute: IsAbsolute::Yes,
}
},
QuadBezierCurveTo {
mut control1,
mut point,
absolute,
} => {
if !absolute.is_yes() {
control1 += state.pos;
point += state.pos;
}
state.pos = point;
QuadBezierCurveTo {
control1,
point,
absolute: IsAbsolute::Yes,
}
},
SmoothQuadBezierCurveTo {
mut point,
absolute,
} => {
if !absolute.is_yes() {
point += state.pos;
}
state.pos = point;
SmoothQuadBezierCurveTo {
point,
absolute: IsAbsolute::Yes,
}
},
EllipticalArc {
rx,
ry,
angle,
large_arc_flag,
sweep_flag,
mut point,
absolute,
} => {
if !absolute.is_yes() {
point += state.pos;
}
state.pos = point;
EllipticalArc {
rx,
ry,
angle,
large_arc_flag,
sweep_flag,
point,
absolute: IsAbsolute::Yes,
}
},
}
}
}
impl ToCss for PathCommand {
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: fmt::Write,
{
use self::PathCommand::*;
match *self {
Unknown => dest.write_char('X'),
ClosePath => dest.write_char('Z'),
MoveTo { point, absolute } => {
dest.write_char(if absolute.is_yes() { 'M' } else { 'm' })?;
dest.write_char(' ')?;
point.to_css(dest)
},
LineTo { point, absolute } => {
dest.write_char(if absolute.is_yes() { 'L' } else { 'l' })?;
dest.write_char(' ')?;
point.to_css(dest)
},
CurveTo {
control1,
control2,
point,
absolute,
} => {
dest.write_char(if absolute.is_yes() { 'C' } else { 'c' })?;
dest.write_char(' ')?;
control1.to_css(dest)?;
dest.write_char(' ')?;
control2.to_css(dest)?;
dest.write_char(' ')?;
point.to_css(dest)
},
QuadBezierCurveTo {
control1,
point,
absolute,
} => {
dest.write_char(if absolute.is_yes() { 'Q' } else { 'q' })?;
dest.write_char(' ')?;
control1.to_css(dest)?;
dest.write_char(' ')?;
point.to_css(dest)
},
EllipticalArc {
rx,
ry,
angle,
large_arc_flag,
sweep_flag,
point,
absolute,
} => {
dest.write_char(if absolute.is_yes() { 'A' } else { 'a' })?;
dest.write_char(' ')?;
rx.to_css(dest)?;
dest.write_char(' ')?;
ry.to_css(dest)?;
dest.write_char(' ')?;
angle.to_css(dest)?;
dest.write_char(' ')?;
large_arc_flag.to_css(dest)?;
dest.write_char(' ')?;
sweep_flag.to_css(dest)?;
dest.write_char(' ')?;
point.to_css(dest)
},
HorizontalLineTo { x, absolute } => {
dest.write_char(if absolute.is_yes() { 'H' } else { 'h' })?;
dest.write_char(' ')?;
x.to_css(dest)
},
VerticalLineTo { y, absolute } => {
dest.write_char(if absolute.is_yes() { 'V' } else { 'v' })?;
dest.write_char(' ')?;
y.to_css(dest)
},
SmoothCurveTo {
control2,
point,
absolute,
} => {
dest.write_char(if absolute.is_yes() { 'S' } else { 's' })?;
dest.write_char(' ')?;
control2.to_css(dest)?;
dest.write_char(' ')?;
point.to_css(dest)
},
SmoothQuadBezierCurveTo { point, absolute } => {
dest.write_char(if absolute.is_yes() { 'T' } else { 't' })?;
dest.write_char(' ')?;
point.to_css(dest)
},
}
}
}
/// The path command absolute type.
#[allow(missing_docs)]
#[derive(
Animate,
Clone,
ComputeSquaredDistance,
Copy,
Debug,
MallocSizeOf,
PartialEq,
SpecifiedValueInfo,
ToAnimatedZero,
ToShmem,
)]
#[repr(u8)]
pub enum IsAbsolute {
Yes,
No,
}
impl IsAbsolute {
/// Return true if this is IsAbsolute::Yes.
#[inline]
pub fn is_yes(&self) -> bool {
*self == IsAbsolute::Yes
}
}
/// The path coord type.
#[derive(
AddAssign,
Animate,
Clone,
ComputeSquaredDistance,
Copy,
Debug,
MallocSizeOf,
PartialEq,
SpecifiedValueInfo,
ToAnimatedZero,
ToCss,
ToShmem,
)]
#[repr(C)]
pub struct CoordPair(CSSFloat, CSSFloat);
impl CoordPair {
/// Create a CoordPair.
#[inline]
pub fn new(x: CSSFloat, y: CSSFloat) -> Self {
CoordPair(x, y)
}
}
/// The EllipticalArc flag type.
#[derive(Clone, Copy, Debug, MallocSizeOf, PartialEq, SpecifiedValueInfo, ToShmem)]
#[repr(C)]
pub struct ArcFlag(bool);
impl ToCss for ArcFlag {
#[inline]
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: fmt::Write,
{
(self.0 as i32).to_css(dest)
}
}
impl Animate for ArcFlag {
#[inline]
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
(self.0 as i32)
.animate(&(other.0 as i32), procedure)
.map(|v| ArcFlag(v > 0))
}
}
impl ComputeSquaredDistance for ArcFlag {
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
(self.0 as i32).compute_squared_distance(&(other.0 as i32))
}
}
impl ToAnimatedZero for ArcFlag {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
// The 2 ArcFlags in EllipticalArc determine which one of the 4 different arcs will be
// used. (i.e. From 4 combinations). In other words, if we change the flag, we get a
// different arc. Therefore, we return *self.
// https://svgwg.org/svg2-draft/paths.html#PathDataEllipticalArcCommands
Ok(*self)
}
}
/// SVG Path parser.
struct PathParser<'a> {
chars: Peekable<Cloned<slice::Iter<'a, u8>>>,
path: Vec<PathCommand>,
}
macro_rules! parse_arguments {
(
$parser:ident,
$abs:ident,
$enum:ident,
[ $para:ident => $func:ident $(, $other_para:ident => $other_func:ident)* ]
) => {
{
loop {
let $para = $func(&mut $parser.chars)?;
$(
skip_comma_wsp(&mut $parser.chars);
let $other_para = $other_func(&mut $parser.chars)?;
)*
$parser.path.push(PathCommand::$enum { $para $(, $other_para)*, $abs });
// End of string or the next character is a possible new command.
if !skip_wsp(&mut $parser.chars) ||
$parser.chars.peek().map_or(true, |c| c.is_ascii_alphabetic()) {
break;
}
skip_comma_wsp(&mut $parser.chars);
}
Ok(())
}
}
}
impl<'a> PathParser<'a> {
/// Return a PathParser.
#[inline]
fn new(string: &'a str) -> Self {
PathParser {
chars: string.as_bytes().iter().cloned().peekable(),
path: Vec::new(),
}
}
/// Parse a sub-path.
fn parse_subpath(&mut self) -> Result<(), ()> {
// Handle "moveto" Command first. If there is no "moveto", this is not a valid sub-path
// (i.e. not a valid moveto-drawto-command-group).
self.parse_moveto()?;
// Handle other commands.
loop {
skip_wsp(&mut self.chars);
if self.chars.peek().map_or(true, |&m| m == b'M' || m == b'm') {
break;
}
let command = self.chars.next().unwrap();
let abs = if command.is_ascii_uppercase() {
IsAbsolute::Yes
} else {
IsAbsolute::No
};
skip_wsp(&mut self.chars);
match command {
b'Z' | b'z' => self.parse_closepath(),
b'L' | b'l' => self.parse_lineto(abs),
b'H' | b'h' => self.parse_h_lineto(abs),
b'V' | b'v' => self.parse_v_lineto(abs),
b'C' | b'c' => self.parse_curveto(abs),
b'S' | b's' => self.parse_smooth_curveto(abs),
b'Q' | b'q' => self.parse_quadratic_bezier_curveto(abs),
b'T' | b't' => self.parse_smooth_quadratic_bezier_curveto(abs),
b'A' | b'a' => self.parse_elliptical_arc(abs),
_ => return Err(()),
}?;
}
Ok(())
}
/// Parse "moveto" command.
fn parse_moveto(&mut self) -> Result<(), ()> {
let command = match self.chars.next() {
Some(c) if c == b'M' || c == b'm' => c,
_ => return Err(()),
};
skip_wsp(&mut self.chars);
let point = parse_coord(&mut self.chars)?;
let absolute = if command == b'M' {
IsAbsolute::Yes
} else {
IsAbsolute::No
};
self.path.push(PathCommand::MoveTo { point, absolute });
// End of string or the next character is a possible new command.
if !skip_wsp(&mut self.chars) || self.chars.peek().map_or(true, |c| c.is_ascii_alphabetic())
{
return Ok(());
}
skip_comma_wsp(&mut self.chars);
// If a moveto is followed by multiple pairs of coordinates, the subsequent
// pairs are treated as implicit lineto commands.
self.parse_lineto(absolute)
}
/// Parse "closepath" command.
fn parse_closepath(&mut self) -> Result<(), ()> {
self.path.push(PathCommand::ClosePath);
Ok(())
}
/// Parse "lineto" command.
fn parse_lineto(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
parse_arguments!(self, absolute, LineTo, [ point => parse_coord ])
}
/// Parse horizontal "lineto" command.
fn parse_h_lineto(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
parse_arguments!(self, absolute, HorizontalLineTo, [ x => parse_number ])
}
/// Parse vertical "lineto" command.
fn parse_v_lineto(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
parse_arguments!(self, absolute, VerticalLineTo, [ y => parse_number ])
}
/// Parse cubic Bézier curve command.
fn parse_curveto(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
parse_arguments!(self, absolute, CurveTo, [
control1 => parse_coord, control2 => parse_coord, point => parse_coord
])
}
/// Parse smooth "curveto" command.
fn parse_smooth_curveto(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
parse_arguments!(self, absolute, SmoothCurveTo, [
control2 => parse_coord, point => parse_coord
])
}
/// Parse quadratic Bézier curve command.
fn parse_quadratic_bezier_curveto(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
parse_arguments!(self, absolute, QuadBezierCurveTo, [
control1 => parse_coord, point => parse_coord
])
}
/// Parse smooth quadratic Bézier curveto command.
fn parse_smooth_quadratic_bezier_curveto(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
parse_arguments!(self, absolute, SmoothQuadBezierCurveTo, [ point => parse_coord ])
}
/// Parse elliptical arc curve command.
fn parse_elliptical_arc(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
// Parse a flag whose value is '0' or '1'; otherwise, return Err(()).
let parse_flag = |iter: &mut Peekable<Cloned<slice::Iter<u8>>>| match iter.next() {
Some(c) if c == b'0' || c == b'1' => Ok(ArcFlag(c == b'1')),
_ => Err(()),
};
parse_arguments!(self, absolute, EllipticalArc, [
rx => parse_number,
ry => parse_number,
angle => parse_number,
large_arc_flag => parse_flag,
sweep_flag => parse_flag,
point => parse_coord
])
}
}
/// Parse a pair of numbers into CoordPair.
fn parse_coord(iter: &mut Peekable<Cloned<slice::Iter<u8>>>) -> Result<CoordPair, ()> {
let x = parse_number(iter)?;
skip_comma_wsp(iter);
let y = parse_number(iter)?;
Ok(CoordPair::new(x, y))
}
/// This is a special version which parses the number for SVG Path. e.g. "M 0.6.5" should be parsed
/// as MoveTo with a coordinate of ("0.6", ".5"), instead of treating 0.6.5 as a non-valid floating
/// point number. In other words, the logic here is similar with that of
/// tokenizer::consume_numeric, which also consumes the number as many as possible, but here the
/// input is a Peekable and we only accept an integer of a floating point number.
///
/// The "number" syntax in https://www.w3.org/TR/SVG/paths.html#PathDataBNF
fn parse_number(iter: &mut Peekable<Cloned<slice::Iter<u8>>>) -> Result<CSSFloat, ()> {
// 1. Check optional sign.
let sign = if iter
.peek()
.map_or(false, |&sign| sign == b'+' || sign == b'-')
{
if iter.next().unwrap() == b'-' {
-1.
} else {
1.
}
} else {
1.
};
// 2. Check integer part.
let mut integral_part: f64 = 0.;
let got_dot = if !iter.peek().map_or(false, |&n| n == b'.') {
// If the first digit in integer part is neither a dot nor a digit, this is not a number.
if iter.peek().map_or(true, |n| !n.is_ascii_digit()) {
return Err(());
}
while iter.peek().map_or(false, |n| n.is_ascii_digit()) {
integral_part = integral_part * 10. + (iter.next().unwrap() - b'0') as f64;
}
iter.peek().map_or(false, |&n| n == b'.')
} else {
true
};
// 3. Check fractional part.
let mut fractional_part: f64 = 0.;
if got_dot {
// Consume '.'.
iter.next();
// If the first digit in fractional part is not a digit, this is not a number.
if iter.peek().map_or(true, |n| !n.is_ascii_digit()) {
return Err(());
}
let mut factor = 0.1;
while iter.peek().map_or(false, |n| n.is_ascii_digit()) {
fractional_part += (iter.next().unwrap() - b'0') as f64 * factor;
factor *= 0.1;
}
}
let mut value = sign * (integral_part + fractional_part);
// 4. Check exp part. The segment name of SVG Path doesn't include 'E' or 'e', so it's ok to
// treat the numbers after 'E' or 'e' are in the exponential part.
if iter.peek().map_or(false, |&exp| exp == b'E' || exp == b'e') {
// Consume 'E' or 'e'.
iter.next();
let exp_sign = if iter
.peek()
.map_or(false, |&sign| sign == b'+' || sign == b'-')
{
if iter.next().unwrap() == b'-' {
-1.
} else {
1.
}
} else {
1.
};
let mut exp: f64 = 0.;
while iter.peek().map_or(false, |n| n.is_ascii_digit()) {
exp = exp * 10. + (iter.next().unwrap() - b'0') as f64;
}
value *= f64::powf(10., exp * exp_sign);
}
if value.is_finite() {
Ok(value
.min(::std::f32::MAX as f64)
.max(::std::f32::MIN as f64) as CSSFloat)
} else {
Err(())
}
}
/// Skip all svg whitespaces, and return true if |iter| hasn't finished.
#[inline]
fn skip_wsp(iter: &mut Peekable<Cloned<slice::Iter<u8>>>) -> bool {
// Note: SVG 1.1 defines the whitespaces as \u{9}, \u{20}, \u{A}, \u{D}.
// However, SVG 2 has one extra whitespace: \u{C}.
// Therefore, we follow the newest spec for the definition of whitespace,
// i.e. \u{9}, \u{20}, \u{A}, \u{C}, \u{D}.
while iter.peek().map_or(false, |c| c.is_ascii_whitespace()) {
iter.next();
}
iter.peek().is_some()
}
/// Skip all svg whitespaces and one comma, and return true if |iter| hasn't finished.
#[inline]
fn skip_comma_wsp(iter: &mut Peekable<Cloned<slice::Iter<u8>>>) -> bool {
if !skip_wsp(iter) {
return false;
}
if *iter.peek().unwrap() != b',' {
return true;
}
iter.next();
skip_wsp(iter)
}