servo/components/layout/layout_task.rs

1096 lines
45 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! The layout task. Performs layout on the DOM, builds display lists and sends them to be
//! painted.
#![allow(unsafe_blocks)]
use css::node_style::StyledNode;
use construct::ConstructionResult;
use context::{SharedLayoutContext, SharedLayoutContextWrapper};
use flow::{self, Flow, ImmutableFlowUtils, MutableFlowUtils, MutableOwnedFlowUtils};
use flow_ref::FlowRef;
use fragment::{Fragment, FragmentBorderBoxIterator};
use incremental::{LayoutDamageComputation, REFLOW, REFLOW_ENTIRE_DOCUMENT, REPAINT};
use layout_debug;
use parallel::{self, UnsafeFlow};
use sequential;
use util::{LayoutDataAccess, LayoutDataWrapper, OpaqueNodeMethods, ToGfxColor};
use wrapper::{LayoutNode, TLayoutNode, ThreadSafeLayoutNode};
use encoding::EncodingRef;
use encoding::all::UTF_8;
use geom::point::Point2D;
use geom::rect::Rect;
use geom::size::Size2D;
use geom::scale_factor::ScaleFactor;
use gfx::color;
use gfx::display_list::{ClippingRegion, DisplayItemMetadata, DisplayList, OpaqueNode};
use gfx::display_list::{StackingContext};
use gfx::font_cache_task::FontCacheTask;
use gfx::paint_task::{PaintChan, PaintLayer};
use gfx::paint_task::Msg as PaintMsg;
use layout_traits::{LayoutControlMsg, LayoutTaskFactory};
use log;
use script::dom::bindings::js::LayoutJS;
use script::dom::node::{LayoutData, Node, NodeTypeId};
use script::dom::element::ElementTypeId;
use script::dom::htmlelement::HTMLElementTypeId;
use script::layout_interface::{ContentBoxResponse, ContentBoxesResponse};
use script::layout_interface::ReflowQueryType;
use script::layout_interface::{HitTestResponse, LayoutChan, LayoutRPC};
use script::layout_interface::{MouseOverResponse, Msg};
use script::layout_interface::{Reflow, ReflowGoal, ScriptLayoutChan, TrustedNodeAddress};
use script_traits::{ConstellationControlMsg, CompositorEvent, OpaqueScriptLayoutChannel};
use script_traits::{ScriptControlChan, UntrustedNodeAddress};
use msg::compositor_msg::ScrollPolicy;
use msg::constellation_msg::Msg as ConstellationMsg;
use msg::constellation_msg::{ConstellationChan, Failure, PipelineExitType, PipelineId};
use net::image_cache_task::{ImageCacheTask, ImageResponseMsg};
use net::local_image_cache::{ImageResponder, LocalImageCache};
use net::resource_task::{ResourceTask, load_bytes_iter};
use servo_util::cursor::Cursor;
use servo_util::geometry::Au;
use servo_util::logical_geometry::LogicalPoint;
use servo_util::opts;
use servo_util::smallvec::{SmallVec, SmallVec1, VecLike};
use servo_util::task::spawn_named_with_send_on_failure;
use servo_util::task_state;
use servo_util::time::{TimeProfilerCategory, ProfilerMetadata, TimeProfilerChan};
use servo_util::time::{TimerMetadataFrameType, TimerMetadataReflowType, profile};
use servo_util::workqueue::WorkQueue;
use std::borrow::ToOwned;
use std::cell::Cell;
use std::ops::{Deref, DerefMut};
use std::sync::mpsc::{channel, Sender, Receiver, Select};
use std::mem;
use std::ptr;
use style::selector_matching::Stylist;
use style::computed_values::{filter, mix_blend_mode};
use style::stylesheets::{Origin, Stylesheet, iter_font_face_rules};
use style::node::TNode;
use style::media_queries::{MediaType, Device};
use std::sync::{Arc, Mutex, MutexGuard};
use url::Url;
/// Mutable data belonging to the LayoutTask.
///
/// This needs to be protected by a mutex so we can do fast RPCs.
pub struct LayoutTaskData {
/// The local image cache.
pub local_image_cache: Arc<Mutex<LocalImageCache<UntrustedNodeAddress>>>,
/// The channel on which messages can be sent to the constellation.
pub constellation_chan: ConstellationChan,
/// The size of the viewport.
pub screen_size: Size2D<Au>,
/// The root stacking context.
pub stacking_context: Option<Arc<StackingContext>>,
pub stylist: Box<Stylist>,
/// The workers that we use for parallel operation.
pub parallel_traversal: Option<WorkQueue<SharedLayoutContextWrapper, UnsafeFlow>>,
/// The dirty rect. Used during display list construction.
pub dirty: Rect<Au>,
/// Starts at zero, and increased by one every time a layout completes.
/// This can be used to easily check for invalid stale data.
pub generation: uint,
/// A queued response for the union of the content boxes of a node.
pub content_box_response: Rect<Au>,
/// A queued response for the content boxes of a node.
pub content_boxes_response: Vec<Rect<Au>>,
}
/// Information needed by the layout task.
pub struct LayoutTask {
/// The ID of the pipeline that we belong to.
pub id: PipelineId,
/// The port on which we receive messages from the script task.
pub port: Receiver<Msg>,
/// The port on which we receive messages from the constellation
pub pipeline_port: Receiver<LayoutControlMsg>,
//// The channel to send messages to ourself.
pub chan: LayoutChan,
/// The channel on which messages can be sent to the constellation.
pub constellation_chan: ConstellationChan,
/// The channel on which messages can be sent to the script task.
pub script_chan: ScriptControlChan,
/// The channel on which messages can be sent to the painting task.
pub paint_chan: PaintChan,
/// The channel on which messages can be sent to the time profiler.
pub time_profiler_chan: TimeProfilerChan,
/// The channel on which messages can be sent to the resource task.
pub resource_task: ResourceTask,
/// The channel on which messages can be sent to the image cache.
pub image_cache_task: ImageCacheTask,
/// Public interface to the font cache task.
pub font_cache_task: FontCacheTask,
/// Is this the first reflow in this LayoutTask?
pub first_reflow: Cell<bool>,
/// A mutex to allow for fast, read-only RPC of layout's internal data
/// structures, while still letting the LayoutTask modify them.
///
/// All the other elements of this struct are read-only.
pub rw_data: Arc<Mutex<LayoutTaskData>>,
}
struct LayoutImageResponder {
id: PipelineId,
script_chan: ScriptControlChan,
}
impl ImageResponder<UntrustedNodeAddress> for LayoutImageResponder {
fn respond(&self) -> Box<Fn(ImageResponseMsg, UntrustedNodeAddress)+Send> {
let id = self.id.clone();
let script_chan = self.script_chan.clone();
box move |&:_, node_address| {
let ScriptControlChan(ref chan) = script_chan;
debug!("Dirtying {:x}", node_address.0 as uint);
let mut nodes = SmallVec1::new();
nodes.vec_push(node_address);
drop(chan.send(ConstellationControlMsg::SendEvent(
id, CompositorEvent::ReflowEvent(nodes))))
}
}
}
impl LayoutTaskFactory for LayoutTask {
/// Spawns a new layout task.
fn create(_phantom: Option<&mut LayoutTask>,
id: PipelineId,
chan: OpaqueScriptLayoutChannel,
pipeline_port: Receiver<LayoutControlMsg>,
constellation_chan: ConstellationChan,
failure_msg: Failure,
script_chan: ScriptControlChan,
paint_chan: PaintChan,
resource_task: ResourceTask,
img_cache_task: ImageCacheTask,
font_cache_task: FontCacheTask,
time_profiler_chan: TimeProfilerChan,
shutdown_chan: Sender<()>) {
let ConstellationChan(con_chan) = constellation_chan.clone();
spawn_named_with_send_on_failure("LayoutTask", task_state::LAYOUT, move || {
{ // Ensures layout task is destroyed before we send shutdown message
let sender = chan.sender();
let layout =
LayoutTask::new(
id,
chan.receiver(),
LayoutChan(sender),
pipeline_port,
constellation_chan,
script_chan,
paint_chan,
resource_task,
img_cache_task,
font_cache_task,
time_profiler_chan);
layout.start();
}
shutdown_chan.send(()).unwrap();
}, ConstellationMsg::Failure(failure_msg), con_chan);
}
}
/// The `LayoutTask` `rw_data` lock must remain locked until the first reflow,
/// as RPC calls don't make sense until then. Use this in combination with
/// `LayoutTask::lock_rw_data` and `LayoutTask::return_rw_data`.
enum RWGuard<'a> {
/// If the lock was previously held, from when the task started.
Held(MutexGuard<'a, LayoutTaskData>),
/// If the lock was just used, and has been returned since there has been
/// a reflow already.
Used(MutexGuard<'a, LayoutTaskData>),
}
impl<'a> Deref for RWGuard<'a> {
type Target = LayoutTaskData;
fn deref(&self) -> &LayoutTaskData {
match *self {
RWGuard::Held(ref x) => &**x,
RWGuard::Used(ref x) => &**x,
}
}
}
impl<'a> DerefMut for RWGuard<'a> {
fn deref_mut(&mut self) -> &mut LayoutTaskData {
match *self {
RWGuard::Held(ref mut x) => &mut **x,
RWGuard::Used(ref mut x) => &mut **x,
}
}
}
impl LayoutTask {
/// Creates a new `LayoutTask` structure.
fn new(id: PipelineId,
port: Receiver<Msg>,
chan: LayoutChan,
pipeline_port: Receiver<LayoutControlMsg>,
constellation_chan: ConstellationChan,
script_chan: ScriptControlChan,
paint_chan: PaintChan,
resource_task: ResourceTask,
image_cache_task: ImageCacheTask,
font_cache_task: FontCacheTask,
time_profiler_chan: TimeProfilerChan)
-> LayoutTask {
let local_image_cache =
Arc::new(Mutex::new(LocalImageCache::new(image_cache_task.clone())));
let screen_size = Size2D(Au(0), Au(0));
let device = Device::new(MediaType::Screen, opts::get().initial_window_size.as_f32() * ScaleFactor(1.0));
let parallel_traversal = if opts::get().layout_threads != 1 {
Some(WorkQueue::new("LayoutWorker", task_state::LAYOUT,
opts::get().layout_threads, SharedLayoutContextWrapper(ptr::null())))
} else {
None
};
LayoutTask {
id: id,
port: port,
pipeline_port: pipeline_port,
chan: chan,
script_chan: script_chan,
constellation_chan: constellation_chan.clone(),
paint_chan: paint_chan,
time_profiler_chan: time_profiler_chan,
resource_task: resource_task,
image_cache_task: image_cache_task.clone(),
font_cache_task: font_cache_task,
first_reflow: Cell::new(true),
rw_data: Arc::new(Mutex::new(
LayoutTaskData {
local_image_cache: local_image_cache,
constellation_chan: constellation_chan,
screen_size: screen_size,
stacking_context: None,
stylist: box Stylist::new(device),
parallel_traversal: parallel_traversal,
dirty: Rect::zero(),
generation: 0,
content_box_response: Rect::zero(),
content_boxes_response: Vec::new(),
})),
}
}
/// Starts listening on the port.
fn start(self) {
let mut possibly_locked_rw_data = Some((*self.rw_data).lock().unwrap());
while self.handle_request(&mut possibly_locked_rw_data) {
// Loop indefinitely.
}
}
// Create a layout context for use in building display lists, hit testing, &c.
fn build_shared_layout_context(&self,
rw_data: &LayoutTaskData,
reflow_root: &LayoutNode,
url: &Url)
-> SharedLayoutContext {
SharedLayoutContext {
image_cache: rw_data.local_image_cache.clone(),
screen_size: rw_data.screen_size.clone(),
constellation_chan: rw_data.constellation_chan.clone(),
layout_chan: self.chan.clone(),
font_cache_task: self.font_cache_task.clone(),
stylist: &*rw_data.stylist,
url: (*url).clone(),
reflow_root: OpaqueNodeMethods::from_layout_node(reflow_root),
dirty: Rect::zero(),
generation: rw_data.generation,
}
}
/// Receives and dispatches messages from the script and constellation tasks
fn handle_request<'a>(&'a self,
possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>)
-> bool {
enum PortToRead {
Pipeline,
Script,
}
let port_to_read = {
let sel = Select::new();
let mut port1 = sel.handle(&self.port);
let mut port2 = sel.handle(&self.pipeline_port);
unsafe {
port1.add();
port2.add();
}
let ret = sel.wait();
if ret == port1.id() {
PortToRead::Script
} else if ret == port2.id() {
PortToRead::Pipeline
} else {
panic!("invalid select result");
}
};
match port_to_read {
PortToRead::Pipeline => {
match self.pipeline_port.recv().unwrap() {
LayoutControlMsg::ExitNowMsg(exit_type) => {
self.handle_script_request(Msg::ExitNow(exit_type), possibly_locked_rw_data)
}
}
},
PortToRead::Script => {
let msg = self.port.recv().unwrap();
self.handle_script_request(msg, possibly_locked_rw_data)
}
}
}
/// If no reflow has happened yet, this will just return the lock in
/// `possibly_locked_rw_data`. Otherwise, it will acquire the `rw_data` lock.
///
/// If you do not wish RPCs to remain blocked, just drop the `RWGuard`
/// returned from this function. If you _do_ wish for them to remain blocked,
/// use `return_rw_data`.
fn lock_rw_data<'a>(&'a self,
possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>)
-> RWGuard<'a> {
match possibly_locked_rw_data.take() {
None => RWGuard::Used((*self.rw_data).lock().unwrap()),
Some(x) => RWGuard::Held(x),
}
}
/// If no reflow has ever been triggered, this will keep the lock, locked
/// (and saved in `possibly_locked_rw_data`). If it has been, the lock will
/// be unlocked.
fn return_rw_data<'a>(possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>,
rw_data: RWGuard<'a>) {
match rw_data {
RWGuard::Used(x) => drop(x),
RWGuard::Held(x) => *possibly_locked_rw_data = Some(x),
}
}
/// Receives and dispatches messages from the script task.
fn handle_script_request<'a>(&'a self,
request: Msg,
possibly_locked_rw_data: &mut Option<MutexGuard<'a,
LayoutTaskData>>)
-> bool {
match request {
Msg::AddStylesheet(sheet) => self.handle_add_stylesheet(sheet, possibly_locked_rw_data),
Msg::LoadStylesheet(url) => self.handle_load_stylesheet(url, possibly_locked_rw_data),
Msg::SetQuirksMode => self.handle_set_quirks_mode(possibly_locked_rw_data),
Msg::GetRPC(response_chan) => {
response_chan.send(box LayoutRPCImpl(self.rw_data.clone()) as
Box<LayoutRPC + Send>).unwrap();
},
Msg::Reflow(data) => {
profile(TimeProfilerCategory::LayoutPerform,
self.profiler_metadata(&*data),
self.time_profiler_chan.clone(),
|| self.handle_reflow(&*data, possibly_locked_rw_data));
},
Msg::ReapLayoutData(dead_layout_data) => {
unsafe {
self.handle_reap_layout_data(dead_layout_data)
}
},
Msg::PrepareToExit(response_chan) => {
debug!("layout: PrepareToExitMsg received");
self.prepare_to_exit(response_chan, possibly_locked_rw_data);
return false
},
Msg::ExitNow(exit_type) => {
debug!("layout: ExitNowMsg received");
self.exit_now(possibly_locked_rw_data, exit_type);
return false
}
}
true
}
/// Enters a quiescent state in which no new messages except for `layout_interface::Msg::ReapLayoutData` will be
/// processed until an `ExitNowMsg` is received. A pong is immediately sent on the given
/// response channel.
fn prepare_to_exit<'a>(&'a self,
response_chan: Sender<()>,
possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) {
response_chan.send(()).unwrap();
loop {
match self.port.recv().unwrap() {
Msg::ReapLayoutData(dead_layout_data) => {
unsafe {
self.handle_reap_layout_data(dead_layout_data)
}
}
Msg::ExitNow(exit_type) => {
debug!("layout task is exiting...");
self.exit_now(possibly_locked_rw_data, exit_type);
break
}
_ => {
panic!("layout: message that wasn't `ExitNowMsg` received after \
`PrepareToExitMsg`")
}
}
}
}
/// Shuts down the layout task now. If there are any DOM nodes left, layout will now (safely)
/// crash.
fn exit_now<'a>(&'a self,
possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>,
exit_type: PipelineExitType) {
let (response_chan, response_port) = channel();
{
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
match (&mut *rw_data).parallel_traversal {
None => {}
Some(ref mut traversal) => traversal.shutdown(),
}
LayoutTask::return_rw_data(possibly_locked_rw_data, rw_data);
}
self.paint_chan.send(PaintMsg::Exit(Some(response_chan), exit_type));
response_port.recv().unwrap()
}
fn handle_load_stylesheet<'a>(&'a self,
url: Url,
possibly_locked_rw_data:
&mut Option<MutexGuard<'a, LayoutTaskData>>) {
// TODO: Get the actual value. http://dev.w3.org/csswg/css-syntax/#environment-encoding
let environment_encoding = UTF_8 as EncodingRef;
let (metadata, iter) = load_bytes_iter(&self.resource_task, url);
let protocol_encoding_label = metadata.charset.as_ref().map(|s| s.as_slice());
let final_url = metadata.final_url;
let sheet = Stylesheet::from_bytes_iter(iter,
final_url,
protocol_encoding_label,
Some(environment_encoding),
Origin::Author);
self.handle_add_stylesheet(sheet, possibly_locked_rw_data);
}
fn handle_add_stylesheet<'a>(&'a self,
sheet: Stylesheet,
possibly_locked_rw_data:
&mut Option<MutexGuard<'a, LayoutTaskData>>) {
// Find all font-face rules and notify the font cache of them.
// GWTODO: Need to handle unloading web fonts (when we handle unloading stylesheets!)
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
iter_font_face_rules(&sheet, &rw_data.stylist.device, &|&:family, src| {
self.font_cache_task.add_web_font(family.to_owned(), (*src).clone());
});
rw_data.stylist.add_stylesheet(sheet);
LayoutTask::return_rw_data(possibly_locked_rw_data, rw_data);
}
/// Sets quirks mode for the document, causing the quirks mode stylesheet to be loaded.
fn handle_set_quirks_mode<'a>(&'a self,
possibly_locked_rw_data:
&mut Option<MutexGuard<'a, LayoutTaskData>>) {
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
rw_data.stylist.add_quirks_mode_stylesheet();
LayoutTask::return_rw_data(possibly_locked_rw_data, rw_data);
}
/// Retrieves the flow tree root from the root node.
fn try_get_layout_root(&self, node: LayoutNode) -> Option<FlowRef> {
let mut layout_data_ref = node.mutate_layout_data();
let layout_data =
match layout_data_ref.as_mut() {
None => return None,
Some(layout_data) => layout_data,
};
let result = layout_data.data.flow_construction_result.swap_out();
let mut flow = match result {
ConstructionResult::Flow(mut flow, abs_descendants) => {
// Note: Assuming that the root has display 'static' (as per
// CSS Section 9.3.1). Otherwise, if it were absolutely
// positioned, it would return a reference to itself in
// `abs_descendants` and would lead to a circular reference.
// Set Root as CB for any remaining absolute descendants.
flow.set_absolute_descendants(abs_descendants);
flow
}
_ => return None,
};
flow.mark_as_root();
Some(flow)
}
fn get_layout_root(&self, node: LayoutNode) -> FlowRef {
self.try_get_layout_root(node).expect("no layout root")
}
/// Performs layout constraint solving.
///
/// This corresponds to `Reflow()` in Gecko and `layout()` in WebKit/Blink and should be
/// benchmarked against those two. It is marked `#[inline(never)]` to aid profiling.
#[inline(never)]
fn solve_constraints<'a>(&self,
layout_root: &mut FlowRef,
shared_layout_context: &SharedLayoutContext) {
let _scope = layout_debug_scope!("solve_constraints");
sequential::traverse_flow_tree_preorder(layout_root, shared_layout_context);
}
/// Performs layout constraint solving in parallel.
///
/// This corresponds to `Reflow()` in Gecko and `layout()` in WebKit/Blink and should be
/// benchmarked against those two. It is marked `#[inline(never)]` to aid profiling.
#[inline(never)]
fn solve_constraints_parallel(&self,
data: &Reflow,
rw_data: &mut LayoutTaskData,
layout_root: &mut FlowRef,
shared_layout_context: &SharedLayoutContext) {
let _scope = layout_debug_scope!("solve_constraints_parallel");
match rw_data.parallel_traversal {
None => panic!("solve_contraints_parallel() called with no parallel traversal ready"),
Some(ref mut traversal) => {
// NOTE: this currently computes borders, so any pruning should separate that
// operation out.
parallel::traverse_flow_tree_preorder(layout_root,
self.profiler_metadata(data),
self.time_profiler_chan.clone(),
shared_layout_context,
traversal);
}
}
}
/// Verifies that every node was either marked as a leaf or as a nonleaf in the flow tree.
/// This is only on in debug builds.
#[inline(never)]
#[cfg(debug)]
fn verify_flow_tree(&self, layout_root: &mut FlowRef) {
let mut traversal = traversal::FlowTreeVerification;
layout_root.traverse_preorder(&mut traversal);
}
#[cfg(not(debug))]
fn verify_flow_tree(&self, _: &mut FlowRef) {
}
fn process_content_box_request<'a>(&'a self,
requested_node: TrustedNodeAddress,
layout_root: &mut FlowRef,
rw_data: &mut RWGuard<'a>) {
// FIXME(pcwalton): This has not been updated to handle the stacking context relative
// stuff. So the position is wrong in most cases.
let requested_node: OpaqueNode = OpaqueNodeMethods::from_script_node(requested_node);
let mut iterator = UnioningFragmentBorderBoxIterator::new(requested_node);
sequential::iterate_through_flow_tree_fragment_border_boxes(layout_root, &mut iterator);
rw_data.content_box_response = iterator.rect;
}
fn process_content_boxes_request<'a>(&'a self,
requested_node: TrustedNodeAddress,
layout_root: &mut FlowRef,
rw_data: &mut RWGuard<'a>) {
// FIXME(pcwalton): This has not been updated to handle the stacking context relative
// stuff. So the position is wrong in most cases.
let requested_node: OpaqueNode = OpaqueNodeMethods::from_script_node(requested_node);
let mut iterator = CollectingFragmentBorderBoxIterator::new(requested_node);
sequential::iterate_through_flow_tree_fragment_border_boxes(layout_root, &mut iterator);
rw_data.content_boxes_response = iterator.rects;
}
fn build_display_list_for_reflow<'a>(&'a self,
data: &Reflow,
node: &mut LayoutNode,
layout_root: &mut FlowRef,
shared_layout_context: &mut SharedLayoutContext,
rw_data: &mut RWGuard<'a>) {
let writing_mode = flow::base(&**layout_root).writing_mode;
profile(TimeProfilerCategory::LayoutDispListBuild,
self.profiler_metadata(data),
self.time_profiler_chan.clone(),
|| {
shared_layout_context.dirty =
flow::base(&**layout_root).position.to_physical(writing_mode,
rw_data.screen_size);
flow::mut_base(&mut **layout_root).stacking_relative_position =
LogicalPoint::zero(writing_mode).to_physical(writing_mode,
rw_data.screen_size);
flow::mut_base(&mut **layout_root).clip =
ClippingRegion::from_rect(&data.page_clip_rect);
let rw_data = &mut **rw_data;
match rw_data.parallel_traversal {
None => {
sequential::build_display_list_for_subtree(layout_root, shared_layout_context);
}
Some(ref mut traversal) => {
parallel::build_display_list_for_subtree(layout_root,
self.profiler_metadata(data),
self.time_profiler_chan.clone(),
shared_layout_context,
traversal);
}
}
debug!("Done building display list.");
// FIXME(pcwalton): This is really ugly and can't handle overflow: scroll. Refactor
// it with extreme prejudice.
// The default computed value for background-color is transparent (see
// http://dev.w3.org/csswg/css-backgrounds/#background-color). However, we
// need to propagate the background color from the root HTML/Body
// element (http://dev.w3.org/csswg/css-backgrounds/#special-backgrounds) if
// it is non-transparent. The phrase in the spec "If the canvas background
// is not opaque, what shows through is UA-dependent." is handled by rust-layers
// clearing the frame buffer to white. This ensures that setting a background
// color on an iframe element, while the iframe content itself has a default
// transparent background color is handled correctly.
let mut color = color::transparent_black();
for child in node.traverse_preorder() {
if child.type_id() == Some(NodeTypeId::Element(ElementTypeId::HTMLElement(HTMLElementTypeId::HTMLHtmlElement))) ||
child.type_id() == Some(NodeTypeId::Element(ElementTypeId::HTMLElement(HTMLElementTypeId::HTMLBodyElement))) {
let element_bg_color = {
let thread_safe_child = ThreadSafeLayoutNode::new(&child);
thread_safe_child.style()
.resolve_color(thread_safe_child.style()
.get_background()
.background_color)
.to_gfx_color()
};
let black = color::transparent_black();
if element_bg_color != black {
color = element_bg_color;
break;
}
}
}
let root_size = {
let root_flow = flow::base(&**layout_root);
root_flow.position.size.to_physical(root_flow.writing_mode)
};
let mut display_list = box DisplayList::new();
flow::mut_base(&mut **layout_root).display_list_building_result
.add_to(&mut *display_list);
let paint_layer = Arc::new(PaintLayer::new(layout_root.layer_id(0),
color,
ScrollPolicy::Scrollable));
let origin = Rect(Point2D(Au(0), Au(0)), root_size);
if opts::get().dump_display_list {
println!("#### start printing display list.");
display_list.print_items(String::from_str("#"));
}
let stacking_context = Arc::new(StackingContext::new(display_list,
&origin,
&origin,
0,
filter::T::new(Vec::new()),
mix_blend_mode::T::normal,
Some(paint_layer)));
rw_data.stacking_context = Some(stacking_context.clone());
debug!("Layout done!");
self.paint_chan.send(PaintMsg::PaintInit(stacking_context));
});
}
/// The high-level routine that performs layout tasks.
fn handle_reflow<'a>(&'a self,
data: &Reflow,
possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) {
// FIXME: Isolate this transmutation into a "bridge" module.
// FIXME(rust#16366): The following line had to be moved because of a
// rustc bug. It should be in the next unsafe block.
let mut node: LayoutJS<Node> = unsafe {
LayoutJS::from_trusted_node_address(data.document_root)
};
let node: &mut LayoutNode = unsafe {
mem::transmute(&mut node)
};
debug!("layout: received layout request for: {}", data.url.serialize());
debug!("layout: parsed Node tree");
if log_enabled!(log::DEBUG) {
node.dump();
}
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
{
// Reset the image cache.
let mut local_image_cache = rw_data.local_image_cache.lock().unwrap();
local_image_cache.next_round(self.make_on_image_available_cb());
}
// TODO: Calculate the "actual viewport":
// http://www.w3.org/TR/css-device-adapt/#actual-viewport
let viewport_size = data.window_size.initial_viewport;
let old_screen_size = rw_data.screen_size;
let current_screen_size = Size2D(Au::from_frac32_px(viewport_size.width.get()),
Au::from_frac32_px(viewport_size.height.get()));
rw_data.screen_size = current_screen_size;
// Create a layout context for use throughout the following passes.
let mut shared_layout_context = self.build_shared_layout_context(&*rw_data,
node,
&data.url);
// Handle conditions where the entire flow tree is invalid.
let screen_size_changed = current_screen_size != old_screen_size;
if screen_size_changed {
let device = Device::new(MediaType::Screen, data.window_size.initial_viewport);
rw_data.stylist.set_device(device);
}
let needs_dirtying = rw_data.stylist.update();
// If the entire flow tree is invalid, then it will be reflowed anyhow.
let needs_reflow = screen_size_changed && !needs_dirtying;
unsafe {
if needs_dirtying {
LayoutTask::dirty_all_nodes(node);
}
}
if needs_reflow {
self.try_get_layout_root(*node).map(
|mut flow| LayoutTask::reflow_all_nodes(&mut *flow));
}
let mut layout_root = profile(TimeProfilerCategory::LayoutStyleRecalc,
self.profiler_metadata(data),
self.time_profiler_chan.clone(),
|| {
// Perform CSS selector matching and flow construction.
let rw_data = &mut *rw_data;
match rw_data.parallel_traversal {
None => {
sequential::traverse_dom_preorder(*node, &shared_layout_context);
}
Some(ref mut traversal) => {
parallel::traverse_dom_preorder(*node, &shared_layout_context, traversal)
}
}
self.get_layout_root((*node).clone())
});
profile(TimeProfilerCategory::LayoutRestyleDamagePropagation,
self.profiler_metadata(data),
self.time_profiler_chan.clone(),
|| {
if opts::get().nonincremental_layout || layout_root.compute_layout_damage()
.contains(REFLOW_ENTIRE_DOCUMENT) {
layout_root.reflow_entire_document()
}
});
// Verification of the flow tree, which ensures that all nodes were either marked as leaves
// or as non-leaves. This becomes a no-op in release builds. (It is inconsequential to
// memory safety but is a useful debugging tool.)
self.verify_flow_tree(&mut layout_root);
if opts::get().trace_layout {
layout_debug::begin_trace(layout_root.clone());
}
// Perform the primary layout passes over the flow tree to compute the locations of all
// the boxes.
profile(TimeProfilerCategory::LayoutMain,
self.profiler_metadata(data),
self.time_profiler_chan.clone(),
|| {
let rw_data = &mut *rw_data;
match rw_data.parallel_traversal {
None => {
// Sequential mode.
self.solve_constraints(&mut layout_root, &shared_layout_context)
}
Some(_) => {
// Parallel mode.
self.solve_constraints_parallel(data,
rw_data,
&mut layout_root,
&mut shared_layout_context);
}
}
});
// Build the display list if necessary, and send it to the painter.
match data.goal {
ReflowGoal::ForDisplay => {
self.build_display_list_for_reflow(data,
node,
&mut layout_root,
&mut shared_layout_context,
&mut rw_data);
}
ReflowGoal::ForScriptQuery => {}
}
match data.query_type {
ReflowQueryType::ContentBoxQuery(node) => {
self.process_content_box_request(node, &mut layout_root, &mut rw_data)
}
ReflowQueryType::ContentBoxesQuery(node) => {
self.process_content_boxes_request(node, &mut layout_root, &mut rw_data)
}
ReflowQueryType::NoQuery => {}
}
self.first_reflow.set(false);
if opts::get().trace_layout {
layout_debug::end_trace();
}
if opts::get().dump_flow_tree {
layout_root.dump();
}
rw_data.generation += 1;
// Tell script that we're done.
//
// FIXME(pcwalton): This should probably be *one* channel, but we can't fix this without
// either select or a filtered recv() that only looks for messages of a given type.
data.script_join_chan.send(()).unwrap();
let ScriptControlChan(ref chan) = data.script_chan;
chan.send(ConstellationControlMsg::ReflowComplete(self.id, data.id)).unwrap();
}
unsafe fn dirty_all_nodes(node: &mut LayoutNode) {
for node in node.traverse_preorder() {
// TODO(cgaebel): mark nodes which are sensitive to media queries as
// "changed":
// > node.set_changed(true);
node.set_dirty(true);
node.set_dirty_siblings(true);
node.set_dirty_descendants(true);
}
}
fn reflow_all_nodes(flow: &mut Flow) {
flow::mut_base(flow).restyle_damage.insert(REFLOW | REPAINT);
for child in flow::child_iter(flow) {
LayoutTask::reflow_all_nodes(child);
}
}
/// When images can't be loaded in time to display they trigger
/// this callback in some task somewhere. This will send a message
/// to the script task, and ultimately cause the image to be
/// re-requested. We probably don't need to go all the way back to
/// the script task for this.
///
/// FIXME(pcwalton): Rewrite all of this.
fn make_on_image_available_cb(&self) -> Box<ImageResponder<UntrustedNodeAddress>+Send> {
// This has a crazy signature because the image cache needs to
// make multiple copies of the callback, and the dom event
// channel is not a copyable type, so this is actually a
// little factory to produce callbacks
box LayoutImageResponder {
id: self.id.clone(),
script_chan: self.script_chan.clone(),
} as Box<ImageResponder<UntrustedNodeAddress>+Send>
}
/// Handles a message to destroy layout data. Layout data must be destroyed on *this* task
/// because the struct type is transmuted to a different type on the script side.
unsafe fn handle_reap_layout_data(&self, layout_data: LayoutData) {
let layout_data_wrapper: LayoutDataWrapper = mem::transmute(layout_data);
layout_data_wrapper.remove_compositor_layers(self.constellation_chan.clone());
}
/// Returns profiling information which is passed to the time profiler.
fn profiler_metadata<'a>(&self, data: &'a Reflow) -> ProfilerMetadata<'a> {
Some((&data.url,
if data.iframe {
TimerMetadataFrameType::IFrame
} else {
TimerMetadataFrameType::RootWindow
},
if self.first_reflow.get() {
TimerMetadataReflowType::FirstReflow
} else {
TimerMetadataReflowType::Incremental
}))
}
}
struct LayoutRPCImpl(Arc<Mutex<LayoutTaskData>>);
impl LayoutRPC for LayoutRPCImpl {
// The neat thing here is that in order to answer the following two queries we only
// need to compare nodes for equality. Thus we can safely work only with `OpaqueNode`.
fn content_box(&self) -> ContentBoxResponse {
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock().unwrap();
ContentBoxResponse(rw_data.content_box_response)
}
/// Requests the dimensions of all the content boxes, as in the `getClientRects()` call.
fn content_boxes(&self) -> ContentBoxesResponse {
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock().unwrap();
ContentBoxesResponse(rw_data.content_boxes_response.clone())
}
/// Requests the node containing the point of interest.
fn hit_test(&self, _: TrustedNodeAddress, point: Point2D<f32>) -> Result<HitTestResponse, ()> {
let point = Point2D(Au::from_frac_px(point.x as f64), Au::from_frac_px(point.y as f64));
let resp = {
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock().unwrap();
match rw_data.stacking_context {
None => panic!("no root stacking context!"),
Some(ref stacking_context) => {
let mut result = Vec::new();
stacking_context.hit_test(point, &mut result, true);
if !result.is_empty() {
Some(HitTestResponse(result[0].node.to_untrusted_node_address()))
} else {
None
}
}
}
};
if resp.is_some() {
return Ok(resp.unwrap());
}
Err(())
}
fn mouse_over(&self, _: TrustedNodeAddress, point: Point2D<f32>)
-> Result<MouseOverResponse, ()> {
let mut mouse_over_list: Vec<DisplayItemMetadata> = vec!();
let point = Point2D(Au::from_frac_px(point.x as f64), Au::from_frac_px(point.y as f64));
{
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock().unwrap();
match rw_data.stacking_context {
None => panic!("no root stacking context!"),
Some(ref stacking_context) => {
stacking_context.hit_test(point, &mut mouse_over_list, false);
}
}
// Compute the new cursor.
let cursor = if !mouse_over_list.is_empty() {
mouse_over_list[0].pointing.unwrap()
} else {
Cursor::DefaultCursor
};
let ConstellationChan(ref constellation_chan) = rw_data.constellation_chan;
constellation_chan.send(ConstellationMsg::SetCursor(cursor)).unwrap();
}
if mouse_over_list.is_empty() {
Err(())
} else {
let response_list =
mouse_over_list.iter()
.map(|metadata| metadata.node.to_untrusted_node_address())
.collect();
Ok(MouseOverResponse(response_list))
}
}
}
struct UnioningFragmentBorderBoxIterator {
node_address: OpaqueNode,
rect: Rect<Au>,
}
impl UnioningFragmentBorderBoxIterator {
fn new(node_address: OpaqueNode) -> UnioningFragmentBorderBoxIterator {
UnioningFragmentBorderBoxIterator {
node_address: node_address,
rect: Rect::zero(),
}
}
}
impl FragmentBorderBoxIterator for UnioningFragmentBorderBoxIterator {
fn process(&mut self, _: &Fragment, border_box: &Rect<Au>) {
self.rect = if self.rect.is_empty() {
*border_box
} else {
self.rect.union(border_box)
}
}
fn should_process(&mut self, fragment: &Fragment) -> bool {
self.node_address == fragment.node
}
}
struct CollectingFragmentBorderBoxIterator {
node_address: OpaqueNode,
rects: Vec<Rect<Au>>,
}
impl CollectingFragmentBorderBoxIterator {
fn new(node_address: OpaqueNode) -> CollectingFragmentBorderBoxIterator {
CollectingFragmentBorderBoxIterator {
node_address: node_address,
rects: Vec::new(),
}
}
}
impl FragmentBorderBoxIterator for CollectingFragmentBorderBoxIterator {
fn process(&mut self, _: &Fragment, border_box: &Rect<Au>) {
self.rects.push(*border_box);
}
fn should_process(&mut self, fragment: &Fragment) -> bool {
self.node_address == fragment.node
}
}