servo/components/layout_2020/flow/float.rs
Patrick Walton 362b64aa68 Use the size of the containing block, not the size of the block formatting
context, to place floats in layout 2020.

The containing block for a float is not necessarily the same as the block
formatting context the float is in per CSS 2.1 [1]:

"For other elements, if the element’s position is relative or static, the
containing block is formed by the content edge of the nearest block container
ancestor box."

This shows up in the simplest case:

	<html>
	<body>
	<div style="float: left">Hello</div>
	</body>
	</html>

In this case, the `<html>` element is the block formatting context with inline
size equal to the width of the window, but the `<body>` element with nonzero
inline margins is the containing block for the float. The float placement must
respect the content box of the `<body>` element (i.e. floats must not overlap
the `<body>` element's margins), not that of the `<html>` element.

Because a single block formatting context may contain floats with different
containing blocks, the left and right "walls" of that containing block become
properties of individual floats at the time of placement, not properties of the
float context itself.

Additionally, this commit generalizes the float placement logic a bit to allow
the placement of arbitrary objects, not just floats. This is intended to
support inline layout and block formatting context placement.

This commit updates the `FloatContext` and associated tests only and doesn't
actually wire the context up to the rest of layout, so floats in pages still
aren't actually laid out.

[1]: https://drafts.csswg.org/css2/#containing-block-details
2020-07-22 19:58:28 -07:00

563 lines
20 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Float layout.
//!
//! See CSS 2.1 § 9.5.1: https://www.w3.org/TR/CSS2/visuren.html#float-position
use crate::context::LayoutContext;
use crate::dom_traversal::{Contents, NodeAndStyleInfo, NodeExt};
use crate::formatting_contexts::IndependentFormattingContext;
use crate::geom::flow_relative::{Rect, Vec2};
use crate::style_ext::DisplayInside;
use euclid::num::Zero;
use servo_arc::Arc;
use std::f32;
use std::ops::Range;
use style::values::computed::Length;
use style::values::specified::text::TextDecorationLine;
/// A floating box.
#[derive(Debug, Serialize)]
pub(crate) struct FloatBox {
/// The formatting context that makes up the content of this box.
pub contents: IndependentFormattingContext,
}
/// Data kept during layout about the floats in a given block formatting context.
///
/// This is a persistent data structure. Each float has its own private copy of the float context,
/// although such copies may share portions of the `bands` tree.
#[derive(Clone, Debug)]
pub struct FloatContext {
/// A persistent AA tree of float bands.
///
/// This tree is immutable; modification operations return the new tree, which may share nodes
/// with previous versions of the tree.
pub bands: FloatBandTree,
/// The current (logically) vertical position. No new floats may be placed (logically) above
/// this line.
pub ceiling: Length,
}
impl FloatContext {
/// Returns a new float context representing a containing block with the given content
/// inline-size.
pub fn new() -> Self {
let mut bands = FloatBandTree::new();
bands = bands.insert(FloatBand {
top: Length::zero(),
left: None,
right: None,
});
bands = bands.insert(FloatBand {
top: Length::new(f32::INFINITY),
left: None,
right: None,
});
FloatContext {
bands,
ceiling: Length::zero(),
}
}
/// Returns the current ceiling value. No new floats may be placed (logically) above this line.
pub fn ceiling(&self) -> Length {
self.ceiling
}
/// (Logically) lowers the ceiling to at least `new_ceiling` units.
///
/// If the ceiling is already logically lower (i.e. larger) than this, does nothing.
pub fn lower_ceiling(&mut self, new_ceiling: Length) {
self.ceiling = self.ceiling.max(new_ceiling);
}
/// Determines where a float with the given placement would go, but leaves the float context
/// unmodified. Returns the start corner of its margin box.
///
/// This should be used for placing inline elements and block formatting contexts so that they
/// don't collide with floats.
pub fn place_object(&self, object: &PlacementInfo) -> Vec2<Length> {
// Find the first band this float fits in.
let mut first_band = self.bands.find(self.ceiling).unwrap();
while !first_band.object_fits(&object) {
let next_band = self.bands.find_next(first_band.top).unwrap();
if next_band.top.px().is_infinite() {
break;
}
first_band = next_band;
}
// The object fits perfectly here. Place it.
match object.side {
FloatSide::Left => {
let left_object_edge = match first_band.left {
Some(band_left) => band_left.max(object.left_wall),
None => object.left_wall,
};
Vec2 {
inline: left_object_edge,
block: first_band.top.max(self.ceiling),
}
},
FloatSide::Right => {
let right_object_edge = match first_band.right {
Some(band_right) => band_right.min(object.right_wall),
None => object.right_wall,
};
Vec2 {
inline: right_object_edge - object.size.inline,
block: first_band.top.max(self.ceiling),
}
},
}
}
/// Places a new float and adds it to the list. Returns the start corner of its margin box.
pub fn add_float(&mut self, new_float: &PlacementInfo) -> Vec2<Length> {
// Place the float.
let new_float_origin = self.place_object(new_float);
let new_float_extent = match new_float.side {
FloatSide::Left => new_float_origin.inline + new_float.size.inline,
FloatSide::Right => new_float_origin.inline,
};
let new_float_rect = Rect {
start_corner: new_float_origin,
size: new_float.size.clone(),
};
// Split the first band if necessary.
let mut first_band = self.bands.find(new_float_rect.start_corner.block).unwrap();
first_band.top = new_float_rect.start_corner.block;
self.bands = self.bands.insert(first_band);
// Split the last band if necessary.
let mut last_band = self
.bands
.find(new_float_rect.max_block_position())
.unwrap();
last_band.top = new_float_rect.max_block_position();
self.bands = self.bands.insert(last_band);
// Update all bands that contain this float to reflect the new available size.
let block_range = new_float_rect.start_corner.block..new_float_rect.max_block_position();
self.bands = self
.bands
.set_range(&block_range, new_float.side, new_float_extent);
// CSS 2.1 § 9.5.1 rule 6: The outer top of a floating box may not be higher than the outer
// top of any block or floated box generated by an element earlier in the source document.
self.ceiling = self.ceiling.max(new_float_rect.start_corner.block);
new_float_rect.start_corner
}
}
/// Information needed to place an object so that it doesn't collide with existing floats.
#[derive(Clone, Debug)]
pub struct PlacementInfo {
/// The *margin* box size of the object.
pub size: Vec2<Length>,
/// Whether the object is (logically) aligned to the left or right.
pub side: FloatSide,
/// Which side or sides to clear floats on.
pub clear: ClearSide,
/// The distance from the logical left side of the block formatting context to the logical
/// left side of this object's containing block.
pub left_wall: Length,
/// The distance from the logical *left* side of the block formatting context to the logical
/// right side of this object's containing block.
pub right_wall: Length,
}
/// Whether the float is left or right.
///
/// See CSS 2.1 § 9.5.1: https://www.w3.org/TR/CSS2/visuren.html#float-position
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum FloatSide {
Left,
Right,
}
/// Which side or sides to clear floats on.
///
/// See CSS 2.1 § 9.5.2: https://www.w3.org/TR/CSS2/visuren.html#flow-control
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ClearSide {
None = 0,
Left = 1,
Right = 2,
Both = 3,
}
/// Internal data structure that describes a nonoverlapping vertical region in which floats may be
/// placed. Floats must go between "left edge + `left`" and "right edge - `right`".
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct FloatBand {
/// The logical vertical position of the top of this band.
pub top: Length,
/// The distance from the left edge of the block formatting context to the first legal
/// (logically) horizontal position where floats may be placed. If `None`, there are no floats
/// to the left; distinguishing between the cases of "a zero-width float is present" and "no
/// floats at all are present" is necessary to, for example, clear past zero-width floats.
pub left: Option<Length>,
/// The distance from the *left* edge of the block formatting context to the first legal
/// (logically) horizontal position where floats may be placed. If `None`, there are no floats
/// to the right; distinguishing between the cases of "a zero-width float is present" and "no
/// floats at all are present" is necessary to, for example, clear past zero-width floats.
pub right: Option<Length>,
}
impl FloatBand {
// Returns true if this band is clear of floats on the given side or sides.
fn is_clear(&self, side: ClearSide) -> bool {
match (side, self.left, self.right) {
(ClearSide::Left, Some(_), _) |
(ClearSide::Right, _, Some(_)) |
(ClearSide::Both, Some(_), _) |
(ClearSide::Both, _, Some(_)) => false,
(ClearSide::None, _, _) |
(ClearSide::Left, None, _) |
(ClearSide::Right, _, None) |
(ClearSide::Both, None, None) => true,
}
}
// Determines whether an object fits in a band.
fn object_fits(&self, object: &PlacementInfo) -> bool {
// If we must be clear on the given side and we aren't, this object doesn't fit.
if !self.is_clear(object.clear) {
return false;
}
match object.side {
FloatSide::Left => {
// Compute a candidate left position for the object.
let candidate_left = match self.left {
None => object.left_wall,
Some(left) => left.max(object.left_wall),
};
// If this band has an existing left float in it, then make sure that the object
// doesn't stick out past the right edge (rule 7).
if self.left.is_some() && candidate_left + object.size.inline > object.right_wall {
return false;
}
// If this band has an existing right float in it, make sure we don't collide with
// it (rule 3).
match self.right {
None => true,
Some(right) => object.size.inline <= right - candidate_left,
}
},
FloatSide::Right => {
// Compute a candidate right position for the object.
let candidate_right = match self.right {
None => object.right_wall,
Some(right) => right.min(object.right_wall),
};
// If this band has an existing right float in it, then make sure that the new
// object doesn't stick out past the left edge (rule 7).
if self.right.is_some() && candidate_right - object.size.inline < object.left_wall {
return false;
}
// If this band has an existing left float in it, make sure we don't collide with
// it (rule 3).
match self.left {
None => true,
Some(left) => object.size.inline <= candidate_right - left,
}
},
}
}
}
// Float band storage
/// A persistent AA tree for float band storage.
///
/// Bands here are nonoverlapping, and there is guaranteed to be a band at block-position 0 and
/// another band at block-position infinity.
///
/// AA trees were chosen for simplicity.
///
/// See: https://en.wikipedia.org/wiki/AA_tree
/// https://arxiv.org/pdf/1412.4882.pdf
#[derive(Clone, Debug)]
pub struct FloatBandTree {
pub root: FloatBandLink,
}
/// A single edge (or lack thereof) in the float band tree.
#[derive(Clone, Debug)]
pub struct FloatBandLink(pub Option<Arc<FloatBandNode>>);
/// A single node in the float band tree.
#[derive(Clone, Debug)]
pub struct FloatBandNode {
/// The actual band.
pub band: FloatBand,
/// The left child.
pub left: FloatBandLink,
/// The right child.
pub right: FloatBandLink,
/// The level, which increases as you go up the tree.
///
/// This value is needed for tree balancing.
pub level: i32,
}
impl FloatBandTree {
/// Creates a new float band tree.
pub fn new() -> FloatBandTree {
FloatBandTree {
root: FloatBandLink(None),
}
}
/// Returns the first band whose top is less than or equal to the given `block_position`.
pub fn find(&self, block_position: Length) -> Option<FloatBand> {
self.root.find(block_position)
}
/// Returns the first band whose top is strictly greater than to the given `block_position`.
pub fn find_next(&self, block_position: Length) -> Option<FloatBand> {
self.root.find_next(block_position)
}
/// Sets the side values of all bands within the given half-open range to be at least
/// `new_value`.
#[must_use]
pub fn set_range(
&self,
range: &Range<Length>,
side: FloatSide,
new_value: Length,
) -> FloatBandTree {
FloatBandTree {
root: FloatBandLink(
self.root
.0
.as_ref()
.map(|root| root.set_range(range, side, new_value)),
),
}
}
/// Inserts a new band into the tree. If the band has the same level as a pre-existing one,
/// replaces the existing band with the new one.
#[must_use]
pub fn insert(&self, band: FloatBand) -> FloatBandTree {
FloatBandTree {
root: self.root.insert(band),
}
}
}
impl FloatBandNode {
fn new(band: FloatBand) -> FloatBandNode {
FloatBandNode {
band,
left: FloatBandLink(None),
right: FloatBandLink(None),
level: 1,
}
}
/// Sets the side values of all bands within the given half-open range to be at least
/// `new_value`.
fn set_range(
&self,
range: &Range<Length>,
side: FloatSide,
new_value: Length,
) -> Arc<FloatBandNode> {
let mut new_band = self.band.clone();
if self.band.top >= range.start && self.band.top < range.end {
match side {
FloatSide::Left => match new_band.left {
None => new_band.left = Some(new_value),
Some(ref mut old_value) => *old_value = old_value.max(new_value),
},
FloatSide::Right => match new_band.right {
None => new_band.right = Some(new_value),
Some(ref mut old_value) => *old_value = old_value.min(new_value),
},
}
}
let new_left = match self.left.0 {
None => FloatBandLink(None),
Some(ref old_left) if range.start < new_band.top => {
FloatBandLink(Some(old_left.set_range(range, side, new_value)))
},
Some(ref old_left) => FloatBandLink(Some((*old_left).clone())),
};
let new_right = match self.right.0 {
None => FloatBandLink(None),
Some(ref old_right) if range.end > new_band.top => {
FloatBandLink(Some(old_right.set_range(range, side, new_value)))
},
Some(ref old_right) => FloatBandLink(Some((*old_right).clone())),
};
Arc::new(FloatBandNode {
band: new_band,
left: new_left,
right: new_right,
level: self.level,
})
}
}
impl FloatBandLink {
/// Returns the first band whose top is less than or equal to the given `block_position`.
fn find(&self, block_position: Length) -> Option<FloatBand> {
let this = match self.0 {
None => return None,
Some(ref node) => node,
};
if block_position < this.band.top {
return this.left.find(block_position);
}
// It's somewhere in this subtree, but we aren't sure whether it's here or in the right
// subtree.
if let Some(band) = this.right.find(block_position) {
return Some(band);
}
Some(this.band.clone())
}
/// Returns the first band whose top is strictly greater than the given `block_position`.
fn find_next(&self, block_position: Length) -> Option<FloatBand> {
let this = match self.0 {
None => return None,
Some(ref node) => node,
};
if block_position >= this.band.top {
return this.right.find_next(block_position);
}
// It's somewhere in this subtree, but we aren't sure whether it's here or in the left
// subtree.
if let Some(band) = this.left.find_next(block_position) {
return Some(band);
}
Some(this.band.clone())
}
// Inserts a new band into the tree. If the band has the same level as a pre-existing one,
// replaces the existing band with the new one.
fn insert(&self, band: FloatBand) -> FloatBandLink {
let mut this = match self.0 {
None => return FloatBandLink(Some(Arc::new(FloatBandNode::new(band)))),
Some(ref this) => (**this).clone(),
};
if band.top < this.band.top {
this.left = this.left.insert(band);
return FloatBandLink(Some(Arc::new(this))).skew().split();
}
if band.top > this.band.top {
this.right = this.right.insert(band);
return FloatBandLink(Some(Arc::new(this))).skew().split();
}
this.band = band;
FloatBandLink(Some(Arc::new(this)))
}
// Corrects tree balance:
//
// T L
// / \ / \
// L R → A T if level(T) = level(L)
// / \ / \
// A B B R
fn skew(&self) -> FloatBandLink {
if let Some(ref this) = self.0 {
if let Some(ref left) = this.left.0 {
if this.level == left.level {
return FloatBandLink(Some(Arc::new(FloatBandNode {
level: this.level,
left: left.left.clone(),
band: left.band.clone(),
right: FloatBandLink(Some(Arc::new(FloatBandNode {
level: this.level,
left: left.right.clone(),
band: this.band.clone(),
right: this.right.clone(),
}))),
})));
}
}
}
(*self).clone()
}
// Corrects tree balance:
//
// T R
// / \ / \
// A R → T X if level(T) = level(X)
// / \ / \
// B X A B
fn split(&self) -> FloatBandLink {
if let Some(ref this) = self.0 {
if let Some(ref right) = this.right.0 {
if let Some(ref right_right) = right.right.0 {
if this.level == right_right.level {
return FloatBandLink(Some(Arc::new(FloatBandNode {
level: this.level + 1,
left: FloatBandLink(Some(Arc::new(FloatBandNode {
level: this.level,
left: this.left.clone(),
band: this.band.clone(),
right: right.left.clone(),
}))),
band: right.band.clone(),
right: right.right.clone(),
})));
}
}
}
}
(*self).clone()
}
}
// Float boxes
impl FloatBox {
/// Creates a new float box.
pub fn construct<'dom>(
context: &LayoutContext,
info: &NodeAndStyleInfo<impl NodeExt<'dom>>,
display_inside: DisplayInside,
contents: Contents,
) -> Self {
Self {
contents: IndependentFormattingContext::construct(
context,
info,
display_inside,
contents,
// Text decorations are not propagated to any out-of-flow descendants
TextDecorationLine::NONE,
),
}
}
}