servo/components/style/properties/helpers/animated_properties.mako.rs
Boris Chiou 9d69cb2866 Bug 1374233 - Part 6: Add PositiveInteger and PositiveIntegerOrAuto for column-count.
column-count should be a positive integer or auto.

MozReview-Commit-ID: 9LFvrYo8De5
2017-08-04 14:23:17 +08:00

3418 lines
128 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
<%namespace name="helpers" file="/helpers.mako.rs" />
<% from data import to_idl_name, SYSTEM_FONT_LONGHANDS %>
use app_units::Au;
use cssparser::{Parser, RGBA};
use euclid::{Point2D, Size2D};
#[cfg(feature = "gecko")] use gecko_bindings::bindings::RawServoAnimationValueMap;
#[cfg(feature = "gecko")] use gecko_bindings::structs::RawGeckoGfxMatrix4x4;
#[cfg(feature = "gecko")] use gecko_bindings::structs::nsCSSPropertyID;
#[cfg(feature = "gecko")] use gecko_bindings::sugar::ownership::{HasFFI, HasSimpleFFI};
#[cfg(feature = "gecko")] use gecko_string_cache::Atom;
use properties::{CSSWideKeyword, PropertyDeclaration};
use properties::longhands;
use properties::longhands::border_spacing::computed_value::T as BorderSpacing;
use properties::longhands::font_weight::computed_value::T as FontWeight;
use properties::longhands::font_stretch::computed_value::T as FontStretch;
use properties::longhands::transform::computed_value::ComputedMatrix;
use properties::longhands::transform::computed_value::ComputedOperation as TransformOperation;
use properties::longhands::transform::computed_value::T as TransformList;
use properties::longhands::vertical_align::computed_value::T as VerticalAlign;
use properties::longhands::visibility::computed_value::T as Visibility;
#[cfg(feature = "gecko")] use properties::{PropertyId, PropertyDeclarationId, LonghandId};
#[cfg(feature = "gecko")] use properties::{ShorthandId};
use selectors::parser::SelectorParseError;
use smallvec::SmallVec;
use std::cmp;
#[cfg(feature = "gecko")] use fnv::FnvHashMap;
use style_traits::ParseError;
use super::ComputedValues;
#[cfg(any(feature = "gecko", feature = "testing"))]
use values::Auto;
use values::{CSSFloat, CustomIdent, Either};
use values::animated::{ToAnimatedValue, ToAnimatedZero};
use values::animated::effects::BoxShadowList as AnimatedBoxShadowList;
use values::animated::effects::Filter as AnimatedFilter;
use values::animated::effects::FilterList as AnimatedFilterList;
use values::animated::effects::TextShadowList as AnimatedTextShadowList;
use values::computed::{Angle, LengthOrPercentageOrAuto, LengthOrPercentageOrNone};
use values::computed::{BorderCornerRadius, ClipRect};
use values::computed::{CalcLengthOrPercentage, Color, Context, ComputedValueAsSpecified};
use values::computed::{LengthOrPercentage, MaxLength, MozLength, Percentage, ToComputedValue};
use values::computed::{NonNegativeAu, NonNegativeNumber, PositiveIntegerOrAuto};
use values::computed::length::{NonNegativeLengthOrAuto, NonNegativeLengthOrNormal};
use values::generics::{GreaterThanOrEqualToOne, NonNegative};
use values::generics::border::BorderCornerRadius as GenericBorderCornerRadius;
use values::generics::effects::Filter;
use values::generics::position as generic_position;
use values::generics::svg::{SVGLength, SVGOpacity, SVGPaint, SVGPaintKind, SVGStrokeDashArray};
/// A trait used to implement various procedures used during animation.
pub trait Animatable: Sized {
/// Performs a weighted sum of this value and |other|. This is used for
/// interpolation and addition of animation values.
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64)
-> Result<Self, ()>;
/// [Interpolates][interpolation] a value with another for a given property.
///
/// [interpolation]: https://w3c.github.io/web-animations/#animation-interpolation
fn interpolate(&self, other: &Self, progress: f64) -> Result<Self, ()> {
self.add_weighted(other, 1.0 - progress, progress)
}
/// Returns the [sum][animation-addition] of this value and |other|.
///
/// [animation-addition]: https://w3c.github.io/web-animations/#animation-addition
fn add(&self, other: &Self) -> Result<Self, ()> {
self.add_weighted(other, 1.0, 1.0)
}
/// [Accumulates][animation-accumulation] this value onto itself (|count| - 1) times then
/// accumulates |other| onto the result.
/// If |count| is zero, the result will be |other|.
///
/// [animation-accumulation]: https://w3c.github.io/web-animations/#animation-accumulation
fn accumulate(&self, other: &Self, count: u64) -> Result<Self, ()> {
self.add_weighted(other, count as f64, 1.0)
}
/// Compute distance between a value and another for a given property.
fn compute_distance(&self, _other: &Self) -> Result<f64, ()> { Err(()) }
/// In order to compute the Euclidean distance of a list or property value with multiple
/// components, we need to compute squared distance for each element, so the vector can sum it
/// and then get its squared root as the distance.
fn compute_squared_distance(&self, other: &Self) -> Result<f64, ()> {
self.compute_distance(other).map(|d| d * d)
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-repeatable-list
pub trait RepeatableListAnimatable: Animatable {}
/// A longhand property whose animation type is not "none".
///
/// NOTE: This includes the 'display' property since it is animatable from SMIL even though it is
/// not animatable from CSS animations or Web Animations. CSS transitions also does not allow
/// animating 'display', but for CSS transitions we have the separate TransitionProperty type.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub enum AnimatableLonghand {
% for prop in data.longhands:
% if prop.animatable:
/// ${prop.name}
${prop.camel_case},
% endif
% endfor
}
impl AnimatableLonghand {
/// Returns true if this AnimatableLonghand is one of the discretely animatable properties.
pub fn is_discrete(&self) -> bool {
match *self {
% for prop in data.longhands:
% if prop.animation_value_type == "discrete":
AnimatableLonghand::${prop.camel_case} => true,
% endif
% endfor
_ => false
}
}
/// Converts from an nsCSSPropertyID. Returns None if nsCSSPropertyID is not an animatable
/// longhand in Servo.
#[cfg(feature = "gecko")]
pub fn from_nscsspropertyid(css_property: nsCSSPropertyID) -> Option<Self> {
match css_property {
% for prop in data.longhands:
% if prop.animatable:
${helpers.to_nscsspropertyid(prop.ident)}
=> Some(AnimatableLonghand::${prop.camel_case}),
% endif
% endfor
_ => None
}
}
/// Converts from TransitionProperty. Returns None if the property is not an animatable
/// longhand.
pub fn from_transition_property(transition_property: &TransitionProperty) -> Option<Self> {
match *transition_property {
% for prop in data.longhands:
% if prop.transitionable and prop.animatable:
TransitionProperty::${prop.camel_case}
=> Some(AnimatableLonghand::${prop.camel_case}),
% endif
% endfor
_ => None
}
}
/// Get an animatable longhand property from a property declaration.
pub fn from_declaration(declaration: &PropertyDeclaration) -> Option<Self> {
use properties::LonghandId;
match *declaration {
% for prop in data.longhands:
% if prop.animatable:
PropertyDeclaration::${prop.camel_case}(..)
=> Some(AnimatableLonghand::${prop.camel_case}),
% endif
% endfor
PropertyDeclaration::CSSWideKeyword(id, _) |
PropertyDeclaration::WithVariables(id, _) => {
match id {
% for prop in data.longhands:
% if prop.animatable:
LonghandId::${prop.camel_case} =>
Some(AnimatableLonghand::${prop.camel_case}),
% endif
% endfor
_ => None,
}
},
_ => None,
}
}
}
/// Convert to nsCSSPropertyID.
#[cfg(feature = "gecko")]
#[allow(non_upper_case_globals)]
impl<'a> From< &'a AnimatableLonghand> for nsCSSPropertyID {
fn from(property: &'a AnimatableLonghand) -> nsCSSPropertyID {
match *property {
% for prop in data.longhands:
% if prop.animatable:
AnimatableLonghand::${prop.camel_case}
=> ${helpers.to_nscsspropertyid(prop.ident)},
% endif
% endfor
}
}
}
/// Convert to PropertyDeclarationId.
#[cfg(feature = "gecko")]
#[allow(non_upper_case_globals)]
impl<'a> From<AnimatableLonghand> for PropertyDeclarationId<'a> {
fn from(property: AnimatableLonghand) -> PropertyDeclarationId<'a> {
match property {
% for prop in data.longhands:
% if prop.animatable:
AnimatableLonghand::${prop.camel_case}
=> PropertyDeclarationId::Longhand(LonghandId::${prop.camel_case}),
% endif
% endfor
}
}
}
/// Returns true if this nsCSSPropertyID is one of the animatable properties.
#[cfg(feature = "gecko")]
pub fn nscsspropertyid_is_animatable(property: nsCSSPropertyID) -> bool {
match property {
% for prop in data.longhands + data.shorthands_except_all():
% if prop.animatable:
${helpers.to_nscsspropertyid(prop.ident)} => true,
% endif
% endfor
_ => false
}
}
/// A given transition property, that is either `All`, a transitionable longhand property,
/// a shorthand with at least one transitionable longhand component, or an unsupported property.
// NB: This needs to be here because it needs all the longhands generated
// beforehand.
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
#[derive(Clone, Debug, Eq, Hash, PartialEq, ToCss)]
pub enum TransitionProperty {
/// All, any transitionable property changing should generate a transition.
All,
% for prop in data.longhands + data.shorthands_except_all():
% if prop.transitionable:
/// ${prop.name}
${prop.camel_case},
% endif
% endfor
/// Unrecognized property which could be any non-transitionable, custom property, or
/// unknown property.
Unsupported(CustomIdent)
}
no_viewport_percentage!(TransitionProperty);
impl ComputedValueAsSpecified for TransitionProperty {}
impl TransitionProperty {
/// Iterates over each longhand property.
pub fn each<F: FnMut(&TransitionProperty) -> ()>(mut cb: F) {
% for prop in data.longhands:
% if prop.transitionable:
cb(&TransitionProperty::${prop.camel_case});
% endif
% endfor
}
/// Iterates over every longhand property that is not TransitionProperty::All, stopping and
/// returning true when the provided callback returns true for the first time.
pub fn any<F: FnMut(&TransitionProperty) -> bool>(mut cb: F) -> bool {
% for prop in data.longhands:
% if prop.transitionable:
if cb(&TransitionProperty::${prop.camel_case}) {
return true;
}
% endif
% endfor
false
}
/// Parse a transition-property value.
pub fn parse<'i, 't>(input: &mut Parser<'i, 't>) -> Result<Self, ParseError<'i>> {
let ident = input.expect_ident()?;
let supported = match_ignore_ascii_case! { &ident,
"all" => Ok(Some(TransitionProperty::All)),
% for prop in data.longhands + data.shorthands_except_all():
% if prop.transitionable:
"${prop.name}" => Ok(Some(TransitionProperty::${prop.camel_case})),
% endif
% endfor
"none" => Err(()),
_ => Ok(None),
};
match supported {
Ok(Some(property)) => Ok(property),
Ok(None) => CustomIdent::from_ident(ident, &[]).map(TransitionProperty::Unsupported),
Err(()) => Err(SelectorParseError::UnexpectedIdent(ident.clone()).into()),
}
}
/// Return transitionable longhands of this shorthand TransitionProperty, except for "all".
pub fn longhands(&self) -> &'static [TransitionProperty] {
% for prop in data.shorthands_except_all():
% if prop.transitionable:
static ${prop.ident.upper()}: &'static [TransitionProperty] = &[
% for sub in prop.sub_properties:
% if sub.transitionable:
TransitionProperty::${sub.camel_case},
% endif
% endfor
];
% endif
% endfor
match *self {
% for prop in data.shorthands_except_all():
% if prop.transitionable:
TransitionProperty::${prop.camel_case} => ${prop.ident.upper()},
% endif
% endfor
_ => panic!("Not allowed to call longhands() for this TransitionProperty")
}
}
/// Returns true if this TransitionProperty is a shorthand.
pub fn is_shorthand(&self) -> bool {
match *self {
% for prop in data.shorthands_except_all():
% if prop.transitionable:
TransitionProperty::${prop.camel_case} => true,
% endif
% endfor
_ => false
}
}
}
/// Convert to nsCSSPropertyID.
#[cfg(feature = "gecko")]
#[allow(non_upper_case_globals)]
impl<'a> From< &'a TransitionProperty> for nsCSSPropertyID {
fn from(transition_property: &'a TransitionProperty) -> nsCSSPropertyID {
match *transition_property {
% for prop in data.longhands + data.shorthands_except_all():
% if prop.transitionable:
TransitionProperty::${prop.camel_case}
=> ${helpers.to_nscsspropertyid(prop.ident)},
% endif
% endfor
TransitionProperty::All => nsCSSPropertyID::eCSSPropertyExtra_all_properties,
_ => panic!("Unconvertable Servo transition property: {:?}", transition_property),
}
}
}
/// Convert nsCSSPropertyID to TransitionProperty
#[cfg(feature = "gecko")]
#[allow(non_upper_case_globals)]
impl From<nsCSSPropertyID> for TransitionProperty {
fn from(property: nsCSSPropertyID) -> TransitionProperty {
match property {
% for prop in data.longhands + data.shorthands_except_all():
% if prop.transitionable:
${helpers.to_nscsspropertyid(prop.ident)}
=> TransitionProperty::${prop.camel_case},
% else:
${helpers.to_nscsspropertyid(prop.ident)}
=> TransitionProperty::Unsupported(CustomIdent(Atom::from("${prop.ident}"))),
% endif
% endfor
nsCSSPropertyID::eCSSPropertyExtra_all_properties => TransitionProperty::All,
_ => panic!("Unconvertable nsCSSPropertyID: {:?}", property),
}
}
}
/// Returns true if this nsCSSPropertyID is one of the transitionable properties.
#[cfg(feature = "gecko")]
pub fn nscsspropertyid_is_transitionable(property: nsCSSPropertyID) -> bool {
match property {
% for prop in data.longhands + data.shorthands_except_all():
% if prop.transitionable:
${helpers.to_nscsspropertyid(prop.ident)} => true,
% endif
% endfor
_ => false
}
}
/// An animated property interpolation between two computed values for that
/// property.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub enum AnimatedProperty {
% for prop in data.longhands:
% if prop.animatable:
<%
if prop.is_animatable_with_computed_value:
value_type = "longhands::{}::computed_value::T".format(prop.ident)
else:
value_type = prop.animation_value_type
%>
/// ${prop.name}
${prop.camel_case}(${value_type}, ${value_type}),
% endif
% endfor
}
impl AnimatedProperty {
/// Get the name of this property.
pub fn name(&self) -> &'static str {
match *self {
% for prop in data.longhands:
% if prop.animatable:
AnimatedProperty::${prop.camel_case}(..) => "${prop.name}",
% endif
% endfor
}
}
/// Whether this interpolation does animate, that is, whether the start and
/// end values are different.
pub fn does_animate(&self) -> bool {
match *self {
% for prop in data.longhands:
% if prop.animatable:
AnimatedProperty::${prop.camel_case}(ref from, ref to) => from != to,
% endif
% endfor
}
}
/// Whether an animated property has the same end value as another.
pub fn has_the_same_end_value_as(&self, other: &Self) -> bool {
match (self, other) {
% for prop in data.longhands:
% if prop.animatable:
(&AnimatedProperty::${prop.camel_case}(_, ref this_end_value),
&AnimatedProperty::${prop.camel_case}(_, ref other_end_value)) => {
this_end_value == other_end_value
}
% endif
% endfor
_ => false,
}
}
/// Update `style` with the proper computed style corresponding to this
/// animation at `progress`.
pub fn update(&self, style: &mut ComputedValues, progress: f64) {
match *self {
% for prop in data.longhands:
% if prop.animatable:
AnimatedProperty::${prop.camel_case}(ref from, ref to) => {
// https://w3c.github.io/web-animations/#discrete-animation-type
% if prop.animation_value_type == "discrete":
let value = if progress < 0.5 { from.clone() } else { to.clone() };
% else:
let value = match from.interpolate(to, progress) {
Ok(value) => value,
Err(()) => return,
};
% endif
% if not prop.is_animatable_with_computed_value:
let value: longhands::${prop.ident}::computed_value::T =
ToAnimatedValue::from_animated_value(value);
% endif
style.mutate_${prop.style_struct.name_lower}().set_${prop.ident}(value);
}
% endif
% endfor
}
}
/// Get an animatable value from a transition-property, an old style, and a
/// new style.
pub fn from_animatable_longhand(property: &AnimatableLonghand,
old_style: &ComputedValues,
new_style: &ComputedValues)
-> AnimatedProperty {
match *property {
% for prop in data.longhands:
% if prop.animatable:
AnimatableLonghand::${prop.camel_case} => {
let old_computed = old_style.get_${prop.style_struct.ident.strip("_")}().clone_${prop.ident}();
let new_computed = new_style.get_${prop.style_struct.ident.strip("_")}().clone_${prop.ident}();
AnimatedProperty::${prop.camel_case}(
% if prop.is_animatable_with_computed_value:
old_computed,
new_computed,
% else:
old_computed.to_animated_value(),
new_computed.to_animated_value(),
% endif
)
}
% endif
% endfor
}
}
}
/// A collection of AnimationValue that were composed on an element.
/// This HashMap stores the values that are the last AnimationValue to be
/// composed for each TransitionProperty.
#[cfg(feature = "gecko")]
pub type AnimationValueMap = FnvHashMap<AnimatableLonghand, AnimationValue>;
#[cfg(feature = "gecko")]
unsafe impl HasFFI for AnimationValueMap {
type FFIType = RawServoAnimationValueMap;
}
#[cfg(feature = "gecko")]
unsafe impl HasSimpleFFI for AnimationValueMap {}
/// An enum to represent a single computed value belonging to an animated
/// property in order to be interpolated with another one. When interpolating,
/// both values need to belong to the same property.
///
/// This is different to AnimatedProperty in the sense that AnimatedProperty
/// also knows the final value to be used during the animation.
///
/// This is to be used in Gecko integration code.
///
/// FIXME: We need to add a path for custom properties, but that's trivial after
/// this (is a similar path to that of PropertyDeclaration).
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub enum AnimationValue {
% for prop in data.longhands:
% if prop.animatable:
/// ${prop.name}
% if prop.is_animatable_with_computed_value:
${prop.camel_case}(longhands::${prop.ident}::computed_value::T),
% else:
${prop.camel_case}(${prop.animation_value_type}),
% endif
% endif
% endfor
}
impl AnimationValue {
/// "Uncompute" this animation value in order to be used inside the CSS
/// cascade.
pub fn uncompute(&self) -> PropertyDeclaration {
use properties::longhands;
match *self {
% for prop in data.longhands:
% if prop.animatable:
AnimationValue::${prop.camel_case}(ref from) => {
PropertyDeclaration::${prop.camel_case}(
% if prop.boxed:
Box::new(
% endif
longhands::${prop.ident}::SpecifiedValue::from_computed_value(
% if prop.is_animatable_with_computed_value:
from
% else:
&ToAnimatedValue::from_animated_value(from.clone())
% endif
))
% if prop.boxed:
)
% endif
}
% endif
% endfor
}
}
/// Construct an AnimationValue from a property declaration.
pub fn from_declaration(
decl: &PropertyDeclaration,
context: &mut Context,
initial: &ComputedValues
) -> Option<Self> {
use properties::LonghandId;
match *decl {
% for prop in data.longhands:
% if prop.animatable:
PropertyDeclaration::${prop.camel_case}(ref val) => {
% if prop.ident in SYSTEM_FONT_LONGHANDS and product == "gecko":
if let Some(sf) = val.get_system() {
longhands::system_font::resolve_system_font(sf, context);
}
% endif
let computed = val.to_computed_value(context);
Some(AnimationValue::${prop.camel_case}(
% if prop.is_animatable_with_computed_value:
computed
% else:
computed.to_animated_value()
% endif
))
},
% endif
% endfor
PropertyDeclaration::CSSWideKeyword(id, keyword) => {
match id {
// We put all the animatable properties first in the hopes
// that it might increase match locality.
% for prop in data.longhands:
% if prop.animatable:
LonghandId::${prop.camel_case} => {
let computed = match keyword {
% if not prop.style_struct.inherited:
CSSWideKeyword::Unset |
% endif
CSSWideKeyword::Initial => {
let initial_struct = initial.get_${prop.style_struct.name_lower}();
initial_struct.clone_${prop.ident}()
},
% if prop.style_struct.inherited:
CSSWideKeyword::Unset |
% endif
CSSWideKeyword::Inherit => {
let inherit_struct = context.builder
.get_parent_${prop.style_struct.name_lower}();
inherit_struct.clone_${prop.ident}()
},
};
% if not prop.is_animatable_with_computed_value:
let computed = computed.to_animated_value();
% endif
Some(AnimationValue::${prop.camel_case}(computed))
},
% endif
% endfor
% for prop in data.longhands:
% if not prop.animatable:
LonghandId::${prop.camel_case} => None,
% endif
% endfor
}
},
PropertyDeclaration::WithVariables(id, ref unparsed) => {
let custom_props = context.style().custom_properties();
let substituted = unparsed.substitute_variables(id, &custom_props, context.quirks_mode);
AnimationValue::from_declaration(&substituted, context, initial)
},
_ => None // non animatable properties will get included because of shorthands. ignore.
}
}
/// Get an AnimationValue for an AnimatableLonghand from a given computed values.
pub fn from_computed_values(property: &AnimatableLonghand,
computed_values: &ComputedValues)
-> Self {
match *property {
% for prop in data.longhands:
% if prop.animatable:
AnimatableLonghand::${prop.camel_case} => {
let computed = computed_values
.get_${prop.style_struct.ident.strip("_")}()
.clone_${prop.ident}();
AnimationValue::${prop.camel_case}(
% if prop.is_animatable_with_computed_value:
computed
% else:
computed.to_animated_value()
% endif
)
}
% endif
% endfor
}
}
}
impl Animatable for AnimationValue {
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64)
-> Result<Self, ()> {
match (self, other) {
% for prop in data.longhands:
% if prop.animatable:
(&AnimationValue::${prop.camel_case}(ref from),
&AnimationValue::${prop.camel_case}(ref to)) => {
% if prop.animation_value_type == "discrete":
if self_portion > other_portion {
Ok(AnimationValue::${prop.camel_case}(from.clone()))
} else {
Ok(AnimationValue::${prop.camel_case}(to.clone()))
}
% else:
from.add_weighted(to, self_portion, other_portion)
.map(AnimationValue::${prop.camel_case})
% endif
}
% endif
% endfor
_ => {
panic!("Expected weighted addition of computed values of the same \
property, got: {:?}, {:?}", self, other);
}
}
}
fn add(&self, other: &Self) -> Result<Self, ()> {
match (self, other) {
% for prop in data.longhands:
% if prop.animatable:
% if prop.animation_value_type == "discrete":
(&AnimationValue::${prop.camel_case}(_),
&AnimationValue::${prop.camel_case}(_)) => {
Err(())
}
% else:
(&AnimationValue::${prop.camel_case}(ref from),
&AnimationValue::${prop.camel_case}(ref to)) => {
from.add(to).map(AnimationValue::${prop.camel_case})
}
% endif
% endif
% endfor
_ => {
panic!("Expected addition of computed values of the same \
property, got: {:?}, {:?}", self, other);
}
}
}
fn accumulate(&self, other: &Self, count: u64) -> Result<Self, ()> {
match (self, other) {
% for prop in data.longhands:
% if prop.animatable:
% if prop.animation_value_type == "discrete":
(&AnimationValue::${prop.camel_case}(_),
&AnimationValue::${prop.camel_case}(_)) => {
Err(())
}
% else:
(&AnimationValue::${prop.camel_case}(ref from),
&AnimationValue::${prop.camel_case}(ref to)) => {
from.accumulate(to, count).map(AnimationValue::${prop.camel_case})
}
% endif
% endif
% endfor
_ => {
panic!("Expected accumulation of computed values of the same \
property, got: {:?}, {:?}", self, other);
}
}
}
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
match (self, other) {
% for prop in data.longhands:
% if prop.animatable:
% if prop.animation_value_type != "discrete":
(&AnimationValue::${prop.camel_case}(ref from),
&AnimationValue::${prop.camel_case}(ref to)) => {
from.compute_distance(to)
},
% else:
(&AnimationValue::${prop.camel_case}(ref _from),
&AnimationValue::${prop.camel_case}(ref _to)) => {
Err(())
},
% endif
% endif
% endfor
_ => {
panic!("Expected compute_distance of computed values of the same \
property, got: {:?}, {:?}", self, other);
}
}
}
}
impl ToAnimatedZero for AnimationValue {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
match *self {
% for prop in data.longhands:
% if prop.animatable and prop.animation_value_type != "discrete":
AnimationValue::${prop.camel_case}(ref base) => {
Ok(AnimationValue::${prop.camel_case}(base.to_animated_zero()?))
},
% endif
% endfor
_ => Err(()),
}
}
}
impl RepeatableListAnimatable for LengthOrPercentage {}
impl RepeatableListAnimatable for Either<f32, LengthOrPercentage> {}
macro_rules! repeated_vec_impl {
($($ty:ty),*) => {
$(impl<T: RepeatableListAnimatable> Animatable for $ty {
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64)
-> Result<Self, ()> {
// If the length of either list is zero, the least common multiple is undefined.
if self.is_empty() || other.is_empty() {
return Err(());
}
use num_integer::lcm;
let len = lcm(self.len(), other.len());
self.iter().cycle().zip(other.iter().cycle()).take(len).map(|(me, you)| {
me.add_weighted(you, self_portion, other_portion)
}).collect()
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
self.compute_squared_distance(other).map(|sd| sd.sqrt())
}
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<f64, ()> {
// If the length of either list is zero, the least common multiple is undefined.
if cmp::min(self.len(), other.len()) < 1 {
return Err(());
}
use num_integer::lcm;
let len = lcm(self.len(), other.len());
self.iter().cycle().zip(other.iter().cycle()).take(len).map(|(me, you)| {
me.compute_squared_distance(you)
}).sum()
}
})*
};
}
repeated_vec_impl!(SmallVec<[T; 1]>, Vec<T>);
/// https://drafts.csswg.org/css-transitions/#animtype-number
impl Animatable for Au {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok(Au((self.0 as f64 * self_portion + other.0 as f64 * other_portion).round() as i32))
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
self.0.compute_distance(&other.0)
}
}
impl <T> Animatable for Option<T>
where T: Animatable,
{
#[inline]
fn add_weighted(&self, other: &Option<T>, self_portion: f64, other_portion: f64) -> Result<Option<T>, ()> {
match (self, other) {
(&Some(ref this), &Some(ref other)) => {
Ok(this.add_weighted(other, self_portion, other_portion).ok())
}
(&None, &None) => Ok(None),
_ => Err(()),
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
match (self, other) {
(&Some(ref this), &Some(ref other)) => {
this.compute_distance(other)
},
(&None, &None) => Ok(0.0),
_ => Err(()),
}
}
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<f64, ()> {
match (self, other) {
(&Some(ref this), &Some(ref other)) => {
this.compute_squared_distance(other)
},
(&None, &None) => Ok(0.0),
_ => Err(()),
}
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-number
impl Animatable for f32 {
#[inline]
fn add_weighted(&self, other: &f32, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok((*self as f64 * self_portion + *other as f64 * other_portion) as f32)
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
Ok((*self - *other).abs() as f64)
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-number
impl Animatable for f64 {
#[inline]
fn add_weighted(&self, other: &f64, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok(*self * self_portion + *other * other_portion)
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
Ok((*self - *other).abs())
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-integer
impl Animatable for i32 {
#[inline]
fn add_weighted(&self, other: &i32, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok((*self as f64 * self_portion + *other as f64 * other_portion).round() as i32)
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
Ok((*self - *other).abs() as f64)
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-number
impl Animatable for Angle {
#[inline]
fn add_weighted(&self, other: &Angle, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
match (*self, *other) {
% for angle_type in [ 'Degree', 'Gradian', 'Turn' ]:
(Angle::${angle_type}(val1), Angle::${angle_type}(val2)) => {
Ok(Angle::${angle_type}(
try!(val1.add_weighted(&val2, self_portion, other_portion))
))
}
% endfor
_ => {
self.radians()
.add_weighted(&other.radians(), self_portion, other_portion)
.map(Angle::from_radians)
}
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
// Use the formula for calculating the distance between angles defined in SVG:
// https://www.w3.org/TR/SVG/animate.html#complexDistances
Ok((self.radians64() - other.radians64()).abs())
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-percentage
impl Animatable for Percentage {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok(Percentage((self.0 as f64 * self_portion + other.0 as f64 * other_portion) as f32))
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
Ok((self.0 as f64 - other.0 as f64).abs())
}
}
impl ToAnimatedZero for Percentage {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
Ok(Percentage(0.))
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-visibility
impl Animatable for Visibility {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
match (*self, *other) {
(Visibility::visible, _) => {
Ok(if self_portion > 0.0 { *self } else { *other })
},
(_, Visibility::visible) => {
Ok(if other_portion > 0.0 { *other } else { *self })
},
_ => Err(()),
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
if *self == *other {
Ok(0.0)
} else {
Ok(1.0)
}
}
}
impl ToAnimatedZero for Visibility {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
Err(())
}
}
impl<T: Animatable + Copy> Animatable for Size2D<T> {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
let width = self.width.add_weighted(&other.width, self_portion, other_portion)?;
let height = self.height.add_weighted(&other.height, self_portion, other_portion)?;
Ok(Size2D::new(width, height))
}
}
impl<T: Animatable + Copy> Animatable for Point2D<T> {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
let x = self.x.add_weighted(&other.x, self_portion, other_portion)?;
let y = self.y.add_weighted(&other.y, self_portion, other_portion)?;
Ok(Point2D::new(x, y))
}
}
impl Animatable for BorderCornerRadius {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
self.0.add_weighted(&other.0, self_portion, other_portion).map(GenericBorderCornerRadius)
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
self.compute_squared_distance(other).map(|sd| sd.sqrt())
}
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<f64, ()> {
Ok(self.0.width.compute_squared_distance(&other.0.width)? +
self.0.height.compute_squared_distance(&other.0.height)?)
}
}
impl ToAnimatedZero for BorderCornerRadius {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> { Err(()) }
}
/// https://drafts.csswg.org/css-transitions/#animtype-length
impl Animatable for VerticalAlign {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
match (*self, *other) {
(VerticalAlign::LengthOrPercentage(LengthOrPercentage::Length(ref this)),
VerticalAlign::LengthOrPercentage(LengthOrPercentage::Length(ref other))) => {
this.add_weighted(other, self_portion, other_portion).map(|value| {
VerticalAlign::LengthOrPercentage(LengthOrPercentage::Length(value))
})
}
_ => Err(()),
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
match (*self, *other) {
(VerticalAlign::LengthOrPercentage(ref this),
VerticalAlign::LengthOrPercentage(ref other)) => {
this.compute_distance(other)
},
_ => Err(()),
}
}
}
impl ToAnimatedZero for VerticalAlign {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> { Err(()) }
}
/// https://drafts.csswg.org/css-transitions/#animtype-lpcalc
impl Animatable for CalcLengthOrPercentage {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
fn add_weighted_half<T>(this: Option<T>,
other: Option<T>,
self_portion: f64,
other_portion: f64)
-> Result<Option<T>, ()>
where T: Default + Animatable,
{
match (this, other) {
(None, None) => Ok(None),
(this, other) => {
let this = this.unwrap_or(T::default());
let other = other.unwrap_or(T::default());
this.add_weighted(&other, self_portion, other_portion).map(Some)
}
}
}
let length = self.unclamped_length().add_weighted(&other.unclamped_length(), self_portion, other_portion)?;
let percentage = add_weighted_half(self.percentage, other.percentage, self_portion, other_portion)?;
Ok(CalcLengthOrPercentage::with_clamping_mode(length, percentage, self.clamping_mode))
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
self.compute_squared_distance(other).map(|sq| sq.sqrt())
}
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<f64, ()> {
let length_diff = (self.unclamped_length().0 - other.unclamped_length().0) as f64;
let percentage_diff = (self.percentage() - other.percentage()) as f64;
Ok(length_diff * length_diff + percentage_diff * percentage_diff)
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-lpcalc
impl Animatable for LengthOrPercentage {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
match (*self, *other) {
(LengthOrPercentage::Length(ref this),
LengthOrPercentage::Length(ref other)) => {
this.add_weighted(other, self_portion, other_portion)
.map(LengthOrPercentage::Length)
}
(LengthOrPercentage::Percentage(ref this),
LengthOrPercentage::Percentage(ref other)) => {
this.add_weighted(other, self_portion, other_portion)
.map(LengthOrPercentage::Percentage)
}
(this, other) => {
// Special handling for zero values since these should not require calc().
if this.is_definitely_zero() {
return other.add_weighted(&other, 0., other_portion)
} else if other.is_definitely_zero() {
return this.add_weighted(self, self_portion, 0.)
}
let this: CalcLengthOrPercentage = From::from(this);
let other: CalcLengthOrPercentage = From::from(other);
this.add_weighted(&other, self_portion, other_portion)
.map(LengthOrPercentage::Calc)
}
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
match (*self, *other) {
(LengthOrPercentage::Length(ref this),
LengthOrPercentage::Length(ref other)) => {
this.compute_distance(other)
},
(LengthOrPercentage::Percentage(ref this),
LengthOrPercentage::Percentage(ref other)) => {
this.compute_distance(other)
},
(this, other) => {
let this: CalcLengthOrPercentage = From::from(this);
let other: CalcLengthOrPercentage = From::from(other);
this.compute_distance(&other)
}
}
}
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<f64, ()> {
match (*self, *other) {
(LengthOrPercentage::Length(ref this),
LengthOrPercentage::Length(ref other)) => {
let diff = (this.0 - other.0) as f64;
Ok(diff * diff)
},
(LengthOrPercentage::Percentage(ref this),
LengthOrPercentage::Percentage(ref other)) => {
let diff = this.0 as f64 - other.0 as f64;
Ok(diff * diff)
},
(this, other) => {
let this: CalcLengthOrPercentage = From::from(this);
let other: CalcLengthOrPercentage = From::from(other);
let length_diff = (this.unclamped_length().0 - other.unclamped_length().0) as f64;
let percentage_diff = (this.percentage() - other.percentage()) as f64;
Ok(length_diff * length_diff + percentage_diff * percentage_diff)
}
}
}
}
impl ToAnimatedZero for LengthOrPercentage {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
Ok(LengthOrPercentage::zero())
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-lpcalc
impl Animatable for LengthOrPercentageOrAuto {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
match (*self, *other) {
(LengthOrPercentageOrAuto::Length(ref this),
LengthOrPercentageOrAuto::Length(ref other)) => {
this.add_weighted(other, self_portion, other_portion)
.map(LengthOrPercentageOrAuto::Length)
}
(LengthOrPercentageOrAuto::Percentage(ref this),
LengthOrPercentageOrAuto::Percentage(ref other)) => {
this.add_weighted(other, self_portion, other_portion)
.map(LengthOrPercentageOrAuto::Percentage)
}
(LengthOrPercentageOrAuto::Auto, LengthOrPercentageOrAuto::Auto) => {
Ok(LengthOrPercentageOrAuto::Auto)
}
(this, other) => {
let this: Option<CalcLengthOrPercentage> = From::from(this);
let other: Option<CalcLengthOrPercentage> = From::from(other);
match this.add_weighted(&other, self_portion, other_portion) {
Ok(Some(result)) => Ok(LengthOrPercentageOrAuto::Calc(result)),
_ => Err(()),
}
}
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
match (*self, *other) {
(LengthOrPercentageOrAuto::Length(ref this),
LengthOrPercentageOrAuto::Length(ref other)) => {
this.compute_distance(other)
},
(LengthOrPercentageOrAuto::Percentage(ref this),
LengthOrPercentageOrAuto::Percentage(ref other)) => {
this.compute_distance(other)
},
(this, other) => {
// If one of the element is Auto, Option<> will be None, and the returned distance is Err(())
let this: Option<CalcLengthOrPercentage> = From::from(this);
let other: Option<CalcLengthOrPercentage> = From::from(other);
this.compute_distance(&other)
}
}
}
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<f64, ()> {
match (*self, *other) {
(LengthOrPercentageOrAuto::Length(ref this),
LengthOrPercentageOrAuto::Length(ref other)) => {
let diff = (this.0 - other.0) as f64;
Ok(diff * diff)
},
(LengthOrPercentageOrAuto::Percentage(ref this),
LengthOrPercentageOrAuto::Percentage(ref other)) => {
let diff = this.0 as f64 - other.0 as f64;
Ok(diff * diff)
},
(this, other) => {
let this: Option<CalcLengthOrPercentage> = From::from(this);
let other: Option<CalcLengthOrPercentage> = From::from(other);
if let (Some(this), Some(other)) = (this, other) {
let length_diff = (this.unclamped_length().0 - other.unclamped_length().0) as f64;
let percentage_diff = (this.percentage() - other.percentage()) as f64;
Ok(length_diff * length_diff + percentage_diff * percentage_diff)
} else {
Err(())
}
}
}
}
}
impl ToAnimatedZero for LengthOrPercentageOrAuto {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
match *self {
LengthOrPercentageOrAuto::Length(_) |
LengthOrPercentageOrAuto::Percentage(_) |
LengthOrPercentageOrAuto::Calc(_) => {
Ok(LengthOrPercentageOrAuto::Length(Au(0)))
},
LengthOrPercentageOrAuto::Auto => Err(()),
}
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-lpcalc
impl Animatable for LengthOrPercentageOrNone {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
match (*self, *other) {
(LengthOrPercentageOrNone::Length(ref this),
LengthOrPercentageOrNone::Length(ref other)) => {
this.add_weighted(other, self_portion, other_portion)
.map(LengthOrPercentageOrNone::Length)
}
(LengthOrPercentageOrNone::Percentage(ref this),
LengthOrPercentageOrNone::Percentage(ref other)) => {
this.add_weighted(other, self_portion, other_portion)
.map(LengthOrPercentageOrNone::Percentage)
}
(LengthOrPercentageOrNone::None, LengthOrPercentageOrNone::None) => {
Ok(LengthOrPercentageOrNone::None)
}
(this, other) => {
let this = <Option<CalcLengthOrPercentage>>::from(this);
let other = <Option<CalcLengthOrPercentage>>::from(other);
match this.add_weighted(&other, self_portion, other_portion) {
Ok(Some(result)) => Ok(LengthOrPercentageOrNone::Calc(result)),
_ => Err(()),
}
},
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
match (*self, *other) {
(LengthOrPercentageOrNone::Length(ref this),
LengthOrPercentageOrNone::Length(ref other)) => {
this.compute_distance(other)
},
(LengthOrPercentageOrNone::Percentage(ref this),
LengthOrPercentageOrNone::Percentage(ref other)) => {
this.compute_distance(other)
},
(this, other) => {
// If one of the element is Auto, Option<> will be None, and the returned distance is Err(())
let this = <Option<CalcLengthOrPercentage>>::from(this);
let other = <Option<CalcLengthOrPercentage>>::from(other);
this.compute_distance(&other)
},
}
}
}
impl ToAnimatedZero for LengthOrPercentageOrNone {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
match *self {
LengthOrPercentageOrNone::Length(_) |
LengthOrPercentageOrNone::Percentage(_) |
LengthOrPercentageOrNone::Calc(_) => {
Ok(LengthOrPercentageOrNone::Length(Au(0)))
},
LengthOrPercentageOrNone::None => Err(()),
}
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-lpcalc
impl Animatable for MozLength {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
match (*self, *other) {
(MozLength::LengthOrPercentageOrAuto(ref this),
MozLength::LengthOrPercentageOrAuto(ref other)) => {
this.add_weighted(other, self_portion, other_portion)
.map(MozLength::LengthOrPercentageOrAuto)
}
_ => Err(()),
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
match (*self, *other) {
(MozLength::LengthOrPercentageOrAuto(ref this),
MozLength::LengthOrPercentageOrAuto(ref other)) => {
this.compute_distance(other)
},
_ => Err(()),
}
}
}
impl ToAnimatedZero for MozLength {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> { Err(()) }
}
/// https://drafts.csswg.org/css-transitions/#animtype-lpcalc
impl Animatable for MaxLength {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
match (*self, *other) {
(MaxLength::LengthOrPercentageOrNone(ref this),
MaxLength::LengthOrPercentageOrNone(ref other)) => {
this.add_weighted(other, self_portion, other_portion)
.map(MaxLength::LengthOrPercentageOrNone)
}
_ => Err(()),
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
match (*self, *other) {
(MaxLength::LengthOrPercentageOrNone(ref this),
MaxLength::LengthOrPercentageOrNone(ref other)) => {
this.compute_distance(other)
},
_ => Err(()),
}
}
}
impl ToAnimatedZero for MaxLength {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> { Err(()) }
}
/// http://dev.w3.org/csswg/css-transitions/#animtype-font-weight
impl Animatable for FontWeight {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
let a = self.0 as f64;
let b = other.0 as f64;
const NORMAL: f64 = 400.;
let weight = (a - NORMAL) * self_portion + (b - NORMAL) * other_portion + NORMAL;
let weight = (weight.min(100.).max(900.) / 100.).round() * 100.;
Ok(FontWeight(weight as u16))
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
let a = self.0 as f64;
let b = other.0 as f64;
a.compute_distance(&b)
}
}
impl ToAnimatedZero for FontWeight {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
Ok(FontWeight::normal())
}
}
/// https://drafts.csswg.org/css-fonts/#font-stretch-prop
impl Animatable for FontStretch {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64)
-> Result<Self, ()>
{
let from = f64::from(*self);
let to = f64::from(*other);
// FIXME: When `const fn` is available in release rust, make |normal|, below, const.
let normal = f64::from(FontStretch::normal);
let result = (from - normal) * self_portion + (to - normal) * other_portion + normal;
Ok(result.into())
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
let from = f64::from(*self);
let to = f64::from(*other);
from.compute_distance(&to)
}
}
impl ToAnimatedZero for FontStretch {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> { Err(()) }
}
/// We should treat font stretch as real number in order to interpolate this property.
/// https://drafts.csswg.org/css-fonts-3/#font-stretch-animation
impl From<FontStretch> for f64 {
fn from(stretch: FontStretch) -> f64 {
use self::FontStretch::*;
match stretch {
ultra_condensed => 1.0,
extra_condensed => 2.0,
condensed => 3.0,
semi_condensed => 4.0,
normal => 5.0,
semi_expanded => 6.0,
expanded => 7.0,
extra_expanded => 8.0,
ultra_expanded => 9.0,
}
}
}
impl Into<FontStretch> for f64 {
fn into(self) -> FontStretch {
use properties::longhands::font_stretch::computed_value::T::*;
let index = (self + 0.5).floor().min(9.0).max(1.0);
static FONT_STRETCH_ENUM_MAP: [FontStretch; 9] =
[ ultra_condensed, extra_condensed, condensed, semi_condensed, normal,
semi_expanded, expanded, extra_expanded, ultra_expanded ];
FONT_STRETCH_ENUM_MAP[(index - 1.0) as usize]
}
}
/// https://drafts.csswg.org/css-transitions/#animtype-simple-list
impl<H: Animatable, V: Animatable> Animatable for generic_position::Position<H, V> {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok(generic_position::Position {
horizontal: self.horizontal.add_weighted(&other.horizontal, self_portion, other_portion)?,
vertical: self.vertical.add_weighted(&other.vertical, self_portion, other_portion)?,
})
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
self.compute_squared_distance(other).map(|sd| sd.sqrt())
}
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<f64, ()> {
Ok(self.horizontal.compute_squared_distance(&other.horizontal)? +
self.vertical.compute_squared_distance(&other.vertical)?)
}
}
impl<H, V> ToAnimatedZero for generic_position::Position<H, V>
where
H: ToAnimatedZero,
V: ToAnimatedZero,
{
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
Ok(generic_position::Position {
horizontal: self.horizontal.to_animated_zero()?,
vertical: self.vertical.to_animated_zero()?,
})
}
}
impl<H, V> RepeatableListAnimatable for generic_position::Position<H, V>
where H: RepeatableListAnimatable, V: RepeatableListAnimatable {}
/// https://drafts.csswg.org/css-transitions/#animtype-rect
impl Animatable for ClipRect {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64)
-> Result<Self, ()> {
Ok(ClipRect {
top: self.top.add_weighted(&other.top, self_portion, other_portion)?,
right: self.right.add_weighted(&other.right, self_portion, other_portion)?,
bottom: self.bottom.add_weighted(&other.bottom, self_portion, other_portion)?,
left: self.left.add_weighted(&other.left, self_portion, other_portion)?,
})
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
self.compute_squared_distance(other).map(|sd| sd.sqrt())
}
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<f64, ()> {
let list = [
self.top.compute_distance(&other.top)?,
self.right.compute_distance(&other.right)?,
self.bottom.compute_distance(&other.bottom)?,
self.left.compute_distance(&other.left)?
];
Ok(list.iter().fold(0.0f64, |sum, diff| sum + diff * diff))
}
}
impl ToAnimatedZero for ClipRect {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> { Err(()) }
}
/// Check if it's possible to do a direct numerical interpolation
/// between these two transform lists.
/// http://dev.w3.org/csswg/css-transforms/#transform-transform-animation
fn can_interpolate_list(from_list: &[TransformOperation],
to_list: &[TransformOperation]) -> bool {
// Lists must be equal length
if from_list.len() != to_list.len() {
return false;
}
// Each transform operation must match primitive type in other list
for (from, to) in from_list.iter().zip(to_list) {
match (from, to) {
(&TransformOperation::Matrix(..), &TransformOperation::Matrix(..)) |
(&TransformOperation::Skew(..), &TransformOperation::Skew(..)) |
(&TransformOperation::Translate(..), &TransformOperation::Translate(..)) |
(&TransformOperation::Scale(..), &TransformOperation::Scale(..)) |
(&TransformOperation::Rotate(..), &TransformOperation::Rotate(..)) |
(&TransformOperation::Perspective(..), &TransformOperation::Perspective(..)) => {}
_ => {
return false;
}
}
}
true
}
/// Build an equivalent 'identity transform function list' based
/// on an existing transform list.
/// http://dev.w3.org/csswg/css-transforms/#none-transform-animation
fn build_identity_transform_list(list: &[TransformOperation]) -> Vec<TransformOperation> {
let mut result = vec!();
for operation in list {
match *operation {
TransformOperation::Matrix(..) => {
let identity = ComputedMatrix::identity();
result.push(TransformOperation::Matrix(identity));
}
TransformOperation::MatrixWithPercents(..) => {}
TransformOperation::Skew(..) => {
result.push(TransformOperation::Skew(Angle::zero(), Angle::zero()))
}
TransformOperation::Translate(..) => {
result.push(TransformOperation::Translate(LengthOrPercentage::zero(),
LengthOrPercentage::zero(),
Au(0)));
}
TransformOperation::Scale(..) => {
result.push(TransformOperation::Scale(1.0, 1.0, 1.0));
}
TransformOperation::Rotate(..) => {
result.push(TransformOperation::Rotate(0.0, 0.0, 1.0, Angle::zero()));
}
TransformOperation::Perspective(..) |
TransformOperation::AccumulateMatrix { .. } |
TransformOperation::InterpolateMatrix { .. } => {
// Perspective: We convert a perspective function into an equivalent
// ComputedMatrix, and then decompose/interpolate/recompose these matrices.
// AccumulateMatrix/InterpolateMatrix: We do interpolation on
// AccumulateMatrix/InterpolateMatrix by reading it as a ComputedMatrix
// (with layout information), and then do matrix interpolation.
//
// Therefore, we use an identity matrix to represent the identity transform list.
// http://dev.w3.org/csswg/css-transforms/#identity-transform-function
let identity = ComputedMatrix::identity();
result.push(TransformOperation::Matrix(identity));
}
}
}
result
}
/// A wrapper for calling add_weighted that interpolates the distance of the two values from
/// an initial_value and uses that to produce an interpolated value.
/// This is used for values such as 'scale' where the initial value is 1 and where if we interpolate
/// the absolute values, we will produce odd results for accumulation.
fn add_weighted_with_initial_val<T: Animatable>(a: &T,
b: &T,
a_portion: f64,
b_portion: f64,
initial_val: &T) -> Result<T, ()> {
let a = a.add_weighted(&initial_val, 1.0, -1.0)?;
let b = b.add_weighted(&initial_val, 1.0, -1.0)?;
let result = a.add_weighted(&b, a_portion, b_portion)?;
result.add_weighted(&initial_val, 1.0, 1.0)
}
/// Add two transform lists.
/// http://dev.w3.org/csswg/css-transforms/#interpolation-of-transforms
fn add_weighted_transform_lists(from_list: &[TransformOperation],
to_list: &[TransformOperation],
self_portion: f64,
other_portion: f64) -> TransformList {
let mut result = vec![];
if can_interpolate_list(from_list, to_list) {
for (from, to) in from_list.iter().zip(to_list) {
match (from, to) {
(&TransformOperation::Matrix(from),
&TransformOperation::Matrix(_to)) => {
let sum = from.add_weighted(&_to, self_portion, other_portion).unwrap();
result.push(TransformOperation::Matrix(sum));
}
(&TransformOperation::MatrixWithPercents(_),
&TransformOperation::MatrixWithPercents(_)) => {
// We don't add_weighted `-moz-transform` matrices yet.
// They contain percentage values.
{}
}
(&TransformOperation::Skew(fx, fy),
&TransformOperation::Skew(tx, ty)) => {
let ix = fx.add_weighted(&tx, self_portion, other_portion).unwrap();
let iy = fy.add_weighted(&ty, self_portion, other_portion).unwrap();
result.push(TransformOperation::Skew(ix, iy));
}
(&TransformOperation::Translate(fx, fy, fz),
&TransformOperation::Translate(tx, ty, tz)) => {
let ix = fx.add_weighted(&tx, self_portion, other_portion).unwrap();
let iy = fy.add_weighted(&ty, self_portion, other_portion).unwrap();
let iz = fz.add_weighted(&tz, self_portion, other_portion).unwrap();
result.push(TransformOperation::Translate(ix, iy, iz));
}
(&TransformOperation::Scale(fx, fy, fz),
&TransformOperation::Scale(tx, ty, tz)) => {
let ix = add_weighted_with_initial_val(&fx, &tx, self_portion,
other_portion, &1.0).unwrap();
let iy = add_weighted_with_initial_val(&fy, &ty, self_portion,
other_portion, &1.0).unwrap();
let iz = add_weighted_with_initial_val(&fz, &tz, self_portion,
other_portion, &1.0).unwrap();
result.push(TransformOperation::Scale(ix, iy, iz));
}
(&TransformOperation::Rotate(fx, fy, fz, fa),
&TransformOperation::Rotate(tx, ty, tz, ta)) => {
let norm_f = ((fx * fx) + (fy * fy) + (fz * fz)).sqrt();
let norm_t = ((tx * tx) + (ty * ty) + (tz * tz)).sqrt();
let (fx, fy, fz) = (fx / norm_f, fy / norm_f, fz / norm_f);
let (tx, ty, tz) = (tx / norm_t, ty / norm_t, tz / norm_t);
if fx == tx && fy == ty && fz == tz {
let ia = fa.add_weighted(&ta, self_portion, other_portion).unwrap();
result.push(TransformOperation::Rotate(fx, fy, fz, ia));
} else {
let matrix_f = rotate_to_matrix(fx, fy, fz, fa);
let matrix_t = rotate_to_matrix(tx, ty, tz, ta);
let sum = matrix_f.add_weighted(&matrix_t, self_portion, other_portion)
.unwrap();
result.push(TransformOperation::Matrix(sum));
}
}
(&TransformOperation::Perspective(fd),
&TransformOperation::Perspective(_td)) => {
let mut fd_matrix = ComputedMatrix::identity();
let mut td_matrix = ComputedMatrix::identity();
fd_matrix.m43 = -1. / fd.to_f32_px();
td_matrix.m43 = -1. / _td.to_f32_px();
let sum = fd_matrix.add_weighted(&td_matrix, self_portion, other_portion)
.unwrap();
result.push(TransformOperation::Matrix(sum));
}
_ => {
// This should be unreachable due to the can_interpolate_list() call.
unreachable!();
}
}
}
} else {
let from_transform_list = TransformList(Some(from_list.to_vec()));
let to_transform_list = TransformList(Some(to_list.to_vec()));
result.push(
TransformOperation::InterpolateMatrix { from_list: from_transform_list,
to_list: to_transform_list,
progress: Percentage(other_portion as f32) });
}
TransformList(Some(result))
}
/// https://www.w3.org/TR/css-transforms-1/#Rotate3dDefined
fn rotate_to_matrix(x: f32, y: f32, z: f32, a: Angle) -> ComputedMatrix {
let half_rad = a.radians() / 2.0;
let sc = (half_rad).sin() * (half_rad).cos();
let sq = (half_rad).sin().powi(2);
ComputedMatrix {
m11: 1.0 - 2.0 * (y * y + z * z) * sq,
m12: 2.0 * (x * y * sq + z * sc),
m13: 2.0 * (x * z * sq - y * sc),
m14: 0.0,
m21: 2.0 * (x * y * sq - z * sc),
m22: 1.0 - 2.0 * (x * x + z * z) * sq,
m23: 2.0 * (y * z * sq + x * sc),
m24: 0.0,
m31: 2.0 * (x * z * sq + y * sc),
m32: 2.0 * (y * z * sq - x * sc),
m33: 1.0 - 2.0 * (x * x + y * y) * sq,
m34: 0.0,
m41: 0.0,
m42: 0.0,
m43: 0.0,
m44: 1.0
}
}
/// A 2d matrix for interpolation.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
#[allow(missing_docs)]
pub struct InnerMatrix2D {
pub m11: CSSFloat, pub m12: CSSFloat,
pub m21: CSSFloat, pub m22: CSSFloat,
}
/// A 2d translation function.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct Translate2D(f32, f32);
/// A 2d scale function.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct Scale2D(f32, f32);
/// A decomposed 2d matrix.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct MatrixDecomposed2D {
/// The translation function.
pub translate: Translate2D,
/// The scale function.
pub scale: Scale2D,
/// The rotation angle.
pub angle: f32,
/// The inner matrix.
pub matrix: InnerMatrix2D,
}
impl Animatable for InnerMatrix2D {
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok(InnerMatrix2D {
m11: add_weighted_with_initial_val(&self.m11, &other.m11,
self_portion, other_portion, &1.0)?,
m12: self.m12.add_weighted(&other.m12, self_portion, other_portion)?,
m21: self.m21.add_weighted(&other.m21, self_portion, other_portion)?,
m22: add_weighted_with_initial_val(&self.m22, &other.m22,
self_portion, other_portion, &1.0)?,
})
}
}
impl Animatable for Translate2D {
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok(Translate2D(
self.0.add_weighted(&other.0, self_portion, other_portion)?,
self.1.add_weighted(&other.1, self_portion, other_portion)?,
))
}
}
impl Animatable for Scale2D {
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok(Scale2D(
add_weighted_with_initial_val(&self.0, &other.0, self_portion, other_portion, &1.0)?,
add_weighted_with_initial_val(&self.1, &other.1, self_portion, other_portion, &1.0)?,
))
}
}
impl Animatable for MatrixDecomposed2D {
/// https://drafts.csswg.org/css-transforms/#interpolation-of-decomposed-2d-matrix-values
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
// If x-axis of one is flipped, and y-axis of the other,
// convert to an unflipped rotation.
let mut scale = self.scale;
let mut angle = self.angle;
let mut other_angle = other.angle;
if (scale.0 < 0.0 && other.scale.1 < 0.0) || (scale.1 < 0.0 && other.scale.0 < 0.0) {
scale.0 = -scale.0;
scale.1 = -scale.1;
angle += if angle < 0.0 {180.} else {-180.};
}
// Don't rotate the long way around.
if angle == 0.0 {
angle = 360.
}
if other_angle == 0.0 {
other_angle = 360.
}
if (angle - other_angle).abs() > 180. {
if angle > other_angle {
angle -= 360.
}
else{
other_angle -= 360.
}
}
// Interpolate all values.
let translate = self.translate.add_weighted(&other.translate, self_portion, other_portion)?;
let scale = scale.add_weighted(&other.scale, self_portion, other_portion)?;
let angle = angle.add_weighted(&other_angle, self_portion, other_portion)?;
let matrix = self.matrix.add_weighted(&other.matrix, self_portion, other_portion)?;
Ok(MatrixDecomposed2D {
translate: translate,
scale: scale,
angle: angle,
matrix: matrix,
})
}
}
impl Animatable for ComputedMatrix {
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
if self.is_3d() || other.is_3d() {
let decomposed_from = decompose_3d_matrix(*self);
let decomposed_to = decompose_3d_matrix(*other);
match (decomposed_from, decomposed_to) {
(Ok(from), Ok(to)) => {
let sum = from.add_weighted(&to, self_portion, other_portion)?;
Ok(ComputedMatrix::from(sum))
},
_ => {
let result = if self_portion > other_portion {*self} else {*other};
Ok(result)
}
}
} else {
let decomposed_from = MatrixDecomposed2D::from(*self);
let decomposed_to = MatrixDecomposed2D::from(*other);
let sum = decomposed_from.add_weighted(&decomposed_to, self_portion, other_portion)?;
Ok(ComputedMatrix::from(sum))
}
}
}
impl From<ComputedMatrix> for MatrixDecomposed2D {
/// Decompose a 2D matrix.
/// https://drafts.csswg.org/css-transforms/#decomposing-a-2d-matrix
fn from(matrix: ComputedMatrix) -> MatrixDecomposed2D {
let mut row0x = matrix.m11;
let mut row0y = matrix.m12;
let mut row1x = matrix.m21;
let mut row1y = matrix.m22;
let translate = Translate2D(matrix.m41, matrix.m42);
let mut scale = Scale2D((row0x * row0x + row0y * row0y).sqrt(),
(row1x * row1x + row1y * row1y).sqrt());
// If determinant is negative, one axis was flipped.
let determinant = row0x * row1y - row0y * row1x;
if determinant < 0. {
if row0x < row1y {
scale.0 = -scale.0;
} else {
scale.1 = -scale.1;
}
}
// Renormalize matrix to remove scale.
if scale.0 != 0.0 {
row0x *= 1. / scale.0;
row0y *= 1. / scale.0;
}
if scale.1 != 0.0 {
row1x *= 1. / scale.1;
row1y *= 1. / scale.1;
}
// Compute rotation and renormalize matrix.
let mut angle = row0y.atan2(row0x);
if angle != 0.0 {
let sn = -row0y;
let cs = row0x;
let m11 = row0x;
let m12 = row0y;
let m21 = row1x;
let m22 = row1y;
row0x = cs * m11 + sn * m21;
row0y = cs * m12 + sn * m22;
row1x = -sn * m11 + cs * m21;
row1y = -sn * m12 + cs * m22;
}
let m = InnerMatrix2D {
m11: row0x, m12: row0y,
m21: row1x, m22: row1y,
};
// Convert into degrees because our rotation functions expect it.
angle = angle.to_degrees();
MatrixDecomposed2D {
translate: translate,
scale: scale,
angle: angle,
matrix: m,
}
}
}
impl From<MatrixDecomposed2D> for ComputedMatrix {
/// Recompose a 2D matrix.
/// https://drafts.csswg.org/css-transforms/#recomposing-to-a-2d-matrix
fn from(decomposed: MatrixDecomposed2D) -> ComputedMatrix {
let mut computed_matrix = ComputedMatrix::identity();
computed_matrix.m11 = decomposed.matrix.m11;
computed_matrix.m12 = decomposed.matrix.m12;
computed_matrix.m21 = decomposed.matrix.m21;
computed_matrix.m22 = decomposed.matrix.m22;
// Translate matrix.
computed_matrix.m41 = decomposed.translate.0;
computed_matrix.m42 = decomposed.translate.1;
// Rotate matrix.
let angle = decomposed.angle.to_radians();
let cos_angle = angle.cos();
let sin_angle = angle.sin();
let mut rotate_matrix = ComputedMatrix::identity();
rotate_matrix.m11 = cos_angle;
rotate_matrix.m12 = sin_angle;
rotate_matrix.m21 = -sin_angle;
rotate_matrix.m22 = cos_angle;
// Multiplication of computed_matrix and rotate_matrix
computed_matrix = multiply(rotate_matrix, computed_matrix);
// Scale matrix.
computed_matrix.m11 *= decomposed.scale.0;
computed_matrix.m12 *= decomposed.scale.0;
computed_matrix.m21 *= decomposed.scale.1;
computed_matrix.m22 *= decomposed.scale.1;
computed_matrix
}
}
#[cfg(feature = "gecko")]
impl<'a> From< &'a RawGeckoGfxMatrix4x4> for ComputedMatrix {
fn from(m: &'a RawGeckoGfxMatrix4x4) -> ComputedMatrix {
ComputedMatrix {
m11: m[0], m12: m[1], m13: m[2], m14: m[3],
m21: m[4], m22: m[5], m23: m[6], m24: m[7],
m31: m[8], m32: m[9], m33: m[10], m34: m[11],
m41: m[12], m42: m[13], m43: m[14], m44: m[15],
}
}
}
#[cfg(feature = "gecko")]
impl From<ComputedMatrix> for RawGeckoGfxMatrix4x4 {
fn from(matrix: ComputedMatrix) -> RawGeckoGfxMatrix4x4 {
[ matrix.m11, matrix.m12, matrix.m13, matrix.m14,
matrix.m21, matrix.m22, matrix.m23, matrix.m24,
matrix.m31, matrix.m32, matrix.m33, matrix.m34,
matrix.m41, matrix.m42, matrix.m43, matrix.m44 ]
}
}
/// A 3d translation.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct Translate3D(f32, f32, f32);
/// A 3d scale function.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct Scale3D(f32, f32, f32);
/// A 3d skew function.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct Skew(f32, f32, f32);
/// A 3d perspective transformation.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct Perspective(f32, f32, f32, f32);
/// A quaternion used to represent a rotation.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct Quaternion(f32, f32, f32, f32);
/// A decomposed 3d matrix.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct MatrixDecomposed3D {
/// A translation function.
pub translate: Translate3D,
/// A scale function.
pub scale: Scale3D,
/// The skew component of the transformation.
pub skew: Skew,
/// The perspective component of the transformation.
pub perspective: Perspective,
/// The quaternion used to represent the rotation.
pub quaternion: Quaternion,
}
/// Decompose a 3D matrix.
/// https://drafts.csswg.org/css-transforms/#decomposing-a-3d-matrix
fn decompose_3d_matrix(mut matrix: ComputedMatrix) -> Result<MatrixDecomposed3D, ()> {
// Normalize the matrix.
if matrix.m44 == 0.0 {
return Err(());
}
let scaling_factor = matrix.m44;
% for i in range(1, 5):
% for j in range(1, 5):
matrix.m${i}${j} /= scaling_factor;
% endfor
% endfor
// perspective_matrix is used to solve for perspective, but it also provides
// an easy way to test for singularity of the upper 3x3 component.
let mut perspective_matrix = matrix;
% for i in range(1, 4):
perspective_matrix.m${i}4 = 0.0;
% endfor
perspective_matrix.m44 = 1.0;
if perspective_matrix.determinant() == 0.0 {
return Err(());
}
// First, isolate perspective.
let perspective = if matrix.m14 != 0.0 || matrix.m24 != 0.0 || matrix.m34 != 0.0 {
let right_hand_side: [f32; 4] = [
matrix.m14,
matrix.m24,
matrix.m34,
matrix.m44
];
perspective_matrix = perspective_matrix.inverse().unwrap();
// Transpose perspective_matrix
perspective_matrix = ComputedMatrix {
% for i in range(1, 5):
% for j in range(1, 5):
m${i}${j}: perspective_matrix.m${j}${i},
% endfor
% endfor
};
// Multiply right_hand_side with perspective_matrix
let mut tmp: [f32; 4] = [0.0; 4];
% for i in range(1, 5):
tmp[${i - 1}] = (right_hand_side[0] * perspective_matrix.m1${i}) +
(right_hand_side[1] * perspective_matrix.m2${i}) +
(right_hand_side[2] * perspective_matrix.m3${i}) +
(right_hand_side[3] * perspective_matrix.m4${i});
% endfor
Perspective(tmp[0], tmp[1], tmp[2], tmp[3])
} else {
Perspective(0.0, 0.0, 0.0, 1.0)
};
// Next take care of translation
let translate = Translate3D (
matrix.m41,
matrix.m42,
matrix.m43
);
// Now get scale and shear. 'row' is a 3 element array of 3 component vectors
let mut row: [[f32; 3]; 3] = [[0.0; 3]; 3];
% for i in range(1, 4):
row[${i - 1}][0] = matrix.m${i}1;
row[${i - 1}][1] = matrix.m${i}2;
row[${i - 1}][2] = matrix.m${i}3;
% endfor
// Compute X scale factor and normalize first row.
let row0len = (row[0][0] * row[0][0] + row[0][1] * row[0][1] + row[0][2] * row[0][2]).sqrt();
let mut scale = Scale3D(row0len, 0.0, 0.0);
row[0] = [row[0][0] / row0len, row[0][1] / row0len, row[0][2] / row0len];
// Compute XY shear factor and make 2nd row orthogonal to 1st.
let mut skew = Skew(dot(row[0], row[1]), 0.0, 0.0);
row[1] = combine(row[1], row[0], 1.0, -skew.0);
// Now, compute Y scale and normalize 2nd row.
let row1len = (row[1][0] * row[1][0] + row[1][1] * row[1][1] + row[1][2] * row[1][2]).sqrt();
scale.1 = row1len;
row[1] = [row[1][0] / row1len, row[1][1] / row1len, row[1][2] / row1len];
skew.0 /= scale.1;
// Compute XZ and YZ shears, orthogonalize 3rd row
skew.1 = dot(row[0], row[2]);
row[2] = combine(row[2], row[0], 1.0, -skew.1);
skew.2 = dot(row[1], row[2]);
row[2] = combine(row[2], row[1], 1.0, -skew.2);
// Next, get Z scale and normalize 3rd row.
let row2len = (row[2][0] * row[2][0] + row[2][1] * row[2][1] + row[2][2] * row[2][2]).sqrt();
scale.2 = row2len;
row[2] = [row[2][0] / row2len, row[2][1] / row2len, row[2][2] / row2len];
skew.1 /= scale.2;
skew.2 /= scale.2;
// At this point, the matrix (in rows) is orthonormal.
// Check for a coordinate system flip. If the determinant
// is -1, then negate the matrix and the scaling factors.
let pdum3 = cross(row[1], row[2]);
if dot(row[0], pdum3) < 0.0 {
% for i in range(3):
scale.${i} *= -1.0;
row[${i}][0] *= -1.0;
row[${i}][1] *= -1.0;
row[${i}][2] *= -1.0;
% endfor
}
// Now, get the rotations out
let mut quaternion = Quaternion (
0.5 * ((1.0 + row[0][0] - row[1][1] - row[2][2]).max(0.0)).sqrt(),
0.5 * ((1.0 - row[0][0] + row[1][1] - row[2][2]).max(0.0)).sqrt(),
0.5 * ((1.0 - row[0][0] - row[1][1] + row[2][2]).max(0.0)).sqrt(),
0.5 * ((1.0 + row[0][0] + row[1][1] + row[2][2]).max(0.0)).sqrt()
);
if row[2][1] > row[1][2] {
quaternion.0 = -quaternion.0
}
if row[0][2] > row[2][0] {
quaternion.1 = -quaternion.1
}
if row[1][0] > row[0][1] {
quaternion.2 = -quaternion.2
}
Ok(MatrixDecomposed3D {
translate: translate,
scale: scale,
skew: skew,
perspective: perspective,
quaternion: quaternion
})
}
// Combine 2 point.
fn combine(a: [f32; 3], b: [f32; 3], ascl: f32, bscl: f32) -> [f32; 3] {
[
(ascl * a[0]) + (bscl * b[0]),
(ascl * a[1]) + (bscl * b[1]),
(ascl * a[2]) + (bscl * b[2])
]
}
// Dot product.
fn dot(a: [f32; 3], b: [f32; 3]) -> f32 {
a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
}
// Cross product.
fn cross(row1: [f32; 3], row2: [f32; 3]) -> [f32; 3] {
[
row1[1] * row2[2] - row1[2] * row2[1],
row1[2] * row2[0] - row1[0] * row2[2],
row1[0] * row2[1] - row1[1] * row2[0]
]
}
impl Animatable for Translate3D {
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok(Translate3D(
self.0.add_weighted(&other.0, self_portion, other_portion)?,
self.1.add_weighted(&other.1, self_portion, other_portion)?,
self.2.add_weighted(&other.2, self_portion, other_portion)?,
))
}
}
impl Animatable for Scale3D {
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok(Scale3D(
add_weighted_with_initial_val(&self.0, &other.0, self_portion, other_portion, &1.0)?,
add_weighted_with_initial_val(&self.1, &other.1, self_portion, other_portion, &1.0)?,
add_weighted_with_initial_val(&self.2, &other.2, self_portion, other_portion, &1.0)?,
))
}
}
impl Animatable for Skew {
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok(Skew(
self.0.add_weighted(&other.0, self_portion, other_portion)?,
self.1.add_weighted(&other.1, self_portion, other_portion)?,
self.2.add_weighted(&other.2, self_portion, other_portion)?,
))
}
}
impl Animatable for Perspective {
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok(Perspective(
self.0.add_weighted(&other.0, self_portion, other_portion)?,
self.1.add_weighted(&other.1, self_portion, other_portion)?,
self.2.add_weighted(&other.2, self_portion, other_portion)?,
add_weighted_with_initial_val(&self.3, &other.3, self_portion, other_portion, &1.0)?,
))
}
}
impl Animatable for MatrixDecomposed3D {
/// https://drafts.csswg.org/css-transforms/#interpolation-of-decomposed-3d-matrix-values
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64)
-> Result<Self, ()> {
use std::f64;
debug_assert!((self_portion + other_portion - 1.0f64).abs() <= f64::EPSILON ||
other_portion == 1.0f64 || other_portion == 0.0f64,
"add_weighted should only be used for interpolating or accumulating transforms");
let mut sum = *self;
// Add translate, scale, skew and perspective components.
sum.translate = self.translate.add_weighted(&other.translate, self_portion, other_portion)?;
sum.scale = self.scale.add_weighted(&other.scale, self_portion, other_portion)?;
sum.skew = self.skew.add_weighted(&other.skew, self_portion, other_portion)?;
sum.perspective = self.perspective.add_weighted(&other.perspective, self_portion, other_portion)?;
// Add quaternions using spherical linear interpolation (Slerp).
//
// We take a specialized code path for accumulation (where other_portion is 1)
if other_portion == 1.0 {
if self_portion == 0.0 {
return Ok(*other)
}
let clamped_w = self.quaternion.3.min(1.0).max(-1.0);
// Determine the scale factor.
let mut theta = clamped_w.acos();
let mut scale = if theta == 0.0 { 0.0 } else { 1.0 / theta.sin() };
theta *= self_portion as f32;
scale *= theta.sin();
// Scale the self matrix by self_portion.
let mut scaled_self = *self;
% for i in range(3):
scaled_self.quaternion.${i} *= scale;
% endfor
scaled_self.quaternion.3 = theta.cos();
// Multiply scaled-self by other.
let a = &scaled_self.quaternion;
let b = &other.quaternion;
sum.quaternion = Quaternion(
a.3 * b.0 + a.0 * b.3 + a.1 * b.2 - a.2 * b.1,
a.3 * b.1 - a.0 * b.2 + a.1 * b.3 + a.2 * b.0,
a.3 * b.2 + a.0 * b.1 - a.1 * b.0 + a.2 * b.3,
a.3 * b.3 - a.0 * b.0 - a.1 * b.1 - a.2 * b.2,
);
} else {
let mut product = self.quaternion.0 * other.quaternion.0 +
self.quaternion.1 * other.quaternion.1 +
self.quaternion.2 * other.quaternion.2 +
self.quaternion.3 * other.quaternion.3;
// Clamp product to -1.0 <= product <= 1.0
product = product.min(1.0);
product = product.max(-1.0);
if product == 1.0 {
return Ok(sum);
}
let theta = product.acos();
let w = (other_portion as f32 * theta).sin() * 1.0 / (1.0 - product * product).sqrt();
let mut a = *self;
let mut b = *other;
% for i in range(4):
a.quaternion.${i} *= (other_portion as f32 * theta).cos() - product * w;
b.quaternion.${i} *= w;
sum.quaternion.${i} = a.quaternion.${i} + b.quaternion.${i};
% endfor
}
Ok(sum)
}
}
impl From<MatrixDecomposed3D> for ComputedMatrix {
/// Recompose a 3D matrix.
/// https://drafts.csswg.org/css-transforms/#recomposing-to-a-3d-matrix
fn from(decomposed: MatrixDecomposed3D) -> ComputedMatrix {
let mut matrix = ComputedMatrix::identity();
// Apply perspective
% for i in range(1, 5):
matrix.m${i}4 = decomposed.perspective.${i - 1};
% endfor
// Apply translation
% for i in range(1, 4):
% for j in range(1, 4):
matrix.m4${i} += decomposed.translate.${j - 1} * matrix.m${j}${i};
% endfor
% endfor
// Apply rotation
let x = decomposed.quaternion.0;
let y = decomposed.quaternion.1;
let z = decomposed.quaternion.2;
let w = decomposed.quaternion.3;
// Construct a composite rotation matrix from the quaternion values
// rotationMatrix is a identity 4x4 matrix initially
let mut rotation_matrix = ComputedMatrix::identity();
rotation_matrix.m11 = 1.0 - 2.0 * (y * y + z * z);
rotation_matrix.m12 = 2.0 * (x * y + z * w);
rotation_matrix.m13 = 2.0 * (x * z - y * w);
rotation_matrix.m21 = 2.0 * (x * y - z * w);
rotation_matrix.m22 = 1.0 - 2.0 * (x * x + z * z);
rotation_matrix.m23 = 2.0 * (y * z + x * w);
rotation_matrix.m31 = 2.0 * (x * z + y * w);
rotation_matrix.m32 = 2.0 * (y * z - x * w);
rotation_matrix.m33 = 1.0 - 2.0 * (x * x + y * y);
matrix = multiply(rotation_matrix, matrix);
// Apply skew
let mut temp = ComputedMatrix::identity();
if decomposed.skew.2 != 0.0 {
temp.m32 = decomposed.skew.2;
matrix = multiply(temp, matrix);
}
if decomposed.skew.1 != 0.0 {
temp.m32 = 0.0;
temp.m31 = decomposed.skew.1;
matrix = multiply(temp, matrix);
}
if decomposed.skew.0 != 0.0 {
temp.m31 = 0.0;
temp.m21 = decomposed.skew.0;
matrix = multiply(temp, matrix);
}
// Apply scale
% for i in range(1, 4):
% for j in range(1, 4):
matrix.m${i}${j} *= decomposed.scale.${i - 1};
% endfor
% endfor
matrix
}
}
// Multiplication of two 4x4 matrices.
fn multiply(a: ComputedMatrix, b: ComputedMatrix) -> ComputedMatrix {
let mut a_clone = a;
% for i in range(1, 5):
% for j in range(1, 5):
a_clone.m${i}${j} = (a.m${i}1 * b.m1${j}) +
(a.m${i}2 * b.m2${j}) +
(a.m${i}3 * b.m3${j}) +
(a.m${i}4 * b.m4${j});
% endfor
% endfor
a_clone
}
impl ComputedMatrix {
fn is_3d(&self) -> bool {
self.m13 != 0.0 || self.m14 != 0.0 ||
self.m23 != 0.0 || self.m24 != 0.0 ||
self.m31 != 0.0 || self.m32 != 0.0 || self.m33 != 1.0 || self.m34 != 0.0 ||
self.m43 != 0.0 || self.m44 != 1.0
}
fn determinant(&self) -> CSSFloat {
self.m14 * self.m23 * self.m32 * self.m41 -
self.m13 * self.m24 * self.m32 * self.m41 -
self.m14 * self.m22 * self.m33 * self.m41 +
self.m12 * self.m24 * self.m33 * self.m41 +
self.m13 * self.m22 * self.m34 * self.m41 -
self.m12 * self.m23 * self.m34 * self.m41 -
self.m14 * self.m23 * self.m31 * self.m42 +
self.m13 * self.m24 * self.m31 * self.m42 +
self.m14 * self.m21 * self.m33 * self.m42 -
self.m11 * self.m24 * self.m33 * self.m42 -
self.m13 * self.m21 * self.m34 * self.m42 +
self.m11 * self.m23 * self.m34 * self.m42 +
self.m14 * self.m22 * self.m31 * self.m43 -
self.m12 * self.m24 * self.m31 * self.m43 -
self.m14 * self.m21 * self.m32 * self.m43 +
self.m11 * self.m24 * self.m32 * self.m43 +
self.m12 * self.m21 * self.m34 * self.m43 -
self.m11 * self.m22 * self.m34 * self.m43 -
self.m13 * self.m22 * self.m31 * self.m44 +
self.m12 * self.m23 * self.m31 * self.m44 +
self.m13 * self.m21 * self.m32 * self.m44 -
self.m11 * self.m23 * self.m32 * self.m44 -
self.m12 * self.m21 * self.m33 * self.m44 +
self.m11 * self.m22 * self.m33 * self.m44
}
fn inverse(&self) -> Option<ComputedMatrix> {
let mut det = self.determinant();
if det == 0.0 {
return None;
}
det = 1.0 / det;
let x = ComputedMatrix {
m11: det *
(self.m23*self.m34*self.m42 - self.m24*self.m33*self.m42 +
self.m24*self.m32*self.m43 - self.m22*self.m34*self.m43 -
self.m23*self.m32*self.m44 + self.m22*self.m33*self.m44),
m12: det *
(self.m14*self.m33*self.m42 - self.m13*self.m34*self.m42 -
self.m14*self.m32*self.m43 + self.m12*self.m34*self.m43 +
self.m13*self.m32*self.m44 - self.m12*self.m33*self.m44),
m13: det *
(self.m13*self.m24*self.m42 - self.m14*self.m23*self.m42 +
self.m14*self.m22*self.m43 - self.m12*self.m24*self.m43 -
self.m13*self.m22*self.m44 + self.m12*self.m23*self.m44),
m14: det *
(self.m14*self.m23*self.m32 - self.m13*self.m24*self.m32 -
self.m14*self.m22*self.m33 + self.m12*self.m24*self.m33 +
self.m13*self.m22*self.m34 - self.m12*self.m23*self.m34),
m21: det *
(self.m24*self.m33*self.m41 - self.m23*self.m34*self.m41 -
self.m24*self.m31*self.m43 + self.m21*self.m34*self.m43 +
self.m23*self.m31*self.m44 - self.m21*self.m33*self.m44),
m22: det *
(self.m13*self.m34*self.m41 - self.m14*self.m33*self.m41 +
self.m14*self.m31*self.m43 - self.m11*self.m34*self.m43 -
self.m13*self.m31*self.m44 + self.m11*self.m33*self.m44),
m23: det *
(self.m14*self.m23*self.m41 - self.m13*self.m24*self.m41 -
self.m14*self.m21*self.m43 + self.m11*self.m24*self.m43 +
self.m13*self.m21*self.m44 - self.m11*self.m23*self.m44),
m24: det *
(self.m13*self.m24*self.m31 - self.m14*self.m23*self.m31 +
self.m14*self.m21*self.m33 - self.m11*self.m24*self.m33 -
self.m13*self.m21*self.m34 + self.m11*self.m23*self.m34),
m31: det *
(self.m22*self.m34*self.m41 - self.m24*self.m32*self.m41 +
self.m24*self.m31*self.m42 - self.m21*self.m34*self.m42 -
self.m22*self.m31*self.m44 + self.m21*self.m32*self.m44),
m32: det *
(self.m14*self.m32*self.m41 - self.m12*self.m34*self.m41 -
self.m14*self.m31*self.m42 + self.m11*self.m34*self.m42 +
self.m12*self.m31*self.m44 - self.m11*self.m32*self.m44),
m33: det *
(self.m12*self.m24*self.m41 - self.m14*self.m22*self.m41 +
self.m14*self.m21*self.m42 - self.m11*self.m24*self.m42 -
self.m12*self.m21*self.m44 + self.m11*self.m22*self.m44),
m34: det *
(self.m14*self.m22*self.m31 - self.m12*self.m24*self.m31 -
self.m14*self.m21*self.m32 + self.m11*self.m24*self.m32 +
self.m12*self.m21*self.m34 - self.m11*self.m22*self.m34),
m41: det *
(self.m23*self.m32*self.m41 - self.m22*self.m33*self.m41 -
self.m23*self.m31*self.m42 + self.m21*self.m33*self.m42 +
self.m22*self.m31*self.m43 - self.m21*self.m32*self.m43),
m42: det *
(self.m12*self.m33*self.m41 - self.m13*self.m32*self.m41 +
self.m13*self.m31*self.m42 - self.m11*self.m33*self.m42 -
self.m12*self.m31*self.m43 + self.m11*self.m32*self.m43),
m43: det *
(self.m13*self.m22*self.m41 - self.m12*self.m23*self.m41 -
self.m13*self.m21*self.m42 + self.m11*self.m23*self.m42 +
self.m12*self.m21*self.m43 - self.m11*self.m22*self.m43),
m44: det *
(self.m12*self.m23*self.m31 - self.m13*self.m22*self.m31 +
self.m13*self.m21*self.m32 - self.m11*self.m23*self.m32 -
self.m12*self.m21*self.m33 + self.m11*self.m22*self.m33),
};
Some(x)
}
}
/// https://drafts.csswg.org/css-transforms/#interpolation-of-transforms
impl Animatable for TransformList {
#[inline]
fn add_weighted(&self, other: &TransformList, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
// http://dev.w3.org/csswg/css-transforms/#interpolation-of-transforms
let result = match (&self.0, &other.0) {
(&Some(ref from_list), &Some(ref to_list)) => {
// Two lists of transforms
add_weighted_transform_lists(from_list, &to_list, self_portion, other_portion)
}
(&Some(ref from_list), &None) => {
// http://dev.w3.org/csswg/css-transforms/#none-transform-animation
let to_list = build_identity_transform_list(from_list);
add_weighted_transform_lists(from_list, &to_list, self_portion, other_portion)
}
(&None, &Some(ref to_list)) => {
// http://dev.w3.org/csswg/css-transforms/#none-transform-animation
let from_list = build_identity_transform_list(to_list);
add_weighted_transform_lists(&from_list, to_list, self_portion, other_portion)
}
_ => {
// http://dev.w3.org/csswg/css-transforms/#none-none-animation
TransformList(None)
}
};
Ok(result)
}
fn add(&self, other: &Self) -> Result<Self, ()> {
match (&self.0, &other.0) {
(&Some(ref from_list), &Some(ref to_list)) => {
Ok(TransformList(Some([&from_list[..], &to_list[..]].concat())))
}
(&Some(_), &None) => {
Ok(self.clone())
}
(&None, &Some(_)) => {
Ok(other.clone())
}
_ => {
Ok(TransformList(None))
}
}
}
#[inline]
fn accumulate(&self, other: &Self, count: u64) -> Result<Self, ()> {
match (&self.0, &other.0) {
(&Some(ref from_list), &Some(ref to_list)) => {
if can_interpolate_list(from_list, to_list) {
Ok(add_weighted_transform_lists(from_list, &to_list, count as f64, 1.0))
} else {
use std::i32;
let result = vec![TransformOperation::AccumulateMatrix {
from_list: self.clone(),
to_list: other.clone(),
count: cmp::min(count, i32::MAX as u64) as i32
}];
Ok(TransformList(Some(result)))
}
}
(&Some(ref from_list), &None) => {
Ok(add_weighted_transform_lists(from_list, from_list, count as f64, 0.0))
}
(&None, &Some(_)) => {
// If |self| is 'none' then we are calculating:
//
// none * |count| + |other|
// = none + |other|
// = |other|
//
// Hence the result is just |other|.
Ok(other.clone())
}
_ => {
Ok(TransformList(None))
}
}
}
}
impl ToAnimatedZero for TransformList {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
Ok(TransformList(None))
}
}
impl<T, U> Animatable for Either<T, U>
where T: Animatable + Copy, U: Animatable + Copy,
{
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
match (*self, *other) {
(Either::First(ref this), Either::First(ref other)) => {
this.add_weighted(&other, self_portion, other_portion).map(Either::First)
},
(Either::Second(ref this), Either::Second(ref other)) => {
this.add_weighted(&other, self_portion, other_portion).map(Either::Second)
},
_ => {
let result = if self_portion > other_portion {*self} else {*other};
Ok(result)
}
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
match (self, other) {
(&Either::First(ref this), &Either::First(ref other)) => {
this.compute_distance(other)
},
(&Either::Second(ref this), &Either::Second(ref other)) => {
this.compute_distance(other)
},
_ => Err(())
}
}
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<f64, ()> {
match (self, other) {
(&Either::First(ref this), &Either::First(ref other)) => {
this.compute_squared_distance(other)
},
(&Either::Second(ref this), &Either::Second(ref other)) => {
this.compute_squared_distance(other)
},
_ => Err(())
}
}
}
impl<A, B> ToAnimatedZero for Either<A, B>
where
A: ToAnimatedZero,
B: ToAnimatedZero,
{
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
match *self {
Either::First(ref first) => {
Ok(Either::First(first.to_animated_zero()?))
},
Either::Second(ref second) => {
Ok(Either::Second(second.to_animated_zero()?))
},
}
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
/// Unlike RGBA, each component value may exceed the range [0.0, 1.0].
pub struct IntermediateRGBA {
/// The red component.
pub red: f32,
/// The green component.
pub green: f32,
/// The blue component.
pub blue: f32,
/// The alpha component.
pub alpha: f32,
}
impl IntermediateRGBA {
/// Returns a transparent color.
#[inline]
pub fn transparent() -> Self {
Self::new(0., 0., 0., 0.)
}
/// Returns a new color.
#[inline]
pub fn new(red: f32, green: f32, blue: f32, alpha: f32) -> Self {
IntermediateRGBA { red: red, green: green, blue: blue, alpha: alpha }
}
}
impl ToAnimatedValue for RGBA {
type AnimatedValue = IntermediateRGBA;
#[inline]
fn to_animated_value(self) -> Self::AnimatedValue {
IntermediateRGBA::new(
self.red_f32(),
self.green_f32(),
self.blue_f32(),
self.alpha_f32(),
)
}
#[inline]
fn from_animated_value(animated: Self::AnimatedValue) -> Self {
// RGBA::from_floats clamps each component values.
RGBA::from_floats(
animated.red,
animated.green,
animated.blue,
animated.alpha,
)
}
}
/// Unlike Animatable for RGBA we don't clamp any component values.
impl Animatable for IntermediateRGBA {
#[inline]
fn add_weighted(&self, other: &IntermediateRGBA, self_portion: f64, other_portion: f64)
-> Result<Self, ()> {
let mut alpha = self.alpha.add_weighted(&other.alpha, self_portion, other_portion)?;
if alpha <= 0. {
// Ideally we should return color value that only alpha component is
// 0, but this is what current gecko does.
Ok(IntermediateRGBA::transparent())
} else {
alpha = alpha.min(1.);
let red = (self.red * self.alpha).add_weighted(
&(other.red * other.alpha), self_portion, other_portion
)? * 1. / alpha;
let green = (self.green * self.alpha).add_weighted(
&(other.green * other.alpha), self_portion, other_portion
)? * 1. / alpha;
let blue = (self.blue * self.alpha).add_weighted(
&(other.blue * other.alpha), self_portion, other_portion
)? * 1. / alpha;
Ok(IntermediateRGBA::new(red, green, blue, alpha))
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
self.compute_squared_distance(other).map(|sq| sq.sqrt())
}
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<f64, ()> {
let start = [ self.alpha,
self.red * self.alpha,
self.green * self.alpha,
self.blue * self.alpha ];
let end = [ other.alpha,
other.red * other.alpha,
other.green * other.alpha,
other.blue * other.alpha ];
let diff = start.iter().zip(&end)
.fold(0.0f64, |n, (&a, &b)| {
let diff = (a - b) as f64;
n + diff * diff
});
Ok(diff)
}
}
impl ToAnimatedZero for IntermediateRGBA {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
Ok(IntermediateRGBA::transparent())
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
#[allow(missing_docs)]
pub struct IntermediateColor {
color: IntermediateRGBA,
foreground_ratio: f32,
}
impl IntermediateColor {
fn currentcolor() -> Self {
IntermediateColor {
color: IntermediateRGBA::transparent(),
foreground_ratio: 1.,
}
}
/// Returns a transparent intermediate color.
pub fn transparent() -> Self {
IntermediateColor {
color: IntermediateRGBA::transparent(),
foreground_ratio: 0.,
}
}
fn is_currentcolor(&self) -> bool {
self.foreground_ratio >= 1.
}
fn is_numeric(&self) -> bool {
self.foreground_ratio <= 0.
}
fn effective_intermediate_rgba(&self) -> IntermediateRGBA {
IntermediateRGBA {
alpha: self.color.alpha * (1. - self.foreground_ratio),
.. self.color
}
}
}
impl ToAnimatedValue for Color {
type AnimatedValue = IntermediateColor;
#[inline]
fn to_animated_value(self) -> Self::AnimatedValue {
IntermediateColor {
color: self.color.to_animated_value(),
foreground_ratio: self.foreground_ratio as f32 * (1. / 255.),
}
}
#[inline]
fn from_animated_value(animated: Self::AnimatedValue) -> Self {
Color {
color: RGBA::from_animated_value(animated.color),
foreground_ratio: (animated.foreground_ratio * 255.).round() as u8,
}
}
}
impl Animatable for IntermediateColor {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
// Common cases are interpolating between two numeric colors,
// two currentcolors, and a numeric color and a currentcolor.
//
// Note: this algorithm assumes self_portion + other_portion
// equals to one, so it may be broken for additive operation.
// To properly support additive color interpolation, we would
// need two ratio fields in computed color types.
if self.foreground_ratio == other.foreground_ratio {
if self.is_currentcolor() {
Ok(IntermediateColor::currentcolor())
} else {
Ok(IntermediateColor {
color: self.color.add_weighted(&other.color, self_portion, other_portion)?,
foreground_ratio: self.foreground_ratio,
})
}
} else if self.is_currentcolor() && other.is_numeric() {
Ok(IntermediateColor {
color: other.color,
foreground_ratio: self_portion as f32,
})
} else if self.is_numeric() && other.is_currentcolor() {
Ok(IntermediateColor {
color: self.color,
foreground_ratio: other_portion as f32,
})
} else {
// For interpolating between two complex colors, we need to
// generate colors with effective alpha value.
let self_color = self.effective_intermediate_rgba();
let other_color = other.effective_intermediate_rgba();
let color = self_color.add_weighted(&other_color, self_portion, other_portion)?;
// Then we compute the final foreground ratio, and derive
// the final alpha value from the effective alpha value.
let foreground_ratio = self.foreground_ratio
.add_weighted(&other.foreground_ratio, self_portion, other_portion)?;
let alpha = color.alpha / (1. - foreground_ratio);
Ok(IntermediateColor {
color: IntermediateRGBA {
alpha: alpha,
.. color
},
foreground_ratio: foreground_ratio,
})
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
self.compute_squared_distance(other).map(|sq| sq.sqrt())
}
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<f64, ()> {
// All comments in add_weighted also applies here.
if self.foreground_ratio == other.foreground_ratio {
if self.is_currentcolor() {
Ok(0.)
} else {
self.color.compute_squared_distance(&other.color)
}
} else if self.is_currentcolor() && other.is_numeric() {
Ok(IntermediateRGBA::transparent().compute_squared_distance(&other.color)? + 1.)
} else if self.is_numeric() && other.is_currentcolor() {
Ok(self.color.compute_squared_distance(&IntermediateRGBA::transparent())? + 1.)
} else {
let self_color = self.effective_intermediate_rgba();
let other_color = other.effective_intermediate_rgba();
let dist = self_color.compute_squared_distance(&other_color)?;
let ratio_diff = (self.foreground_ratio - other.foreground_ratio) as f64;
Ok(dist + ratio_diff * ratio_diff)
}
}
}
impl ToAnimatedZero for IntermediateColor {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> { Err(()) }
}
/// Animatable SVGPaint
pub type IntermediateSVGPaint = SVGPaint<IntermediateRGBA>;
/// Animatable SVGPaintKind
pub type IntermediateSVGPaintKind = SVGPaintKind<IntermediateRGBA>;
impl Animatable for IntermediateSVGPaint {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
Ok(IntermediateSVGPaint {
kind: self.kind.add_weighted(&other.kind, self_portion, other_portion)?,
fallback: self.fallback.add_weighted(&other.fallback, self_portion, other_portion)?,
})
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
self.compute_squared_distance(other).map(|sq| sq.sqrt())
}
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<f64, ()> {
Ok(self.kind.compute_squared_distance(&other.kind)? +
self.fallback.compute_squared_distance(&other.fallback)?)
}
}
impl ToAnimatedZero for IntermediateSVGPaint {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
Ok(IntermediateSVGPaint {
kind: self.kind.to_animated_zero()?,
fallback: self.fallback.and_then(|v| v.to_animated_zero().ok()),
})
}
}
impl Animatable for IntermediateSVGPaintKind {
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
match (self, other) {
(&SVGPaintKind::Color(ref self_color), &SVGPaintKind::Color(ref other_color)) => {
Ok(SVGPaintKind::Color(self_color.add_weighted(other_color, self_portion, other_portion)?))
}
// FIXME context values should be interpolable with colors
// Gecko doesn't implement this behavior either.
(&SVGPaintKind::None, &SVGPaintKind::None) => Ok(SVGPaintKind::None),
(&SVGPaintKind::ContextFill, &SVGPaintKind::ContextFill) => Ok(SVGPaintKind::ContextFill),
(&SVGPaintKind::ContextStroke, &SVGPaintKind::ContextStroke) => Ok(SVGPaintKind::ContextStroke),
_ => Err(())
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
match (self, other) {
(&SVGPaintKind::Color(ref self_color), &SVGPaintKind::Color(ref other_color)) => {
self_color.compute_distance(other_color)
}
(&SVGPaintKind::None, &SVGPaintKind::None) |
(&SVGPaintKind::ContextFill, &SVGPaintKind::ContextFill) |
(&SVGPaintKind::ContextStroke, &SVGPaintKind::ContextStroke)=> Ok(0.0),
_ => Err(())
}
}
}
impl ToAnimatedZero for IntermediateSVGPaintKind {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
match *self {
SVGPaintKind::Color(ref color) => {
Ok(SVGPaintKind::Color(color.to_animated_zero()?))
},
SVGPaintKind::None |
SVGPaintKind::ContextFill |
SVGPaintKind::ContextStroke => Ok(self.clone()),
_ => Err(()),
}
}
}
impl<LengthType> Animatable for SVGLength<LengthType>
where LengthType: Animatable + Clone
{
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
match (self, other) {
(&SVGLength::Length(ref this), &SVGLength::Length(ref other)) => {
this.add_weighted(&other, self_portion, other_portion).map(SVGLength::Length)
}
_ => {
Ok(if self_portion > other_portion { self.clone() } else { other.clone() })
}
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
match (self, other) {
(&SVGLength::Length(ref this), &SVGLength::Length(ref other)) => {
this.compute_distance(other)
}
_ => Err(())
}
}
}
impl<LengthType> ToAnimatedZero for SVGLength<LengthType> where LengthType : ToAnimatedZero {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
match self {
&SVGLength::Length(ref length) => length.to_animated_zero().map(SVGLength::Length),
&SVGLength::ContextValue => Ok(SVGLength::ContextValue),
}
}
}
impl<LengthType> Animatable for SVGStrokeDashArray<LengthType>
where LengthType : RepeatableListAnimatable + Clone
{
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
match (self, other) {
(&SVGStrokeDashArray::Values(ref this), &SVGStrokeDashArray::Values(ref other))=> {
this.add_weighted(other, self_portion, other_portion)
.map(SVGStrokeDashArray::Values)
}
_ => {
Ok(if self_portion > other_portion { self.clone() } else { other.clone() })
}
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
match (self, other) {
(&SVGStrokeDashArray::Values(ref this), &SVGStrokeDashArray::Values(ref other)) => {
this.compute_distance(other)
}
_ => Err(())
}
}
}
impl<LengthType> ToAnimatedZero for SVGStrokeDashArray<LengthType>
where LengthType : ToAnimatedZero + Clone
{
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
match self {
&SVGStrokeDashArray::Values(ref values) => {
values.iter().map(ToAnimatedZero::to_animated_zero)
.collect::<Result<Vec<_>, ()>>().map(SVGStrokeDashArray::Values)
}
&SVGStrokeDashArray::ContextValue => Ok(SVGStrokeDashArray::ContextValue),
}
}
}
impl<OpacityType> Animatable for SVGOpacity<OpacityType>
where OpacityType: Animatable + Clone
{
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
match (self, other) {
(&SVGOpacity::Opacity(ref this), &SVGOpacity::Opacity(ref other)) => {
this.add_weighted(other, self_portion, other_portion).map(SVGOpacity::Opacity)
}
_ => {
Ok(if self_portion > other_portion { self.clone() } else { other.clone() })
}
}
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
match (self, other) {
(&SVGOpacity::Opacity(ref this), &SVGOpacity::Opacity(ref other)) => {
this.compute_distance(other)
}
_ => Err(())
}
}
}
impl<OpacityType> ToAnimatedZero for SVGOpacity<OpacityType>
where OpacityType: ToAnimatedZero + Clone
{
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
match self {
&SVGOpacity::Opacity(ref opacity) =>
opacity.to_animated_zero().map(SVGOpacity::Opacity),
other => Ok(other.clone()),
}
}
}
<%
FILTER_FUNCTIONS = [ 'Blur', 'Brightness', 'Contrast', 'Grayscale',
'HueRotate', 'Invert', 'Opacity', 'Saturate',
'Sepia' ]
%>
/// https://drafts.fxtf.org/filters/#animation-of-filters
fn add_weighted_filter_function_impl(from: &AnimatedFilter,
to: &AnimatedFilter,
self_portion: f64,
other_portion: f64)
-> Result<AnimatedFilter, ()> {
match (from, to) {
% for func in [ 'Blur', 'HueRotate' ]:
(&Filter::${func}(from_value), &Filter::${func}(to_value)) => {
Ok(Filter::${func}(from_value.add_weighted(
&to_value,
self_portion,
other_portion,
)?))
},
% endfor
% for func in [ 'Grayscale', 'Invert', 'Sepia' ]:
(&Filter::${func}(from_value), &Filter::${func}(to_value)) => {
Ok(Filter::${func}(add_weighted_with_initial_val(
&from_value,
&to_value,
self_portion,
other_portion,
&0.0,
)?))
},
% endfor
% for func in [ 'Brightness', 'Contrast', 'Opacity', 'Saturate' ]:
(&Filter::${func}(from_value), &Filter::${func}(to_value)) => {
Ok(Filter::${func}(add_weighted_with_initial_val(
&from_value,
&to_value,
self_portion,
other_portion,
&1.0,
)?))
},
% endfor
% if product == "gecko":
(&Filter::DropShadow(ref from_value), &Filter::DropShadow(ref to_value)) => {
Ok(Filter::DropShadow(from_value.add_weighted(
&to_value,
self_portion,
other_portion,
)?))
},
(&Filter::Url(_), &Filter::Url(_)) => {
Err(())
},
% endif
_ => {
// If specified the different filter functions,
// we will need to interpolate as discreate.
Err(())
},
}
}
/// https://drafts.fxtf.org/filters/#animation-of-filters
fn add_weighted_filter_function(from: Option<<&AnimatedFilter>,
to: Option<<&AnimatedFilter>,
self_portion: f64,
other_portion: f64) -> Result<AnimatedFilter, ()> {
match (from, to) {
(Some(f), Some(t)) => {
add_weighted_filter_function_impl(f, t, self_portion, other_portion)
},
(Some(f), None) => {
add_weighted_filter_function_impl(f, f, self_portion, 0.0)
},
(None, Some(t)) => {
add_weighted_filter_function_impl(t, t, other_portion, 0.0)
},
_ => { Err(()) }
}
}
fn compute_filter_square_distance(from: &AnimatedFilter,
to: &AnimatedFilter)
-> Result<f64, ()> {
match (from, to) {
% for func in FILTER_FUNCTIONS :
(&Filter::${func}(f),
&Filter::${func}(t)) => {
Ok(try!(f.compute_squared_distance(&t)))
},
% endfor
% if product == "gecko":
(&Filter::DropShadow(ref f), &Filter::DropShadow(ref t)) => {
Ok(try!(f.compute_squared_distance(&t)))
},
% endif
_ => {
Err(())
}
}
}
impl Animatable for AnimatedFilterList {
#[inline]
fn add_weighted(&self, other: &Self,
self_portion: f64, other_portion: f64) -> Result<Self, ()> {
let mut filters = vec![];
let mut from_iter = self.0.iter();
let mut to_iter = other.0.iter();
let mut from = from_iter.next();
let mut to = to_iter.next();
while from.is_some() || to.is_some() {
filters.push(try!(add_weighted_filter_function(from,
to,
self_portion,
other_portion)));
if from.is_some() {
from = from_iter.next();
}
if to.is_some() {
to = to_iter.next();
}
}
Ok(AnimatedFilterList(filters))
}
fn add(&self, other: &Self) -> Result<Self, ()> {
Ok(AnimatedFilterList(self.0.iter().chain(other.0.iter()).cloned().collect()))
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
self.compute_squared_distance(other).map(|sd| sd.sqrt())
}
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<f64, ()> {
use itertools::{EitherOrBoth, Itertools};
let mut square_distance: f64 = 0.0;
for it in self.0.iter().zip_longest(other.0.iter()) {
square_distance += match it {
EitherOrBoth::Both(from, to) => {
compute_filter_square_distance(&from, &to)?
},
EitherOrBoth::Left(list) | EitherOrBoth::Right(list)=> {
let none = add_weighted_filter_function(Some(list), Some(list), 0.0, 0.0)?;
compute_filter_square_distance(&none, &list)?
},
};
}
Ok(square_distance)
}
}
/// A comparator to sort PropertyIds such that longhands are sorted before shorthands,
/// shorthands with fewer components are sorted before shorthands with more components,
/// and otherwise shorthands are sorted by IDL name as defined by [Web Animations][property-order].
///
/// Using this allows us to prioritize values specified by longhands (or smaller
/// shorthand subsets) when longhands and shorthands are both specified on the one keyframe.
///
/// Example orderings that result from this:
///
/// margin-left, margin
///
/// and:
///
/// border-top-color, border-color, border-top, border
///
/// [property-order] https://w3c.github.io/web-animations/#calculating-computed-keyframes
#[cfg(feature = "gecko")]
pub fn compare_property_priority(a: &PropertyId, b: &PropertyId) -> cmp::Ordering {
match (a.as_shorthand(), b.as_shorthand()) {
// Within shorthands, sort by the number of subproperties, then by IDL name.
(Ok(a), Ok(b)) => {
let subprop_count_a = a.longhands().len();
let subprop_count_b = b.longhands().len();
subprop_count_a.cmp(&subprop_count_b).then_with(
|| get_idl_name_sort_order(&a).cmp(&get_idl_name_sort_order(&b)))
},
// Longhands go before shorthands.
(Ok(_), Err(_)) => cmp::Ordering::Greater,
(Err(_), Ok(_)) => cmp::Ordering::Less,
// Both are longhands or custom properties in which case they don't overlap and should
// sort equally.
_ => cmp::Ordering::Equal,
}
}
#[cfg(feature = "gecko")]
fn get_idl_name_sort_order(shorthand: &ShorthandId) -> u32 {
<%
# Sort by IDL name.
sorted_shorthands = sorted(data.shorthands, key=lambda p: to_idl_name(p.ident))
# Annotate with sorted position
sorted_shorthands = [(p, position) for position, p in enumerate(sorted_shorthands)]
%>
match *shorthand {
% for property, position in sorted_shorthands:
ShorthandId::${property.camel_case} => ${position},
% endfor
}
}
impl<T> Animatable for NonNegative<T>
where T: Animatable + Clone
{
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
self.0.add_weighted(&other.0, self_portion, other_portion).map(NonNegative::<T>)
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
self.0.compute_distance(&other.0)
}
}
impl<T> ToAnimatedZero for NonNegative<T>
where T: ToAnimatedZero
{
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
self.0.to_animated_zero().map(NonNegative::<T>)
}
}
impl<T> Animatable for GreaterThanOrEqualToOne<T>
where T: Animatable + Clone
{
#[inline]
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
self.0.add_weighted(&other.0, self_portion, other_portion).map(GreaterThanOrEqualToOne::<T>)
}
#[inline]
fn compute_distance(&self, other: &Self) -> Result<f64, ()> {
self.0.compute_distance(&other.0)
}
}
impl<T> ToAnimatedZero for GreaterThanOrEqualToOne<T>
where T: ToAnimatedZero
{
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
self.0.to_animated_zero().map(GreaterThanOrEqualToOne::<T>)
}
}