servo/components/layout/display_list/items.rs
2018-11-06 22:35:07 +01:00

856 lines
28 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Servo heavily uses display lists, which are retained-mode lists of painting commands to
//! perform. Using a list instead of painting elements in immediate mode allows transforms, hit
//! testing, and invalidation to be performed using the same primitives as painting. It also allows
//! Servo to aggressively cull invisible and out-of-bounds painting elements, to reduce overdraw.
//!
//! Display items describe relatively high-level drawing operations (for example, entire borders
//! and shadows instead of lines and blur operations), to reduce the amount of allocation required.
//! They are therefore not exactly analogous to constructs like Skia pictures, which consist of
//! low-level drawing primitives.
use euclid::{SideOffsets2D, TypedRect, Vector2D};
use gfx_traits::print_tree::PrintTree;
use gfx_traits::{self, StackingContextId};
use msg::constellation_msg::PipelineId;
use net_traits::image::base::Image;
use servo_geometry::MaxRect;
use std::cmp::Ordering;
use std::collections::HashMap;
use std::f32;
use std::fmt;
use webrender_api as wr;
use webrender_api::{BorderRadius, ClipMode};
use webrender_api::{ComplexClipRegion, ExternalScrollId, FilterOp};
use webrender_api::{GlyphInstance, GradientStop, ImageKey, LayoutPoint};
use webrender_api::{LayoutRect, LayoutSize, LayoutTransform, LayoutVector2D};
use webrender_api::{MixBlendMode, ScrollSensitivity, Shadow};
use webrender_api::{StickyOffsetBounds, TransformStyle};
pub use style::dom::OpaqueNode;
/// The factor that we multiply the blur radius by in order to inflate the boundaries of display
/// items that involve a blur. This ensures that the display item boundaries include all the ink.
pub static BLUR_INFLATION_FACTOR: i32 = 3;
/// An index into the vector of ClipScrollNodes. During WebRender conversion these nodes
/// are given ClipIds.
#[derive(Clone, Copy, Debug, PartialEq, Serialize)]
pub struct ClipScrollNodeIndex(usize);
impl ClipScrollNodeIndex {
pub fn root_scroll_node() -> ClipScrollNodeIndex {
ClipScrollNodeIndex(1)
}
pub fn root_reference_frame() -> ClipScrollNodeIndex {
ClipScrollNodeIndex(0)
}
pub fn new(index: usize) -> ClipScrollNodeIndex {
assert_ne!(index, 0, "Use the root_reference_frame constructor");
assert_ne!(index, 1, "Use the root_scroll_node constructor");
ClipScrollNodeIndex(index)
}
pub fn is_root_scroll_node(&self) -> bool {
*self == Self::root_scroll_node()
}
pub fn to_define_item(&self) -> DisplayItem {
DisplayItem::DefineClipScrollNode(Box::new(DefineClipScrollNodeItem {
base: BaseDisplayItem::empty(),
node_index: *self,
}))
}
pub fn to_index(self) -> usize {
self.0
}
}
/// A set of indices into the clip scroll node vector for a given item.
#[derive(Clone, Copy, Debug, PartialEq, Serialize)]
pub struct ClippingAndScrolling {
pub scrolling: ClipScrollNodeIndex,
pub clipping: Option<ClipScrollNodeIndex>,
}
impl ClippingAndScrolling {
pub fn simple(scrolling: ClipScrollNodeIndex) -> ClippingAndScrolling {
ClippingAndScrolling {
scrolling,
clipping: None,
}
}
pub fn new(scrolling: ClipScrollNodeIndex, clipping: ClipScrollNodeIndex) -> Self {
ClippingAndScrolling {
scrolling,
clipping: Some(clipping),
}
}
}
#[derive(Serialize)]
pub struct DisplayList {
pub list: Vec<DisplayItem>,
pub clip_scroll_nodes: Vec<ClipScrollNode>,
}
impl DisplayList {
/// Return the bounds of this display list based on the dimensions of the root
/// stacking context.
pub fn bounds(&self) -> LayoutRect {
match self.list.get(0) {
Some(&DisplayItem::PushStackingContext(ref item)) => item.stacking_context.bounds,
Some(_) => unreachable!("Root element of display list not stacking context."),
None => LayoutRect::zero(),
}
}
pub fn print(&self) {
let mut print_tree = PrintTree::new("Display List".to_owned());
self.print_with_tree(&mut print_tree);
}
pub fn print_with_tree(&self, print_tree: &mut PrintTree) {
print_tree.new_level("ClipScrollNodes".to_owned());
for node in &self.clip_scroll_nodes {
print_tree.add_item(format!("{:?}", node));
}
print_tree.end_level();
print_tree.new_level("Items".to_owned());
for item in &self.list {
print_tree.add_item(format!(
"{:?} StackingContext: {:?} {:?}",
item,
item.base().stacking_context_id,
item.clipping_and_scrolling()
));
}
print_tree.end_level();
}
}
impl gfx_traits::DisplayList for DisplayList {
/// Analyze the display list to figure out if this may be the first
/// contentful paint (i.e. the display list contains items of type text,
/// image, non-white canvas or SVG). Used by metrics.
fn is_contentful(&self) -> bool {
for item in &self.list {
match item {
&DisplayItem::Text(_) | &DisplayItem::Image(_) => return true,
_ => (),
}
}
false
}
}
/// Display list sections that make up a stacking context. Each section here refers
/// to the steps in CSS 2.1 Appendix E.
///
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd, Serialize)]
pub enum DisplayListSection {
BackgroundAndBorders,
BlockBackgroundsAndBorders,
Content,
Outlines,
}
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd, Serialize)]
pub enum StackingContextType {
Real,
PseudoPositioned,
PseudoFloat,
}
#[derive(Clone, Serialize)]
/// Represents one CSS stacking context, which may or may not have a hardware layer.
pub struct StackingContext {
/// The ID of this StackingContext for uniquely identifying it.
pub id: StackingContextId,
/// The type of this StackingContext. Used for collecting and sorting.
pub context_type: StackingContextType,
/// The position and size of this stacking context.
pub bounds: LayoutRect,
/// The overflow rect for this stacking context in its coordinate system.
pub overflow: LayoutRect,
/// The `z-index` for this stacking context.
pub z_index: i32,
/// CSS filters to be applied to this stacking context (including opacity).
pub filters: Vec<FilterOp>,
/// The blend mode with which this stacking context blends with its backdrop.
pub mix_blend_mode: MixBlendMode,
/// A transform to be applied to this stacking context.
pub transform: Option<LayoutTransform>,
/// The transform style of this stacking context.
pub transform_style: TransformStyle,
/// The perspective matrix to be applied to children.
pub perspective: Option<LayoutTransform>,
/// The clip and scroll info for this StackingContext.
pub parent_clipping_and_scrolling: ClippingAndScrolling,
/// The index of the reference frame that this stacking context estalishes.
pub established_reference_frame: Option<ClipScrollNodeIndex>,
}
impl StackingContext {
/// Creates a new stacking context.
#[inline]
pub fn new(
id: StackingContextId,
context_type: StackingContextType,
bounds: LayoutRect,
overflow: LayoutRect,
z_index: i32,
filters: Vec<FilterOp>,
mix_blend_mode: MixBlendMode,
transform: Option<LayoutTransform>,
transform_style: TransformStyle,
perspective: Option<LayoutTransform>,
parent_clipping_and_scrolling: ClippingAndScrolling,
established_reference_frame: Option<ClipScrollNodeIndex>,
) -> StackingContext {
StackingContext {
id,
context_type,
bounds,
overflow,
z_index,
filters,
mix_blend_mode,
transform,
transform_style,
perspective,
parent_clipping_and_scrolling,
established_reference_frame,
}
}
#[inline]
pub fn root() -> StackingContext {
StackingContext::new(
StackingContextId::root(),
StackingContextType::Real,
LayoutRect::zero(),
LayoutRect::zero(),
0,
vec![],
MixBlendMode::Normal,
None,
TransformStyle::Flat,
None,
ClippingAndScrolling::simple(ClipScrollNodeIndex::root_scroll_node()),
None,
)
}
pub fn to_display_list_items(self) -> (DisplayItem, DisplayItem) {
let mut base_item = BaseDisplayItem::empty();
base_item.stacking_context_id = self.id;
base_item.clipping_and_scrolling = self.parent_clipping_and_scrolling;
let pop_item = DisplayItem::PopStackingContext(Box::new(PopStackingContextItem {
base: base_item.clone(),
stacking_context_id: self.id,
}));
let push_item = DisplayItem::PushStackingContext(Box::new(PushStackingContextItem {
base: base_item,
stacking_context: self,
}));
(push_item, pop_item)
}
}
impl Ord for StackingContext {
fn cmp(&self, other: &Self) -> Ordering {
if self.z_index != 0 || other.z_index != 0 {
return self.z_index.cmp(&other.z_index);
}
match (self.context_type, other.context_type) {
(StackingContextType::PseudoFloat, StackingContextType::PseudoFloat) => Ordering::Equal,
(StackingContextType::PseudoFloat, _) => Ordering::Less,
(_, StackingContextType::PseudoFloat) => Ordering::Greater,
(_, _) => Ordering::Equal,
}
}
}
impl PartialOrd for StackingContext {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Eq for StackingContext {}
impl PartialEq for StackingContext {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl fmt::Debug for StackingContext {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let type_string = if self.context_type == StackingContextType::Real {
"StackingContext"
} else {
"Pseudo-StackingContext"
};
write!(
f,
"{} at {:?} with overflow {:?}: {:?}",
type_string, self.bounds, self.overflow, self.id
)
}
}
#[derive(Clone, Debug, PartialEq, Serialize)]
pub struct StickyFrameData {
pub margins: SideOffsets2D<Option<f32>>,
pub vertical_offset_bounds: StickyOffsetBounds,
pub horizontal_offset_bounds: StickyOffsetBounds,
}
#[derive(Clone, Debug, PartialEq, Serialize)]
pub enum ClipScrollNodeType {
Placeholder,
ScrollFrame(ScrollSensitivity, ExternalScrollId),
StickyFrame(StickyFrameData),
Clip,
}
/// Defines a clip scroll node.
#[derive(Clone, Debug, Serialize)]
pub struct ClipScrollNode {
/// The index of the parent of this ClipScrollNode.
pub parent_index: ClipScrollNodeIndex,
/// The position of this scroll root's frame in the parent stacking context.
pub clip: ClippingRegion,
/// The rect of the contents that can be scrolled inside of the scroll root.
pub content_rect: LayoutRect,
/// The type of this ClipScrollNode.
pub node_type: ClipScrollNodeType,
}
impl ClipScrollNode {
pub fn placeholder() -> ClipScrollNode {
ClipScrollNode {
parent_index: ClipScrollNodeIndex(0),
clip: ClippingRegion::from_rect(LayoutRect::zero()),
content_rect: LayoutRect::zero(),
node_type: ClipScrollNodeType::Placeholder,
}
}
pub fn is_placeholder(&self) -> bool {
self.node_type == ClipScrollNodeType::Placeholder
}
}
/// One drawing command in the list.
#[derive(Clone, Serialize)]
pub enum DisplayItem {
Rectangle(Box<CommonDisplayItem<wr::RectangleDisplayItem>>),
Text(Box<CommonDisplayItem<wr::TextDisplayItem, Vec<GlyphInstance>>>),
Image(Box<CommonDisplayItem<wr::ImageDisplayItem>>),
Border(Box<CommonDisplayItem<wr::BorderDisplayItem, Vec<GradientStop>>>),
Gradient(Box<CommonDisplayItem<wr::GradientDisplayItem, Vec<GradientStop>>>),
RadialGradient(Box<CommonDisplayItem<wr::RadialGradientDisplayItem, Vec<GradientStop>>>),
Line(Box<CommonDisplayItem<wr::LineDisplayItem>>),
BoxShadow(Box<CommonDisplayItem<wr::BoxShadowDisplayItem>>),
PushTextShadow(Box<PushTextShadowDisplayItem>),
PopAllTextShadows(Box<PopAllTextShadowsDisplayItem>),
Iframe(Box<IframeDisplayItem>),
PushStackingContext(Box<PushStackingContextItem>),
PopStackingContext(Box<PopStackingContextItem>),
DefineClipScrollNode(Box<DefineClipScrollNodeItem>),
}
/// Information common to all display items.
#[derive(Clone, Serialize)]
pub struct BaseDisplayItem {
/// The boundaries of the display item, in layer coordinates.
pub bounds: LayoutRect,
/// Metadata attached to this display item.
pub metadata: DisplayItemMetadata,
/// The clip rectangle to use for this item.
pub clip_rect: LayoutRect,
/// The section of the display list that this item belongs to.
pub section: DisplayListSection,
/// The id of the stacking context this item belongs to.
pub stacking_context_id: StackingContextId,
/// The clip and scroll info for this item.
pub clipping_and_scrolling: ClippingAndScrolling,
}
impl BaseDisplayItem {
#[inline(always)]
pub fn new(
bounds: LayoutRect,
metadata: DisplayItemMetadata,
clip_rect: LayoutRect,
section: DisplayListSection,
stacking_context_id: StackingContextId,
clipping_and_scrolling: ClippingAndScrolling,
) -> BaseDisplayItem {
BaseDisplayItem {
bounds,
metadata,
clip_rect,
section,
stacking_context_id,
clipping_and_scrolling,
}
}
#[inline(always)]
pub fn empty() -> BaseDisplayItem {
BaseDisplayItem {
bounds: TypedRect::zero(),
metadata: DisplayItemMetadata {
node: OpaqueNode(0),
pointing: None,
},
// Create a rectangle of maximal size.
clip_rect: LayoutRect::max_rect(),
section: DisplayListSection::Content,
stacking_context_id: StackingContextId::root(),
clipping_and_scrolling: ClippingAndScrolling::simple(
ClipScrollNodeIndex::root_scroll_node(),
),
}
}
}
/// A clipping region for a display item. Currently, this can describe rectangles, rounded
/// rectangles (for `border-radius`), or arbitrary intersections of the two. Arbitrary transforms
/// are not supported because those are handled by the higher-level `StackingContext` abstraction.
#[derive(Clone, PartialEq, Serialize)]
pub struct ClippingRegion {
/// The main rectangular region. This does not include any corners.
pub main: LayoutRect,
/// Any complex regions.
///
/// TODO(pcwalton): Atomically reference count these? Not sure if it's worth the trouble.
/// Measure and follow up.
pub complex: Vec<ComplexClipRegion>,
}
impl ClippingRegion {
/// Returns an empty clipping region that, if set, will result in no pixels being visible.
#[inline]
pub fn empty() -> ClippingRegion {
ClippingRegion {
main: LayoutRect::zero(),
complex: Vec::new(),
}
}
/// Returns an all-encompassing clipping region that clips no pixels out.
#[inline]
pub fn max() -> ClippingRegion {
ClippingRegion {
main: LayoutRect::max_rect(),
complex: Vec::new(),
}
}
/// Returns a clipping region that represents the given rectangle.
#[inline]
pub fn from_rect(rect: LayoutRect) -> ClippingRegion {
ClippingRegion {
main: rect,
complex: Vec::new(),
}
}
/// Mutates this clipping region to intersect with the given rectangle.
///
/// TODO(pcwalton): This could more eagerly eliminate complex clipping regions, at the cost of
/// complexity.
#[inline]
pub fn intersect_rect(&mut self, rect: &LayoutRect) {
self.main = self.main.intersection(rect).unwrap_or(LayoutRect::zero())
}
/// Returns true if this clipping region might be nonempty. This can return false positives,
/// but never false negatives.
#[inline]
pub fn might_be_nonempty(&self) -> bool {
!self.main.is_empty()
}
/// Returns true if this clipping region might contain the given point and false otherwise.
/// This is a quick, not a precise, test; it can yield false positives.
#[inline]
pub fn might_intersect_point(&self, point: &LayoutPoint) -> bool {
self.main.contains(point) && self
.complex
.iter()
.all(|complex| complex.rect.contains(point))
}
/// Returns true if this clipping region might intersect the given rectangle and false
/// otherwise. This is a quick, not a precise, test; it can yield false positives.
#[inline]
pub fn might_intersect_rect(&self, rect: &LayoutRect) -> bool {
self.main.intersects(rect) && self
.complex
.iter()
.all(|complex| complex.rect.intersects(rect))
}
/// Returns true if this clipping region completely surrounds the given rect.
#[inline]
pub fn does_not_clip_rect(&self, rect: &LayoutRect) -> bool {
self.main.contains(&rect.origin) && self.main.contains(&rect.bottom_right()) && self
.complex
.iter()
.all(|complex| {
complex.rect.contains(&rect.origin) && complex.rect.contains(&rect.bottom_right())
})
}
/// Returns a bounding rect that surrounds this entire clipping region.
#[inline]
pub fn bounding_rect(&self) -> LayoutRect {
let mut rect = self.main;
for complex in &*self.complex {
rect = rect.union(&complex.rect)
}
rect
}
/// Intersects this clipping region with the given rounded rectangle.
#[inline]
pub fn intersect_with_rounded_rect(&mut self, rect: LayoutRect, radii: BorderRadius) {
let new_complex_region = ComplexClipRegion {
rect,
radii,
mode: ClipMode::Clip,
};
// FIXME(pcwalton): This is O(n²) worst case for disjoint clipping regions. Is that OK?
// They're slow anyway…
//
// Possibly relevant if we want to do better:
//
// http://www.inrg.csie.ntu.edu.tw/algorithm2014/presentation/D&C%20Lee-84.pdf
for existing_complex_region in &mut self.complex {
if existing_complex_region.completely_encloses(&new_complex_region) {
*existing_complex_region = new_complex_region;
return;
}
if new_complex_region.completely_encloses(existing_complex_region) {
return;
}
}
self.complex.push(new_complex_region);
}
/// Translates this clipping region by the given vector.
#[inline]
pub fn translate(&self, delta: &LayoutVector2D) -> ClippingRegion {
ClippingRegion {
main: self.main.translate(delta),
complex: self
.complex
.iter()
.map(|complex| ComplexClipRegion {
rect: complex.rect.translate(delta),
radii: complex.radii,
mode: complex.mode,
})
.collect(),
}
}
#[inline]
pub fn is_max(&self) -> bool {
self.main == LayoutRect::max_rect() && self.complex.is_empty()
}
}
impl fmt::Debug for ClippingRegion {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if *self == ClippingRegion::max() {
write!(f, "ClippingRegion::Max")
} else if *self == ClippingRegion::empty() {
write!(f, "ClippingRegion::Empty")
} else if self.main == LayoutRect::max_rect() {
write!(f, "ClippingRegion(Complex={:?})", self.complex)
} else {
write!(
f,
"ClippingRegion(Rect={:?}, Complex={:?})",
self.main, self.complex
)
}
}
}
pub trait CompletelyEncloses {
fn completely_encloses(&self, other: &Self) -> bool;
}
impl CompletelyEncloses for ComplexClipRegion {
// TODO(pcwalton): This could be more aggressive by considering points that touch the inside of
// the border radius ellipse.
fn completely_encloses(&self, other: &Self) -> bool {
let left = self.radii.top_left.width.max(self.radii.bottom_left.width);
let top = self.radii.top_left.height.max(self.radii.top_right.height);
let right = self
.radii
.top_right
.width
.max(self.radii.bottom_right.width);
let bottom = self
.radii
.bottom_left
.height
.max(self.radii.bottom_right.height);
let interior = LayoutRect::new(
LayoutPoint::new(self.rect.origin.x + left, self.rect.origin.y + top),
LayoutSize::new(
self.rect.size.width - left - right,
self.rect.size.height - top - bottom,
),
);
interior.origin.x <= other.rect.origin.x &&
interior.origin.y <= other.rect.origin.y &&
interior.max_x() >= other.rect.max_x() &&
interior.max_y() >= other.rect.max_y()
}
}
/// Metadata attached to each display item. This is useful for performing auxiliary threads with
/// the display list involving hit testing: finding the originating DOM node and determining the
/// cursor to use when the element is hovered over.
#[derive(Clone, Copy, Serialize)]
pub struct DisplayItemMetadata {
/// The DOM node from which this display item originated.
pub node: OpaqueNode,
/// The value of the `cursor` property when the mouse hovers over this display item. If `None`,
/// this display item is ineligible for pointer events (`pointer-events: none`).
pub pointing: Option<u16>,
}
#[derive(Clone, Eq, PartialEq, Serialize)]
pub enum TextOrientation {
Upright,
SidewaysLeft,
SidewaysRight,
}
/// Paints an iframe.
#[derive(Clone, Serialize)]
pub struct IframeDisplayItem {
pub base: BaseDisplayItem,
pub iframe: PipelineId,
}
#[derive(Clone, Serialize)]
pub struct CommonDisplayItem<T, U = ()> {
pub base: BaseDisplayItem,
pub item: T,
pub data: U,
}
impl<T> CommonDisplayItem<T> {
pub fn new(base: BaseDisplayItem, item: T) -> Box<CommonDisplayItem<T>> {
Box::new(CommonDisplayItem {
base,
item,
data: (),
})
}
}
impl<T, U> CommonDisplayItem<T, U> {
pub fn with_data(base: BaseDisplayItem, item: T, data: U) -> Box<CommonDisplayItem<T, U>> {
Box::new(CommonDisplayItem { base, item, data })
}
}
/// Defines a text shadow that affects all items until the paired PopTextShadow.
#[derive(Clone, Serialize)]
pub struct PushTextShadowDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
pub shadow: Shadow,
}
/// Defines a text shadow that affects all items until the next PopTextShadow.
#[derive(Clone, Serialize)]
pub struct PopAllTextShadowsDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
}
/// Defines a stacking context.
#[derive(Clone, Serialize)]
pub struct PushStackingContextItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
pub stacking_context: StackingContext,
}
/// Defines a stacking context.
#[derive(Clone, Serialize)]
pub struct PopStackingContextItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
pub stacking_context_id: StackingContextId,
}
/// Starts a group of items inside a particular scroll root.
#[derive(Clone, Serialize)]
pub struct DefineClipScrollNodeItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// The scroll root that this item starts.
pub node_index: ClipScrollNodeIndex,
}
impl DisplayItem {
pub fn base(&self) -> &BaseDisplayItem {
match *self {
DisplayItem::Rectangle(ref rect) => &rect.base,
DisplayItem::Text(ref text) => &text.base,
DisplayItem::Image(ref image_item) => &image_item.base,
DisplayItem::Border(ref border) => &border.base,
DisplayItem::Gradient(ref gradient) => &gradient.base,
DisplayItem::RadialGradient(ref gradient) => &gradient.base,
DisplayItem::Line(ref line) => &line.base,
DisplayItem::BoxShadow(ref box_shadow) => &box_shadow.base,
DisplayItem::PushTextShadow(ref push_text_shadow) => &push_text_shadow.base,
DisplayItem::PopAllTextShadows(ref pop_text_shadow) => &pop_text_shadow.base,
DisplayItem::Iframe(ref iframe) => &iframe.base,
DisplayItem::PushStackingContext(ref stacking_context) => &stacking_context.base,
DisplayItem::PopStackingContext(ref item) => &item.base,
DisplayItem::DefineClipScrollNode(ref item) => &item.base,
}
}
pub fn scroll_node_index(&self) -> ClipScrollNodeIndex {
self.base().clipping_and_scrolling.scrolling
}
pub fn clipping_and_scrolling(&self) -> ClippingAndScrolling {
self.base().clipping_and_scrolling
}
pub fn stacking_context_id(&self) -> StackingContextId {
self.base().stacking_context_id
}
pub fn section(&self) -> DisplayListSection {
self.base().section
}
pub fn bounds(&self) -> LayoutRect {
self.base().bounds
}
pub fn debug_with_level(&self, level: u32) {
let mut indent = String::new();
for _ in 0..level {
indent.push_str("| ")
}
println!("{}+ {:?}", indent, self);
}
}
impl fmt::Debug for DisplayItem {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if let DisplayItem::PushStackingContext(ref item) = *self {
return write!(f, "PushStackingContext({:?})", item.stacking_context);
}
if let DisplayItem::PopStackingContext(ref item) = *self {
return write!(f, "PopStackingContext({:?}", item.stacking_context_id);
}
if let DisplayItem::DefineClipScrollNode(ref item) = *self {
return write!(f, "DefineClipScrollNode({:?}", item.node_index);
}
write!(
f,
"{} @ {:?} {:?}",
match *self {
DisplayItem::Rectangle(_) => "Rectangle".to_owned(),
DisplayItem::Text(_) => "Text".to_owned(),
DisplayItem::Image(_) => "Image".to_owned(),
DisplayItem::Border(_) => "Border".to_owned(),
DisplayItem::Gradient(_) => "Gradient".to_owned(),
DisplayItem::RadialGradient(_) => "RadialGradient".to_owned(),
DisplayItem::Line(_) => "Line".to_owned(),
DisplayItem::BoxShadow(_) => "BoxShadow".to_owned(),
DisplayItem::PushTextShadow(_) => "PushTextShadow".to_owned(),
DisplayItem::PopAllTextShadows(_) => "PopTextShadow".to_owned(),
DisplayItem::Iframe(_) => "Iframe".to_owned(),
DisplayItem::PushStackingContext(_) |
DisplayItem::PopStackingContext(_) |
DisplayItem::DefineClipScrollNode(_) => "".to_owned(),
},
self.bounds(),
self.base().clip_rect
)
}
}
#[derive(Clone, Copy, Serialize)]
pub struct WebRenderImageInfo {
pub width: u32,
pub height: u32,
pub key: Option<ImageKey>,
}
impl WebRenderImageInfo {
#[inline]
pub fn from_image(image: &Image) -> WebRenderImageInfo {
WebRenderImageInfo {
width: image.width,
height: image.height,
key: image.id,
}
}
}
/// The type of the scroll offset list. This is only populated if WebRender is in use.
pub type ScrollOffsetMap = HashMap<ExternalScrollId, Vector2D<f32>>;