servo/components/style/values/specified/svg_path.rs
Boris Chiou 31fc6cd565
style: Use the standalone struct and enum for the flags in SVG path.
We define the standalone types for using derive macro easily and overriding
the behaviors of this traits. This could avoid defining the general
behavior of booleans.

Depends on D4788

Differential Revision: https://phabricator.services.mozilla.com/D4813
2018-09-09 16:09:08 +02:00

706 lines
24 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Specified types for SVG Path.
use cssparser::Parser;
use parser::{Parse, ParserContext};
use std::fmt::{self, Write};
use std::iter::{Cloned, Peekable};
use std::ops::AddAssign;
use std::slice;
use style_traits::{CssWriter, ParseError, StyleParseErrorKind, ToCss};
use style_traits::values::SequenceWriter;
use values::CSSFloat;
use values::animated::{Animate, Procedure};
use values::distance::{ComputeSquaredDistance, SquaredDistance};
/// The SVG path data.
///
/// https://www.w3.org/TR/SVG11/paths.html#PathData
#[derive(Clone, Debug, MallocSizeOf, PartialEq, SpecifiedValueInfo, ToAnimatedZero,
ToComputedValue)]
pub struct SVGPathData(Box<[PathCommand]>);
impl SVGPathData {
/// Return SVGPathData by a slice of PathCommand.
#[inline]
pub fn new(cmd: Box<[PathCommand]>) -> Self {
debug_assert!(!cmd.is_empty());
SVGPathData(cmd)
}
/// Get the array of PathCommand.
#[inline]
pub fn commands(&self) -> &[PathCommand] {
debug_assert!(!self.0.is_empty());
&self.0
}
/// Create a normalized copy of this path by converting each relative command to an absolute
/// command.
fn normalize(&self) -> Self {
let mut state = PathTraversalState {
subpath_start: CoordPair::new(0.0, 0.0),
pos: CoordPair::new(0.0, 0.0),
};
let result = self.0.iter().map(|seg| seg.normalize(&mut state)).collect::<Vec<_>>();
SVGPathData(result.into_boxed_slice())
}
}
impl ToCss for SVGPathData {
#[inline]
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: fmt::Write
{
dest.write_char('"')?;
{
let mut writer = SequenceWriter::new(dest, " ");
for command in self.0.iter() {
writer.item(command)?;
}
}
dest.write_char('"')
}
}
impl Parse for SVGPathData {
// We cannot use cssparser::Parser to parse a SVG path string because the spec wants to make
// the SVG path string as compact as possible. (i.e. The whitespaces may be dropped.)
// e.g. "M100 200L100 200" is a valid SVG path string. If we use tokenizer, the first ident
// is "M100", instead of "M", and this is not correct. Therefore, we use a Peekable
// str::Char iterator to check each character.
fn parse<'i, 't>(
_context: &ParserContext,
input: &mut Parser<'i, 't>
) -> Result<Self, ParseError<'i>> {
let location = input.current_source_location();
let path_string = input.expect_string()?.as_ref();
if path_string.is_empty() {
// Treat an empty string as invalid, so we will not set it.
return Err(location.new_custom_error(StyleParseErrorKind::UnspecifiedError));
}
// Parse the svg path string as multiple sub-paths.
let mut path_parser = PathParser::new(path_string);
while skip_wsp(&mut path_parser.chars) {
if path_parser.parse_subpath().is_err() {
return Err(location.new_custom_error(StyleParseErrorKind::UnspecifiedError));
}
}
Ok(SVGPathData::new(path_parser.path.into_boxed_slice()))
}
}
impl Animate for SVGPathData {
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
if self.0.len() != other.0.len() {
return Err(());
}
let result = self.normalize().0
.iter()
.zip(other.normalize().0.iter())
.map(|(a, b)| a.animate(&b, procedure))
.collect::<Result<Vec<_>, _>>()?;
Ok(SVGPathData::new(result.into_boxed_slice()))
}
}
impl ComputeSquaredDistance for SVGPathData {
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
if self.0.len() != other.0.len() {
return Err(());
}
self.normalize().0
.iter()
.zip(other.normalize().0.iter())
.map(|(this, other)| this.compute_squared_distance(&other))
.sum()
}
}
/// The SVG path command.
/// The fields of these commands are self-explanatory, so we skip the documents.
/// Note: the index of the control points, e.g. control1, control2, are mapping to the control
/// points of the Bézier curve in the spec.
///
/// https://www.w3.org/TR/SVG11/paths.html#PathData
#[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug, MallocSizeOf, PartialEq,
SpecifiedValueInfo, ToAnimatedZero)]
#[allow(missing_docs)]
#[repr(C, u8)]
pub enum PathCommand {
/// The unknown type.
/// https://www.w3.org/TR/SVG/paths.html#__svg__SVGPathSeg__PATHSEG_UNKNOWN
Unknown,
/// The "moveto" command.
MoveTo { point: CoordPair, absolute: IsAbsolute },
/// The "lineto" command.
LineTo { point: CoordPair, absolute: IsAbsolute },
/// The horizontal "lineto" command.
HorizontalLineTo { x: CSSFloat, absolute: IsAbsolute },
/// The vertical "lineto" command.
VerticalLineTo { y: CSSFloat, absolute: IsAbsolute },
/// The cubic Bézier curve command.
CurveTo { control1: CoordPair, control2: CoordPair, point: CoordPair, absolute: IsAbsolute },
/// The smooth curve command.
SmoothCurveTo { control2: CoordPair, point: CoordPair, absolute: IsAbsolute },
/// The quadratic Bézier curve command.
QuadBezierCurveTo { control1: CoordPair, point: CoordPair, absolute: IsAbsolute },
/// The smooth quadratic Bézier curve command.
SmoothQuadBezierCurveTo { point: CoordPair, absolute: IsAbsolute },
/// The elliptical arc curve command.
EllipticalArc {
rx: CSSFloat,
ry: CSSFloat,
angle: CSSFloat,
#[animation(constant)]
large_arc_flag: ArcFlag,
#[animation(constant)]
sweep_flag: ArcFlag,
point: CoordPair,
absolute: IsAbsolute
},
/// The "closepath" command.
ClosePath,
}
/// For internal SVGPath normalization.
#[allow(missing_docs)]
struct PathTraversalState {
subpath_start: CoordPair,
pos: CoordPair,
}
impl PathCommand {
/// Create a normalized copy of this PathCommand. Absolute commands will be copied as-is while
/// for relative commands an equivalent absolute command will be returned.
///
/// See discussion: https://github.com/w3c/svgwg/issues/321
fn normalize(&self, state: &mut PathTraversalState) -> Self {
use self::PathCommand::*;
match *self {
Unknown => Unknown,
ClosePath => {
state.pos = state.subpath_start;
ClosePath
},
MoveTo { mut point, absolute } => {
if !absolute.is_yes() {
point += state.pos;
}
state.pos = point;
state.subpath_start = point;
MoveTo { point, absolute: IsAbsolute::Yes }
},
LineTo { mut point, absolute } => {
if !absolute.is_yes() {
point += state.pos;
}
state.pos = point;
LineTo { point, absolute: IsAbsolute::Yes }
},
HorizontalLineTo { mut x, absolute } => {
if !absolute.is_yes() {
x += state.pos.0;
}
state.pos.0 = x;
HorizontalLineTo { x, absolute: IsAbsolute::Yes }
},
VerticalLineTo { mut y, absolute } => {
if !absolute.is_yes() {
y += state.pos.1;
}
state.pos.1 = y;
VerticalLineTo { y, absolute: IsAbsolute::Yes }
},
CurveTo { mut control1, mut control2, mut point, absolute } => {
if !absolute.is_yes() {
control1 += state.pos;
control2 += state.pos;
point += state.pos;
}
state.pos = point;
CurveTo { control1, control2, point, absolute: IsAbsolute::Yes }
},
SmoothCurveTo { mut control2, mut point, absolute } => {
if !absolute.is_yes() {
control2 += state.pos;
point += state.pos;
}
state.pos = point;
SmoothCurveTo { control2, point, absolute: IsAbsolute::Yes }
},
QuadBezierCurveTo { mut control1, mut point, absolute } => {
if !absolute.is_yes() {
control1 += state.pos;
point += state.pos;
}
state.pos = point;
QuadBezierCurveTo { control1, point, absolute: IsAbsolute::Yes }
},
SmoothQuadBezierCurveTo { mut point, absolute } => {
if !absolute.is_yes() {
point += state.pos;
}
state.pos = point;
SmoothQuadBezierCurveTo { point, absolute: IsAbsolute::Yes }
},
EllipticalArc { rx, ry, angle, large_arc_flag, sweep_flag, mut point, absolute } => {
if !absolute.is_yes() {
point += state.pos;
}
state.pos = point;
EllipticalArc {
rx, ry, angle, large_arc_flag, sweep_flag, point, absolute: IsAbsolute::Yes
}
},
}
}
}
impl ToCss for PathCommand {
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: fmt::Write
{
use self::PathCommand::*;
match *self {
Unknown => dest.write_char('X'),
ClosePath => dest.write_char('Z'),
MoveTo { point, absolute } => {
dest.write_char(if absolute.is_yes() { 'M' } else { 'm' })?;
dest.write_char(' ')?;
point.to_css(dest)
}
LineTo { point, absolute } => {
dest.write_char(if absolute.is_yes() { 'L' } else { 'l' })?;
dest.write_char(' ')?;
point.to_css(dest)
}
CurveTo { control1, control2, point, absolute } => {
dest.write_char(if absolute.is_yes() { 'C' } else { 'c' })?;
dest.write_char(' ')?;
control1.to_css(dest)?;
dest.write_char(' ')?;
control2.to_css(dest)?;
dest.write_char(' ')?;
point.to_css(dest)
},
QuadBezierCurveTo { control1, point, absolute } => {
dest.write_char(if absolute.is_yes() { 'Q' } else { 'q' })?;
dest.write_char(' ')?;
control1.to_css(dest)?;
dest.write_char(' ')?;
point.to_css(dest)
},
EllipticalArc { rx, ry, angle, large_arc_flag, sweep_flag, point, absolute } => {
dest.write_char(if absolute.is_yes() { 'A' } else { 'a' })?;
dest.write_char(' ')?;
rx.to_css(dest)?;
dest.write_char(' ')?;
ry.to_css(dest)?;
dest.write_char(' ')?;
angle.to_css(dest)?;
dest.write_char(' ')?;
large_arc_flag.to_css(dest)?;
dest.write_char(' ')?;
sweep_flag.to_css(dest)?;
dest.write_char(' ')?;
point.to_css(dest)
},
HorizontalLineTo { x, absolute } => {
dest.write_char(if absolute.is_yes() { 'H' } else { 'h' })?;
dest.write_char(' ')?;
x.to_css(dest)
},
VerticalLineTo { y, absolute } => {
dest.write_char(if absolute.is_yes() { 'V' } else { 'v' })?;
dest.write_char(' ')?;
y.to_css(dest)
},
SmoothCurveTo { control2, point, absolute } => {
dest.write_char(if absolute.is_yes() { 'S' } else { 's' })?;
dest.write_char(' ')?;
control2.to_css(dest)?;
dest.write_char(' ')?;
point.to_css(dest)
},
SmoothQuadBezierCurveTo { point, absolute } => {
dest.write_char(if absolute.is_yes() { 'T' } else { 't' })?;
dest.write_char(' ')?;
point.to_css(dest)
},
}
}
}
/// The path command absolute type.
#[allow(missing_docs)]
#[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug, MallocSizeOf, PartialEq,
SpecifiedValueInfo, ToAnimatedZero)]
#[repr(u8)]
pub enum IsAbsolute {
Yes,
No,
}
impl IsAbsolute {
/// Return true if this is IsAbsolute::Yes.
#[inline]
pub fn is_yes(&self) -> bool {
*self == IsAbsolute::Yes
}
}
/// The path coord type.
#[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug, MallocSizeOf, PartialEq,
SpecifiedValueInfo, ToAnimatedZero, ToCss)]
#[repr(C)]
pub struct CoordPair(CSSFloat, CSSFloat);
impl CoordPair {
/// Create a CoordPair.
#[inline]
pub fn new(x: CSSFloat, y: CSSFloat) -> Self {
CoordPair(x, y)
}
}
impl AddAssign for CoordPair {
#[inline]
fn add_assign(&mut self, other: Self) {
self.0 += other.0;
self.1 += other.1;
}
}
/// The EllipticalArc flag type.
#[derive(Clone, Copy, Debug, MallocSizeOf, PartialEq, SpecifiedValueInfo)]
#[repr(C)]
pub struct ArcFlag(bool);
impl ToCss for ArcFlag {
#[inline]
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: fmt::Write
{
(self.0 as i32).to_css(dest)
}
}
impl ComputeSquaredDistance for ArcFlag {
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
(self.0 as i32).compute_squared_distance(&(other.0 as i32))
}
}
/// SVG Path parser.
struct PathParser<'a> {
chars: Peekable<Cloned<slice::Iter<'a, u8>>>,
path: Vec<PathCommand>,
}
macro_rules! parse_arguments {
(
$parser:ident,
$abs:ident,
$enum:ident,
[ $para:ident => $func:ident $(, $other_para:ident => $other_func:ident)* ]
) => {
{
loop {
let $para = $func(&mut $parser.chars)?;
$(
skip_comma_wsp(&mut $parser.chars);
let $other_para = $other_func(&mut $parser.chars)?;
)*
$parser.path.push(PathCommand::$enum { $para $(, $other_para)*, $abs });
// End of string or the next character is a possible new command.
if !skip_wsp(&mut $parser.chars) ||
$parser.chars.peek().map_or(true, |c| c.is_ascii_alphabetic()) {
break;
}
skip_comma_wsp(&mut $parser.chars);
}
Ok(())
}
}
}
impl<'a> PathParser<'a> {
/// Return a PathParser.
#[inline]
fn new(string: &'a str) -> Self {
PathParser {
chars: string.as_bytes().iter().cloned().peekable(),
path: Vec::new(),
}
}
/// Parse a sub-path.
fn parse_subpath(&mut self) -> Result<(), ()> {
// Handle "moveto" Command first. If there is no "moveto", this is not a valid sub-path
// (i.e. not a valid moveto-drawto-command-group).
self.parse_moveto()?;
// Handle other commands.
loop {
skip_wsp(&mut self.chars);
if self.chars.peek().map_or(true, |&m| m == b'M' || m == b'm') {
break;
}
match self.chars.next() {
Some(command) => {
let abs = if command.is_ascii_uppercase() {
IsAbsolute::Yes
} else {
IsAbsolute::No
};
macro_rules! parse_command {
( $($($p:pat)|+ => $parse_func:ident,)* ) => {
match command {
$(
$($p)|+ => {
skip_wsp(&mut self.chars);
self.$parse_func(abs)?;
},
)*
_ => return Err(()),
}
}
}
parse_command!(
b'Z' | b'z' => parse_closepath,
b'L' | b'l' => parse_lineto,
b'H' | b'h' => parse_h_lineto,
b'V' | b'v' => parse_v_lineto,
b'C' | b'c' => parse_curveto,
b'S' | b's' => parse_smooth_curveto,
b'Q' | b'q' => parse_quadratic_bezier_curveto,
b'T' | b't' => parse_smooth_quadratic_bezier_curveto,
b'A' | b'a' => parse_elliptical_arc,
);
},
_ => break, // no more commands.
}
}
Ok(())
}
/// Parse "moveto" command.
fn parse_moveto(&mut self) -> Result<(), ()> {
let command = match self.chars.next() {
Some(c) if c == b'M' || c == b'm' => c,
_ => return Err(()),
};
skip_wsp(&mut self.chars);
let point = parse_coord(&mut self.chars)?;
let absolute = if command == b'M' { IsAbsolute::Yes } else { IsAbsolute::No };
self.path.push(PathCommand::MoveTo { point, absolute } );
// End of string or the next character is a possible new command.
if !skip_wsp(&mut self.chars) ||
self.chars.peek().map_or(true, |c| c.is_ascii_alphabetic()) {
return Ok(());
}
skip_comma_wsp(&mut self.chars);
// If a moveto is followed by multiple pairs of coordinates, the subsequent
// pairs are treated as implicit lineto commands.
self.parse_lineto(absolute)
}
/// Parse "closepath" command.
fn parse_closepath(&mut self, _absolute: IsAbsolute) -> Result<(), ()> {
self.path.push(PathCommand::ClosePath);
Ok(())
}
/// Parse "lineto" command.
fn parse_lineto(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
parse_arguments!(self, absolute, LineTo, [ point => parse_coord ])
}
/// Parse horizontal "lineto" command.
fn parse_h_lineto(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
parse_arguments!(self, absolute, HorizontalLineTo, [ x => parse_number ])
}
/// Parse vertical "lineto" command.
fn parse_v_lineto(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
parse_arguments!(self, absolute, VerticalLineTo, [ y => parse_number ])
}
/// Parse cubic Bézier curve command.
fn parse_curveto(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
parse_arguments!(self, absolute, CurveTo, [
control1 => parse_coord, control2 => parse_coord, point => parse_coord
])
}
/// Parse smooth "curveto" command.
fn parse_smooth_curveto(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
parse_arguments!(self, absolute, SmoothCurveTo, [
control2 => parse_coord, point => parse_coord
])
}
/// Parse quadratic Bézier curve command.
fn parse_quadratic_bezier_curveto(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
parse_arguments!(self, absolute, QuadBezierCurveTo, [
control1 => parse_coord, point => parse_coord
])
}
/// Parse smooth quadratic Bézier curveto command.
fn parse_smooth_quadratic_bezier_curveto(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
parse_arguments!(self, absolute, SmoothQuadBezierCurveTo, [ point => parse_coord ])
}
/// Parse elliptical arc curve command.
fn parse_elliptical_arc(&mut self, absolute: IsAbsolute) -> Result<(), ()> {
// Parse a flag whose value is '0' or '1'; otherwise, return Err(()).
let parse_flag = |iter: &mut Peekable<Cloned<slice::Iter<u8>>>| {
match iter.next() {
Some(c) if c == b'0' || c == b'1' => Ok(ArcFlag(c == b'1')),
_ => Err(()),
}
};
parse_arguments!(self, absolute, EllipticalArc, [
rx => parse_number,
ry => parse_number,
angle => parse_number,
large_arc_flag => parse_flag,
sweep_flag => parse_flag,
point => parse_coord
])
}
}
/// Parse a pair of numbers into CoordPair.
fn parse_coord(iter: &mut Peekable<Cloned<slice::Iter<u8>>>) -> Result<CoordPair, ()> {
let x = parse_number(iter)?;
skip_comma_wsp(iter);
let y = parse_number(iter)?;
Ok(CoordPair::new(x, y))
}
/// This is a special version which parses the number for SVG Path. e.g. "M 0.6.5" should be parsed
/// as MoveTo with a coordinate of ("0.6", ".5"), instead of treating 0.6.5 as a non-valid floating
/// point number. In other words, the logic here is similar with that of
/// tokenizer::consume_numeric, which also consumes the number as many as possible, but here the
/// input is a Peekable and we only accept an integer of a floating point number.
///
/// The "number" syntax in https://www.w3.org/TR/SVG/paths.html#PathDataBNF
fn parse_number(iter: &mut Peekable<Cloned<slice::Iter<u8>>>) -> Result<CSSFloat, ()> {
// 1. Check optional sign.
let sign = if iter.peek().map_or(false, |&sign| sign == b'+' || sign == b'-') {
if iter.next().unwrap() == b'-' { -1. } else { 1. }
} else {
1.
};
// 2. Check integer part.
let mut integral_part: f64 = 0.;
let got_dot = if !iter.peek().map_or(false, |&n| n == b'.') {
// If the first digit in integer part is neither a dot nor a digit, this is not a number.
if iter.peek().map_or(true, |n| !n.is_ascii_digit()) {
return Err(());
}
while iter.peek().map_or(false, |n| n.is_ascii_digit()) {
integral_part =
integral_part * 10. + (iter.next().unwrap() - b'0') as f64;
}
iter.peek().map_or(false, |&n| n == b'.')
} else {
true
};
// 3. Check fractional part.
let mut fractional_part: f64 = 0.;
if got_dot {
// Consume '.'.
iter.next();
// If the first digit in fractional part is not a digit, this is not a number.
if iter.peek().map_or(true, |n| !n.is_ascii_digit()) {
return Err(());
}
let mut factor = 0.1;
while iter.peek().map_or(false, |n| n.is_ascii_digit()) {
fractional_part += (iter.next().unwrap() - b'0') as f64 * factor;
factor *= 0.1;
}
}
let mut value = sign * (integral_part + fractional_part);
// 4. Check exp part. The segment name of SVG Path doesn't include 'E' or 'e', so it's ok to
// treat the numbers after 'E' or 'e' are in the exponential part.
if iter.peek().map_or(false, |&exp| exp == b'E' || exp == b'e') {
// Consume 'E' or 'e'.
iter.next();
let exp_sign = if iter.peek().map_or(false, |&sign| sign == b'+' || sign == b'-') {
if iter.next().unwrap() == b'-' { -1. } else { 1. }
} else {
1.
};
let mut exp: f64 = 0.;
while iter.peek().map_or(false, |n| n.is_ascii_digit()) {
exp = exp * 10. + (iter.next().unwrap() - b'0') as f64;
}
value *= f64::powf(10., exp * exp_sign);
}
if value.is_finite() {
Ok(value.min(::std::f32::MAX as f64).max(::std::f32::MIN as f64) as CSSFloat)
} else {
Err(())
}
}
/// Skip all svg whitespaces, and return true if |iter| hasn't finished.
#[inline]
fn skip_wsp(iter: &mut Peekable<Cloned<slice::Iter<u8>>>) -> bool {
// Note: SVG 1.1 defines the whitespaces as \u{9}, \u{20}, \u{A}, \u{D}.
// However, SVG 2 has one extra whitespace: \u{C}.
// Therefore, we follow the newest spec for the definition of whitespace,
// i.e. \u{9}, \u{20}, \u{A}, \u{C}, \u{D}.
while iter.peek().map_or(false, |c| c.is_ascii_whitespace()) {
iter.next();
}
iter.peek().is_some()
}
/// Skip all svg whitespaces and one comma, and return true if |iter| hasn't finished.
#[inline]
fn skip_comma_wsp(iter: &mut Peekable<Cloned<slice::Iter<u8>>>) -> bool {
if !skip_wsp(iter) {
return false;
}
if *iter.peek().unwrap() != b',' {
return true;
}
iter.next();
skip_wsp(iter)
}