servo/components/script_plugins/lib.rs
bjorn3 40a6aad6b9
Update doc comment for script_plugins/lib.rs
script_plugins no longer provides any macros. It currently only provides the must_root lint.
2021-05-14 14:44:12 +02:00

451 lines
16 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Servo's compiler plugin/macro crate
//!
//! This crate provides the `#[unrooted_must_root_lint::must_root]` lint. This lint prevents data
//! of the marked type from being used on the stack. See the source for more details.
#![deny(unsafe_code)]
#![feature(plugin)]
#![feature(plugin_registrar)]
#![feature(rustc_private)]
#![cfg(feature = "unrooted_must_root_lint")]
extern crate rustc_ast;
extern crate rustc_driver;
extern crate rustc_hir;
extern crate rustc_lint;
extern crate rustc_middle;
extern crate rustc_session;
extern crate rustc_span;
use rustc_ast::ast::{AttrKind, Attribute};
use rustc_driver::plugin::Registry;
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit as visit;
use rustc_hir::{self as hir, ExprKind, HirId};
use rustc_lint::{LateContext, LateLintPass, LintContext, LintPass};
use rustc_middle::ty;
use rustc_session::declare_lint;
use rustc_span::source_map;
use rustc_span::source_map::{ExpnKind, MacroKind, Span};
use rustc_span::symbol::sym;
use rustc_span::symbol::Symbol;
#[allow(deprecated)]
#[plugin_registrar]
pub fn plugin_registrar(reg: &mut Registry) {
registrar(reg)
}
fn registrar(reg: &mut Registry) {
let symbols = Symbols::new();
reg.lint_store.register_lints(&[&UNROOTED_MUST_ROOT]);
reg.lint_store
.register_late_pass(move || Box::new(UnrootedPass::new(symbols.clone())));
}
declare_lint!(
UNROOTED_MUST_ROOT,
Deny,
"Warn and report usage of unrooted jsmanaged objects"
);
/// Lint for ensuring safe usage of unrooted pointers
///
/// This lint (disable with `-A unrooted-must-root`/`#[allow(unrooted_must_root)]`) ensures that
/// `#[unrooted_must_root_lint::must_root]` values are used correctly.
///
/// "Incorrect" usage includes:
///
/// - Not being used in a struct/enum field which is not `#[unrooted_must_root_lint::must_root]` itself
/// - Not being used as an argument to a function (Except onces named `new` and `new_inherited`)
/// - Not being bound locally in a `let` statement, assignment, `for` loop, or `match` statement.
///
/// This helps catch most situations where pointers like `JS<T>` are used in a way that they can be invalidated by a
/// GC pass.
///
/// Structs which have their own mechanism of rooting their unrooted contents (e.g. `ScriptThread`)
/// can be marked as `#[allow(unrooted_must_root)]`. Smart pointers which root their interior type
/// can be marked as `#[unrooted_must_root_lint::allow_unrooted_interior]`
pub(crate) struct UnrootedPass {
symbols: Symbols,
}
impl UnrootedPass {
pub fn new(symbols: Symbols) -> UnrootedPass {
UnrootedPass { symbols }
}
}
fn has_lint_attr(sym: &Symbols, attrs: &[Attribute], name: Symbol) -> bool {
attrs.iter().any(|attr| {
matches!(
&attr.kind,
AttrKind::Normal(attr_item, _)
if attr_item.path.segments.len() == 2 &&
attr_item.path.segments[0].ident.name == sym.unrooted_must_root_lint &&
attr_item.path.segments[1].ident.name == name
)
})
}
/// Checks if a type is unrooted or contains any owned unrooted types
fn is_unrooted_ty(sym: &Symbols, cx: &LateContext, ty: &ty::TyS, in_new_function: bool) -> bool {
let mut ret = false;
let mut walker = ty.walk();
while let Some(generic_arg) = walker.next() {
let t = match generic_arg.unpack() {
rustc_middle::ty::subst::GenericArgKind::Type(t) => t,
_ => {
walker.skip_current_subtree();
continue;
},
};
let recur_into_subtree = match t.kind() {
ty::Adt(did, substs) => {
let has_attr = |did, name| has_lint_attr(sym, &cx.tcx.get_attrs(did), name);
if has_attr(did.did, sym.must_root) {
ret = true;
false
} else if has_attr(did.did, sym.allow_unrooted_interior) {
false
} else if match_def_path(cx, did.did, &[sym.alloc, sym.rc, sym.Rc]) {
// Rc<Promise> is okay
let inner = substs.type_at(0);
if let ty::Adt(did, _) = inner.kind() {
if has_attr(did.did, sym.allow_unrooted_in_rc) {
false
} else {
true
}
} else {
true
}
} else if match_def_path(cx, did.did, &[sym::core, sym.cell, sym.Ref]) ||
match_def_path(cx, did.did, &[sym::core, sym.cell, sym.RefMut]) ||
match_def_path(cx, did.did, &[sym::core, sym::slice, sym::iter, sym.Iter]) ||
match_def_path(
cx,
did.did,
&[sym::core, sym::slice, sym::iter, sym.IterMut],
) ||
match_def_path(cx, did.did, &[sym.accountable_refcell, sym.Ref]) ||
match_def_path(cx, did.did, &[sym.accountable_refcell, sym.RefMut]) ||
match_def_path(
cx,
did.did,
&[sym::std, sym.collections, sym.hash, sym.map, sym.Entry],
) ||
match_def_path(
cx,
did.did,
&[
sym::std,
sym.collections,
sym.hash,
sym.map,
sym.OccupiedEntry,
],
) ||
match_def_path(
cx,
did.did,
&[
sym::std,
sym.collections,
sym.hash,
sym.map,
sym.VacantEntry,
],
) ||
match_def_path(
cx,
did.did,
&[sym::std, sym.collections, sym.hash, sym.map, sym.Iter],
) ||
match_def_path(
cx,
did.did,
&[sym::std, sym.collections, sym.hash, sym.set, sym.Iter],
)
{
// Structures which are semantically similar to an &ptr.
false
} else if did.is_box() && in_new_function {
// box in new() is okay
false
} else {
true
}
},
ty::Ref(..) => false, // don't recurse down &ptrs
ty::RawPtr(..) => false, // don't recurse down *ptrs
ty::FnDef(..) | ty::FnPtr(_) => false,
_ => true,
};
if !recur_into_subtree {
walker.skip_current_subtree();
}
}
ret
}
impl LintPass for UnrootedPass {
fn name(&self) -> &'static str {
"ServoUnrootedPass"
}
}
impl<'tcx> LateLintPass<'tcx> for UnrootedPass {
/// All structs containing #[unrooted_must_root_lint::must_root] types
/// must be #[unrooted_must_root_lint::must_root] themselves
fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item) {
let attrs = cx.tcx.hir().attrs(item.hir_id());
if has_lint_attr(&self.symbols, &attrs, self.symbols.must_root) {
return;
}
if let hir::ItemKind::Struct(def, ..) = &item.kind {
for ref field in def.fields() {
let def_id = cx.tcx.hir().local_def_id(field.hir_id);
if is_unrooted_ty(&self.symbols, cx, cx.tcx.type_of(def_id), false) {
cx.lint(UNROOTED_MUST_ROOT, |lint| {
lint.build(
"Type must be rooted, use #[unrooted_must_root_lint::must_root] \
on the struct definition to propagate",
)
.set_span(field.span)
.emit()
})
}
}
}
}
/// All enums containing #[unrooted_must_root_lint::must_root] types
/// must be #[unrooted_must_root_lint::must_root] themselves
fn check_variant(&mut self, cx: &LateContext, var: &hir::Variant) {
let ref map = cx.tcx.hir();
let parent_item = map.expect_item(map.get_parent_item(var.id));
let attrs = cx.tcx.hir().attrs(parent_item.hir_id());
if !has_lint_attr(&self.symbols, &attrs, self.symbols.must_root) {
match var.data {
hir::VariantData::Tuple(fields, ..) => {
for field in fields {
let def_id = cx.tcx.hir().local_def_id(field.hir_id);
if is_unrooted_ty(&self.symbols, cx, cx.tcx.type_of(def_id), false) {
cx.lint(UNROOTED_MUST_ROOT, |lint| {
lint.build(
"Type must be rooted, \
use #[unrooted_must_root_lint::must_root] \
on the enum definition to propagate",
)
.set_span(field.ty.span)
.emit()
})
}
}
},
_ => (), // Struct variants already caught by check_struct_def
}
}
}
/// Function arguments that are #[unrooted_must_root_lint::must_root] types are not allowed
fn check_fn(
&mut self,
cx: &LateContext<'tcx>,
kind: visit::FnKind<'tcx>,
decl: &'tcx hir::FnDecl,
body: &'tcx hir::Body,
span: source_map::Span,
id: HirId,
) {
let in_new_function = match kind {
visit::FnKind::ItemFn(n, _, _, _) | visit::FnKind::Method(n, _, _) => {
&*n.as_str() == "new" || n.as_str().starts_with("new_")
},
visit::FnKind::Closure => return,
};
if !in_derive_expn(span) {
let def_id = cx.tcx.hir().local_def_id(id);
let sig = cx.tcx.type_of(def_id).fn_sig(cx.tcx);
for (arg, ty) in decl.inputs.iter().zip(sig.inputs().skip_binder().iter()) {
if is_unrooted_ty(&self.symbols, cx, ty, false) {
cx.lint(UNROOTED_MUST_ROOT, |lint| {
lint.build("Type must be rooted").set_span(arg.span).emit()
})
}
}
if !in_new_function {
if is_unrooted_ty(&self.symbols, cx, sig.output().skip_binder(), false) {
cx.lint(UNROOTED_MUST_ROOT, |lint| {
lint.build("Type must be rooted")
.set_span(decl.output.span())
.emit()
})
}
}
}
let mut visitor = FnDefVisitor {
symbols: &self.symbols,
cx: cx,
in_new_function: in_new_function,
};
visit::walk_expr(&mut visitor, &body.value);
}
}
struct FnDefVisitor<'a, 'tcx: 'a> {
symbols: &'a Symbols,
cx: &'a LateContext<'tcx>,
in_new_function: bool,
}
impl<'a, 'tcx> visit::Visitor<'tcx> for FnDefVisitor<'a, 'tcx> {
type Map = rustc_middle::hir::map::Map<'tcx>;
fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
let cx = self.cx;
let require_rooted = |cx: &LateContext, in_new_function: bool, subexpr: &hir::Expr| {
let ty = cx.typeck_results().expr_ty(&subexpr);
if is_unrooted_ty(&self.symbols, cx, ty, in_new_function) {
cx.lint(UNROOTED_MUST_ROOT, |lint| {
lint.build(&format!("Expression of type {:?} must be rooted", ty))
.set_span(subexpr.span)
.emit()
})
}
};
match expr.kind {
// Trait casts from #[unrooted_must_root_lint::must_root] types are not allowed
ExprKind::Cast(ref subexpr, _) => require_rooted(cx, self.in_new_function, &*subexpr),
// This catches assignments... the main point of this would be to catch mutable
// references to `JS<T>`.
// FIXME: Enable this? Triggers on certain kinds of uses of DomRefCell.
// hir::ExprAssign(_, ref rhs) => require_rooted(cx, self.in_new_function, &*rhs),
// This catches calls; basically, this enforces the constraint that only constructors
// can call other constructors.
// FIXME: Enable this? Currently triggers with constructs involving DomRefCell, and
// constructs like Vec<JS<T>> and RootedVec<JS<T>>.
// hir::ExprCall(..) if !self.in_new_function => {
// require_rooted(cx, self.in_new_function, expr);
// }
_ => {
// TODO(pcwalton): Check generics with a whitelist of allowed generics.
},
}
visit::walk_expr(self, expr);
}
fn visit_pat(&mut self, pat: &'tcx hir::Pat) {
let cx = self.cx;
// We want to detect pattern bindings that move a value onto the stack.
// When "default binding modes" https://github.com/rust-lang/rust/issues/42640
// are implemented, the `Unannotated` case could cause false-positives.
// These should be fixable by adding an explicit `ref`.
match pat.kind {
hir::PatKind::Binding(hir::BindingAnnotation::Unannotated, ..) |
hir::PatKind::Binding(hir::BindingAnnotation::Mutable, ..) => {
let ty = cx.typeck_results().pat_ty(pat);
if is_unrooted_ty(&self.symbols, cx, ty, self.in_new_function) {
cx.lint(UNROOTED_MUST_ROOT, |lint| {
lint.build(&format!("Expression of type {:?} must be rooted", ty))
.set_span(pat.span)
.emit()
})
}
},
_ => {},
}
visit::walk_pat(self, pat);
}
fn visit_ty(&mut self, _: &'tcx hir::Ty) {}
fn nested_visit_map(&mut self) -> hir::intravisit::NestedVisitorMap<Self::Map> {
hir::intravisit::NestedVisitorMap::OnlyBodies(self.cx.tcx.hir())
}
}
/// check if a DefId's path matches the given absolute type path
/// usage e.g. with
/// `match_def_path(cx, id, &["core", "option", "Option"])`
fn match_def_path(cx: &LateContext, def_id: DefId, path: &[Symbol]) -> bool {
let def_path = cx.tcx.def_path(def_id);
let krate = &cx.tcx.crate_name(def_path.krate);
if krate != &path[0] {
return false;
}
let path = &path[1..];
let other = def_path.data;
if other.len() != path.len() {
return false;
}
other
.into_iter()
.zip(path)
.all(|(e, p)| e.data.get_opt_name().as_ref() == Some(p))
}
fn in_derive_expn(span: Span) -> bool {
matches!(
span.ctxt().outer_expn_data().kind,
ExpnKind::Macro(MacroKind::Derive, _)
)
}
macro_rules! symbols {
($($s: ident)+) => {
#[derive(Clone)]
#[allow(non_snake_case)]
struct Symbols {
$( $s: Symbol, )+
}
impl Symbols {
fn new() -> Self {
Symbols {
$( $s: Symbol::intern(stringify!($s)), )+
}
}
}
}
}
symbols! {
unrooted_must_root_lint
allow_unrooted_interior
allow_unrooted_in_rc
must_root
alloc
rc
Rc
cell
accountable_refcell
Ref
RefMut
Iter
IterMut
collections
hash
map
set
Entry
OccupiedEntry
VacantEntry
}