servo/components/style/values/resolved/mod.rs
Tiaan Louw 8c1c4073e2 style: Convert RGBA to AbsoluteColor for computed/animated/resolved CSS colors
Computed color values will not be in the correct format, closer to the
one specified by the author.  This also means that colors accross the
code are stored now as AbsoluteColor or StyleAbsoluteColor.  This allows
color space/gamut information to be available for use.

Some animation related test failures had to be changed, because colors
now has greater precision.  Animated a color now causes a lot more
animation updates, which was not initially expected.  See the bug for
discussion.

Differential Revision: https://phabricator.services.mozilla.com/D171021
2023-11-21 15:36:35 +01:00

277 lines
7.8 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Resolved values. These are almost always computed values, but in some cases
//! there are used values.
#[cfg(feature = "gecko")]
use crate::media_queries::Device;
use crate::properties::ComputedValues;
use crate::ArcSlice;
use servo_arc::Arc;
use smallvec::SmallVec;
mod color;
mod counters;
use crate::values::computed;
/// Element-specific information needed to resolve property values.
#[cfg(feature = "gecko")]
pub struct ResolvedElementInfo<'a> {
/// Element we're resolving line-height against.
pub element: crate::gecko::wrapper::GeckoElement<'a>,
}
/// Information needed to resolve a given value.
pub struct Context<'a> {
/// The style we're resolving for. This is useful to resolve currentColor.
pub style: &'a ComputedValues,
/// The device / document we're resolving style for. Useful to do font metrics stuff needed for
/// line-height.
#[cfg(feature = "gecko")]
pub device: &'a Device,
/// The element-specific information to resolve the value.
#[cfg(feature = "gecko")]
pub element_info: ResolvedElementInfo<'a>,
}
/// A trait to represent the conversion between resolved and resolved values.
///
/// This trait is derivable with `#[derive(ToResolvedValue)]`.
///
/// The deriving code assumes that if the type isn't generic, then the trait can
/// be implemented as simple move. This means that a manual implementation with
/// `ResolvedValue = Self` is bogus if it returns anything else than a clone.
pub trait ToResolvedValue {
/// The resolved value type we're going to be converted to.
type ResolvedValue;
/// Convert a resolved value to a resolved value.
fn to_resolved_value(self, context: &Context) -> Self::ResolvedValue;
/// Convert a resolved value to resolved value form.
fn from_resolved_value(resolved: Self::ResolvedValue) -> Self;
}
macro_rules! trivial_to_resolved_value {
($ty:ty) => {
impl $crate::values::resolved::ToResolvedValue for $ty {
type ResolvedValue = Self;
#[inline]
fn to_resolved_value(self, _: &Context) -> Self {
self
}
#[inline]
fn from_resolved_value(resolved: Self::ResolvedValue) -> Self {
resolved
}
}
};
}
trivial_to_resolved_value!(());
trivial_to_resolved_value!(bool);
trivial_to_resolved_value!(f32);
trivial_to_resolved_value!(u8);
trivial_to_resolved_value!(i8);
trivial_to_resolved_value!(u16);
trivial_to_resolved_value!(i16);
trivial_to_resolved_value!(u32);
trivial_to_resolved_value!(i32);
trivial_to_resolved_value!(usize);
trivial_to_resolved_value!(String);
trivial_to_resolved_value!(Box<str>);
trivial_to_resolved_value!(crate::OwnedStr);
trivial_to_resolved_value!(crate::color::AbsoluteColor);
trivial_to_resolved_value!(crate::Atom);
trivial_to_resolved_value!(crate::values::AtomIdent);
trivial_to_resolved_value!(app_units::Au);
trivial_to_resolved_value!(computed::url::ComputedUrl);
#[cfg(feature = "gecko")]
trivial_to_resolved_value!(computed::url::ComputedImageUrl);
#[cfg(feature = "servo")]
trivial_to_resolved_value!(crate::Namespace);
#[cfg(feature = "servo")]
trivial_to_resolved_value!(crate::Prefix);
trivial_to_resolved_value!(computed::LengthPercentage);
trivial_to_resolved_value!(style_traits::values::specified::AllowedNumericType);
trivial_to_resolved_value!(computed::TimingFunction);
impl<A, B> ToResolvedValue for (A, B)
where
A: ToResolvedValue,
B: ToResolvedValue,
{
type ResolvedValue = (
<A as ToResolvedValue>::ResolvedValue,
<B as ToResolvedValue>::ResolvedValue,
);
#[inline]
fn to_resolved_value(self, context: &Context) -> Self::ResolvedValue {
(
self.0.to_resolved_value(context),
self.1.to_resolved_value(context),
)
}
#[inline]
fn from_resolved_value(resolved: Self::ResolvedValue) -> Self {
(
A::from_resolved_value(resolved.0),
B::from_resolved_value(resolved.1),
)
}
}
impl<T> ToResolvedValue for Option<T>
where
T: ToResolvedValue,
{
type ResolvedValue = Option<<T as ToResolvedValue>::ResolvedValue>;
#[inline]
fn to_resolved_value(self, context: &Context) -> Self::ResolvedValue {
self.map(|item| item.to_resolved_value(context))
}
#[inline]
fn from_resolved_value(resolved: Self::ResolvedValue) -> Self {
resolved.map(T::from_resolved_value)
}
}
impl<T> ToResolvedValue for SmallVec<[T; 1]>
where
T: ToResolvedValue,
{
type ResolvedValue = SmallVec<[<T as ToResolvedValue>::ResolvedValue; 1]>;
#[inline]
fn to_resolved_value(self, context: &Context) -> Self::ResolvedValue {
self.into_iter()
.map(|item| item.to_resolved_value(context))
.collect()
}
#[inline]
fn from_resolved_value(resolved: Self::ResolvedValue) -> Self {
resolved.into_iter().map(T::from_resolved_value).collect()
}
}
impl<T> ToResolvedValue for Vec<T>
where
T: ToResolvedValue,
{
type ResolvedValue = Vec<<T as ToResolvedValue>::ResolvedValue>;
#[inline]
fn to_resolved_value(self, context: &Context) -> Self::ResolvedValue {
self.into_iter()
.map(|item| item.to_resolved_value(context))
.collect()
}
#[inline]
fn from_resolved_value(resolved: Self::ResolvedValue) -> Self {
resolved.into_iter().map(T::from_resolved_value).collect()
}
}
impl<T> ToResolvedValue for Box<T>
where
T: ToResolvedValue,
{
type ResolvedValue = Box<<T as ToResolvedValue>::ResolvedValue>;
#[inline]
fn to_resolved_value(self, context: &Context) -> Self::ResolvedValue {
Box::new(T::to_resolved_value(*self, context))
}
#[inline]
fn from_resolved_value(resolved: Self::ResolvedValue) -> Self {
Box::new(T::from_resolved_value(*resolved))
}
}
impl<T> ToResolvedValue for Box<[T]>
where
T: ToResolvedValue,
{
type ResolvedValue = Box<[<T as ToResolvedValue>::ResolvedValue]>;
#[inline]
fn to_resolved_value(self, context: &Context) -> Self::ResolvedValue {
Vec::from(self)
.to_resolved_value(context)
.into_boxed_slice()
}
#[inline]
fn from_resolved_value(resolved: Self::ResolvedValue) -> Self {
Vec::from_resolved_value(Vec::from(resolved)).into_boxed_slice()
}
}
impl<T> ToResolvedValue for crate::OwnedSlice<T>
where
T: ToResolvedValue,
{
type ResolvedValue = crate::OwnedSlice<<T as ToResolvedValue>::ResolvedValue>;
#[inline]
fn to_resolved_value(self, context: &Context) -> Self::ResolvedValue {
self.into_box().to_resolved_value(context).into()
}
#[inline]
fn from_resolved_value(resolved: Self::ResolvedValue) -> Self {
Self::from(Box::from_resolved_value(resolved.into_box()))
}
}
// NOTE(emilio): This is implementable more generically, but it's unlikely what
// you want there, as it forces you to have an extra allocation.
//
// We could do that if needed, ideally with specialization for the case where
// ResolvedValue = T. But we don't need it for now.
impl<T> ToResolvedValue for Arc<T>
where
T: ToResolvedValue<ResolvedValue = T>,
{
type ResolvedValue = Self;
#[inline]
fn to_resolved_value(self, _: &Context) -> Self {
self
}
#[inline]
fn from_resolved_value(resolved: Self) -> Self {
resolved
}
}
// Same caveat as above applies.
impl<T> ToResolvedValue for ArcSlice<T>
where
T: ToResolvedValue<ResolvedValue = T>,
{
type ResolvedValue = Self;
#[inline]
fn to_resolved_value(self, _: &Context) -> Self {
self
}
#[inline]
fn from_resolved_value(resolved: Self) -> Self {
resolved
}
}