servo/components/script_plugins/unrooted_must_root.rs
Josh Matthews dc5335a21e Move checks for document completion to the end of the event loop.
This better reflects the text of the specification - rather than
queuing a task to dispatch the load evnet as soon as the document
loader is unblocked, we want to "spin the event loop until there
is nothing that delays the load event in the Document." Spinning
the event loop is a concept that requires running tasks
completely, hence we check the condition before returning to the
start of the event loop.
2017-03-07 14:02:42 +05:30

233 lines
9.6 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use rustc::hir;
use rustc::hir::intravisit as visit;
use rustc::hir::map as ast_map;
use rustc::lint::{LateContext, LintPass, LintArray, LateLintPass, LintContext};
use rustc::ty;
use syntax::{ast, codemap};
use utils::{match_def_path, in_derive_expn};
declare_lint!(UNROOTED_MUST_ROOT, Deny,
"Warn and report usage of unrooted jsmanaged objects");
/// Lint for ensuring safe usage of unrooted pointers
///
/// This lint (disable with `-A unrooted-must-root`/`#[allow(unrooted_must_root)]`) ensures that `#[must_root]`
/// values are used correctly.
///
/// "Incorrect" usage includes:
///
/// - Not being used in a struct/enum field which is not `#[must_root]` itself
/// - Not being used as an argument to a function (Except onces named `new` and `new_inherited`)
/// - Not being bound locally in a `let` statement, assignment, `for` loop, or `match` statement.
///
/// This helps catch most situations where pointers like `JS<T>` are used in a way that they can be invalidated by a
/// GC pass.
///
/// Structs which have their own mechanism of rooting their unrooted contents (e.g. `ScriptThread`)
/// can be marked as `#[allow(unrooted_must_root)]`. Smart pointers which root their interior type
/// can be marked as `#[allow_unrooted_interior]`
pub struct UnrootedPass;
impl UnrootedPass {
pub fn new() -> UnrootedPass {
UnrootedPass
}
}
/// Checks if a type is unrooted or contains any owned unrooted types
fn is_unrooted_ty(cx: &LateContext, ty: &ty::TyS, in_new_function: bool) -> bool {
let mut ret = false;
ty.maybe_walk(|t| {
match t.sty {
ty::TyAdt(did, _) => {
if cx.tcx.has_attr(did.did, "must_root") {
ret = true;
false
} else if cx.tcx.has_attr(did.did, "allow_unrooted_interior") {
false
} else if match_def_path(cx, did.did, &["core", "cell", "Ref"])
|| match_def_path(cx, did.did, &["core", "cell", "RefMut"])
|| match_def_path(cx, did.did, &["core", "slice", "Iter"])
|| match_def_path(cx, did.did, &["std", "collections", "hash", "map", "Entry"])
|| match_def_path(cx, did.did, &["std", "collections", "hash", "map", "OccupiedEntry"])
|| match_def_path(cx, did.did, &["std", "collections", "hash", "map", "VacantEntry"])
|| match_def_path(cx, did.did, &["std", "collections", "hash", "set", "Iter"]) {
// Structures which are semantically similar to an &ptr.
false
} else if did.is_box() && in_new_function {
// box in new() is okay
false
} else {
true
}
},
ty::TyRef(..) => false, // don't recurse down &ptrs
ty::TyRawPtr(..) => false, // don't recurse down *ptrs
ty::TyFnDef(..) | ty::TyFnPtr(_) => false,
_ => true
}
});
ret
}
impl LintPass for UnrootedPass {
fn get_lints(&self) -> LintArray {
lint_array!(UNROOTED_MUST_ROOT)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnrootedPass {
/// All structs containing #[must_root] types must be #[must_root] themselves
fn check_struct_def(&mut self,
cx: &LateContext,
def: &hir::VariantData,
_n: ast::Name,
_gen: &hir::Generics,
id: ast::NodeId) {
let item = match cx.tcx.hir.get(id) {
ast_map::Node::NodeItem(item) => item,
_ => cx.tcx.hir.expect_item(cx.tcx.hir.get_parent(id)),
};
if item.attrs.iter().all(|a| !a.check_name("must_root")) {
for ref field in def.fields() {
let def_id = cx.tcx.hir.local_def_id(field.id);
if is_unrooted_ty(cx, cx.tcx.item_type(def_id), false) {
cx.span_lint(UNROOTED_MUST_ROOT, field.span,
"Type must be rooted, use #[must_root] on the struct definition to propagate")
}
}
}
}
/// All enums containing #[must_root] types must be #[must_root] themselves
fn check_variant(&mut self, cx: &LateContext, var: &hir::Variant, _gen: &hir::Generics) {
let ref map = cx.tcx.hir;
if map.expect_item(map.get_parent(var.node.data.id())).attrs.iter().all(|a| !a.check_name("must_root")) {
match var.node.data {
hir::VariantData::Tuple(ref fields, _) => {
for ref field in fields {
let def_id = cx.tcx.hir.local_def_id(field.id);
if is_unrooted_ty(cx, cx.tcx.item_type(def_id), false) {
cx.span_lint(UNROOTED_MUST_ROOT, field.ty.span,
"Type must be rooted, use #[must_root] on \
the enum definition to propagate")
}
}
}
_ => () // Struct variants already caught by check_struct_def
}
}
}
/// Function arguments that are #[must_root] types are not allowed
fn check_fn(&mut self,
cx: &LateContext<'a, 'tcx>,
kind: visit::FnKind,
decl: &'tcx hir::FnDecl,
body: &'tcx hir::Body,
span: codemap::Span,
id: ast::NodeId) {
let in_new_function = match kind {
visit::FnKind::ItemFn(n, _, _, _, _, _, _) |
visit::FnKind::Method(n, _, _, _) => {
&*n.as_str() == "new" || n.as_str().starts_with("new_")
}
visit::FnKind::Closure(_) => return,
};
if !in_derive_expn(cx, span) {
let def_id = cx.tcx.hir.local_def_id(id);
let ty = cx.tcx.item_type(def_id);
for (arg, ty) in decl.inputs.iter().zip(ty.fn_args().0.iter()) {
if is_unrooted_ty(cx, ty, false) {
cx.span_lint(UNROOTED_MUST_ROOT, arg.span, "Type must be rooted")
}
}
if !in_new_function {
if is_unrooted_ty(cx, ty.fn_ret().0, false) {
cx.span_lint(UNROOTED_MUST_ROOT, decl.output.span(), "Type must be rooted")
}
}
}
let mut visitor = FnDefVisitor {
cx: cx,
in_new_function: in_new_function,
};
visit::walk_expr(&mut visitor, &body.value);
}
}
struct FnDefVisitor<'a, 'b: 'a, 'tcx: 'a+'b> {
cx: &'a LateContext<'b, 'tcx>,
in_new_function: bool,
}
impl<'a, 'b, 'tcx> visit::Visitor<'tcx> for FnDefVisitor<'a, 'b, 'tcx> {
fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
let cx = self.cx;
fn require_rooted(cx: &LateContext, in_new_function: bool, subexpr: &hir::Expr) {
let ty = cx.tables.expr_ty(&subexpr);
if is_unrooted_ty(cx, ty, in_new_function) {
cx.span_lint(UNROOTED_MUST_ROOT,
subexpr.span,
&format!("Expression of type {:?} must be rooted", ty))
}
}
match expr.node {
/// Trait casts from #[must_root] types are not allowed
hir::ExprCast(ref subexpr, _) => require_rooted(cx, self.in_new_function, &*subexpr),
// This catches assignments... the main point of this would be to catch mutable
// references to `JS<T>`.
// FIXME: Enable this? Triggers on certain kinds of uses of DOMRefCell.
// hir::ExprAssign(_, ref rhs) => require_rooted(cx, self.in_new_function, &*rhs),
// This catches calls; basically, this enforces the constraint that only constructors
// can call other constructors.
// FIXME: Enable this? Currently triggers with constructs involving DOMRefCell, and
// constructs like Vec<JS<T>> and RootedVec<JS<T>>.
// hir::ExprCall(..) if !self.in_new_function => {
// require_rooted(cx, self.in_new_function, expr);
// }
_ => {
// TODO(pcwalton): Check generics with a whitelist of allowed generics.
}
}
visit::walk_expr(self, expr);
}
fn visit_pat(&mut self, pat: &'tcx hir::Pat) {
let cx = self.cx;
if let hir::PatKind::Binding(hir::BindingMode::BindByValue(_), _, _, _) = pat.node {
let ty = cx.tables.pat_ty(pat);
if is_unrooted_ty(cx, ty, self.in_new_function) {
cx.span_lint(UNROOTED_MUST_ROOT,
pat.span,
&format!("Expression of type {:?} must be rooted", ty))
}
}
visit::walk_pat(self, pat);
}
fn visit_fn(&mut self, kind: visit::FnKind<'tcx>, decl: &'tcx hir::FnDecl,
body: hir::BodyId, span: codemap::Span, id: ast::NodeId) {
if let visit::FnKind::Closure(_) = kind {
visit::walk_fn(self, kind, decl, body, span, id);
}
}
fn visit_foreign_item(&mut self, _: &'tcx hir::ForeignItem) {}
fn visit_ty(&mut self, _: &'tcx hir::Ty) { }
fn nested_visit_map<'this>(&'this mut self) -> hir::intravisit::NestedVisitorMap<'this, 'tcx> {
hir::intravisit::NestedVisitorMap::OnlyBodies(&self.cx.tcx.hir)
}
}