servo/components/style/data.rs
2016-12-31 12:17:13 +01:00

576 lines
18 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Per-node data used in style calculation.
#![deny(missing_docs)]
use dom::TElement;
use properties::ComputedValues;
use properties::longhands::display::computed_value as display;
use restyle_hints::{RESTYLE_LATER_SIBLINGS, RestyleHint};
use rule_tree::StrongRuleNode;
use selector_parser::{PseudoElement, RestyleDamage, Snapshot};
use std::collections::HashMap;
use std::fmt;
use std::hash::BuildHasherDefault;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::sync::Arc;
use stylist::Stylist;
use thread_state;
/// The structure that represents the result of style computation. This is
/// effectively a tuple of rules and computed values, that is, the rule node,
/// and the result of computing that rule node's rules, the `ComputedValues`.
#[derive(Clone)]
pub struct ComputedStyle {
/// The rule node representing the ordered list of rules matched for this
/// node.
pub rules: StrongRuleNode,
/// The computed values for each property obtained by cascading the
/// matched rules.
pub values: Arc<ComputedValues>,
}
impl ComputedStyle {
/// Trivially construct a new `ComputedStyle`.
pub fn new(rules: StrongRuleNode, values: Arc<ComputedValues>) -> Self {
ComputedStyle {
rules: rules,
values: values,
}
}
}
// We manually implement Debug for ComputedStyle so tht we can avoid the verbose
// stringification of ComputedValues for normal logging.
impl fmt::Debug for ComputedStyle {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "ComputedStyle {{ rules: {:?}, values: {{..}} }}", self.rules)
}
}
type PseudoStylesInner = HashMap<PseudoElement, ComputedStyle,
BuildHasherDefault<::fnv::FnvHasher>>;
/// A set of styles for a given element's pseudo-elements.
///
/// This is a map from pseudo-element to `ComputedStyle`.
///
/// TODO(emilio): This should probably be a small array by default instead of a
/// full-blown `HashMap`.
#[derive(Clone, Debug)]
pub struct PseudoStyles(PseudoStylesInner);
impl PseudoStyles {
/// Construct an empty set of `PseudoStyles`.
pub fn empty() -> Self {
PseudoStyles(HashMap::with_hasher(Default::default()))
}
}
impl Deref for PseudoStyles {
type Target = PseudoStylesInner;
fn deref(&self) -> &Self::Target { &self.0 }
}
impl DerefMut for PseudoStyles {
fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 }
}
/// The styles associated with a node, including the styles for any
/// pseudo-elements.
#[derive(Clone, Debug)]
pub struct ElementStyles {
/// The element's style.
pub primary: ComputedStyle,
/// The map of styles for the element's pseudos.
pub pseudos: PseudoStyles,
}
impl ElementStyles {
/// Trivially construct a new `ElementStyles`.
pub fn new(primary: ComputedStyle) -> Self {
ElementStyles {
primary: primary,
pseudos: PseudoStyles::empty(),
}
}
/// Whether this element `display` value is `none`.
pub fn is_display_none(&self) -> bool {
self.primary.values.get_box().clone_display() == display::T::none
}
}
/// Enum to describe the different requirements that a restyle hint may impose
/// on its descendants.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum DescendantRestyleHint {
/// This hint does not require any descendants to be restyled.
Empty,
/// This hint requires direct children to be restyled.
Children,
/// This hint requires all descendants to be restyled.
Descendants,
}
impl DescendantRestyleHint {
/// Propagates this descendant behavior to a child element.
fn propagate(self) -> Self {
use self::DescendantRestyleHint::*;
if self == Descendants {
Descendants
} else {
Empty
}
}
fn union(self, other: Self) -> Self {
use self::DescendantRestyleHint::*;
if self == Descendants || other == Descendants {
Descendants
} else if self == Children || other == Children {
Children
} else {
Empty
}
}
}
/// Restyle hint for storing on ElementData. We use a separate representation
/// to provide more type safety while propagating restyle hints down the tree.
#[derive(Clone, Debug)]
pub struct StoredRestyleHint {
/// Whether this element should be restyled during the traversal.
pub restyle_self: bool,
/// Whether the descendants of this element need to be restyled.
pub descendants: DescendantRestyleHint,
}
impl StoredRestyleHint {
/// Propagates this restyle hint to a child element.
pub fn propagate(&self) -> Self {
StoredRestyleHint {
restyle_self: self.descendants != DescendantRestyleHint::Empty,
descendants: self.descendants.propagate(),
}
}
/// Creates an empty `StoredRestyleHint`.
pub fn empty() -> Self {
StoredRestyleHint {
restyle_self: false,
descendants: DescendantRestyleHint::Empty,
}
}
/// Creates a restyle hint that forces the whole subtree to be restyled,
/// including the element.
pub fn subtree() -> Self {
StoredRestyleHint {
restyle_self: true,
descendants: DescendantRestyleHint::Descendants,
}
}
/// Whether the restyle hint is empty (nothing requires to be restyled).
pub fn is_empty(&self) -> bool {
!self.restyle_self && self.descendants == DescendantRestyleHint::Empty
}
/// Insert another restyle hint, effectively resulting in the union of both.
pub fn insert(&mut self, other: &Self) {
self.restyle_self = self.restyle_self || other.restyle_self;
self.descendants = self.descendants.union(other.descendants);
}
}
impl Default for StoredRestyleHint {
fn default() -> Self {
StoredRestyleHint {
restyle_self: false,
descendants: DescendantRestyleHint::Empty,
}
}
}
impl From<RestyleHint> for StoredRestyleHint {
fn from(hint: RestyleHint) -> Self {
use restyle_hints::*;
use self::DescendantRestyleHint::*;
debug_assert!(!hint.contains(RESTYLE_LATER_SIBLINGS), "Caller should apply sibling hints");
StoredRestyleHint {
restyle_self: hint.contains(RESTYLE_SELF),
descendants: if hint.contains(RESTYLE_DESCENDANTS) { Descendants } else { Empty },
}
}
}
static NO_SNAPSHOT: Option<Snapshot> = None;
/// We really want to store an Option<Snapshot> here, but we can't drop Gecko
/// Snapshots off-main-thread. So we make a convenient little wrapper to provide
/// the semantics of Option<Snapshot>, while deferring the actual drop.
#[derive(Debug)]
pub struct SnapshotOption {
snapshot: Option<Snapshot>,
destroyed: bool,
}
impl SnapshotOption {
/// An empty snapshot.
pub fn empty() -> Self {
SnapshotOption {
snapshot: None,
destroyed: false,
}
}
/// Destroy this snapshot.
pub fn destroy(&mut self) {
self.destroyed = true;
debug_assert!(self.is_none());
}
/// Ensure a snapshot is available and return a mutable reference to it.
pub fn ensure<F: FnOnce() -> Snapshot>(&mut self, create: F) -> &mut Snapshot {
debug_assert!(thread_state::get().is_layout());
if self.is_none() {
self.snapshot = Some(create());
self.destroyed = false;
}
self.snapshot.as_mut().unwrap()
}
}
impl Deref for SnapshotOption {
type Target = Option<Snapshot>;
fn deref(&self) -> &Option<Snapshot> {
if self.destroyed {
&NO_SNAPSHOT
} else {
&self.snapshot
}
}
}
/// Transient data used by the restyle algorithm. This structure is instantiated
/// either before or during restyle traversal, and is cleared at the end of node
/// processing.
///
/// TODO(emilio): Tell bholley to document this more accurately. I can try (and
/// the fields are certainly mostly self-explanatory), but it's better if he
/// does, to avoid any misconception.
#[derive(Debug)]
#[allow(missing_docs)]
pub struct RestyleData {
pub styles: ElementStyles,
pub hint: StoredRestyleHint,
pub recascade: bool,
pub damage: RestyleDamage,
pub snapshot: SnapshotOption,
}
impl RestyleData {
fn new(styles: ElementStyles) -> Self {
RestyleData {
styles: styles,
hint: StoredRestyleHint::default(),
recascade: false,
damage: RestyleDamage::empty(),
snapshot: SnapshotOption::empty(),
}
}
/// Expands the snapshot (if any) into a restyle hint. Returns true if later
/// siblings must be restyled.
pub fn expand_snapshot<E: TElement>(&mut self, element: E, stylist: &Stylist) -> bool {
if self.snapshot.is_none() {
return false;
}
// Compute the hint.
let state = element.get_state();
let mut hint = stylist.compute_restyle_hint(&element,
self.snapshot.as_ref().unwrap(),
state);
// If the hint includes a directive for later siblings, strip it out and
// notify the caller to modify the base hint for future siblings.
let later_siblings = hint.contains(RESTYLE_LATER_SIBLINGS);
hint.remove(RESTYLE_LATER_SIBLINGS);
// Insert the hint.
self.hint.insert(&hint.into());
// Destroy the snapshot.
self.snapshot.destroy();
later_siblings
}
/// Return if the element style's are up to date.
pub fn has_current_styles(&self) -> bool {
!(self.hint.restyle_self || self.recascade || self.snapshot.is_some())
}
/// Returns the element styles.
pub fn styles(&self) -> &ElementStyles {
&self.styles
}
/// Returns a mutable reference to the element styles.
pub fn styles_mut(&mut self) -> &mut ElementStyles {
&mut self.styles
}
fn finish_styling(&mut self, styles: ElementStyles, damage: RestyleDamage) {
debug_assert!(!self.has_current_styles());
debug_assert!(self.snapshot.is_none(), "Traversal should have expanded snapshots");
self.styles = styles;
self.damage |= damage;
// The hint and recascade bits get cleared by the traversal code. This
// is a bit confusing, and we should simplify it when we separate matching
// from cascading.
}
}
/// Style system data associated with a node.
///
/// In Gecko, this hangs directly off a node, but is dropped when the frame takes
/// ownership of the computed style data.
///
/// In Servo, this is embedded inside of layout data, which itself hangs directly
/// off the node. Servo does not currently implement ownership transfer of the
/// computed style data to the frame.
///
/// In both cases, it is wrapped inside an AtomicRefCell to ensure thread
/// safety.
#[derive(Debug)]
pub enum ElementData {
/// This is the first styling for this element.
Initial(Option<ElementStyles>),
/// This element has been restyled already, and all the relevant data is
/// inside the `RestyleData`.
Restyle(RestyleData),
/// This element has already been restyled, and only keeps its styles
/// around.
Persistent(ElementStyles),
}
impl ElementData {
/// Trivially construct an ElementData.
pub fn new(existing: Option<ElementStyles>) -> Self {
if let Some(s) = existing {
ElementData::Persistent(s)
} else {
ElementData::Initial(None)
}
}
/// Return whether this data is from an initial restyle.
pub fn is_initial(&self) -> bool {
match *self {
ElementData::Initial(_) => true,
_ => false,
}
}
/// Return whether this data is from an element that hasn't been restyled.
pub fn is_unstyled_initial(&self) -> bool {
match *self {
ElementData::Initial(None) => true,
_ => false,
}
}
/// Return whether this data is from an element whose first restyle has just
/// been done.
pub fn is_styled_initial(&self) -> bool {
match *self {
ElementData::Initial(Some(_)) => true,
_ => false,
}
}
/// Returns true if this element is being restyled and has been styled
/// before.
pub fn is_restyle(&self) -> bool {
match *self {
ElementData::Restyle(_) => true,
_ => false,
}
}
/// Returns the `RestyleData` if it exists.
pub fn as_restyle(&self) -> Option<&RestyleData> {
match *self {
ElementData::Restyle(ref x) => Some(x),
_ => None,
}
}
/// Returns a mutable reference to the RestyleData, if it exists.
pub fn as_restyle_mut(&mut self) -> Option<&mut RestyleData> {
match *self {
ElementData::Restyle(ref mut x) => Some(x),
_ => None,
}
}
/// Returns whether this element's style is persistent.
pub fn is_persistent(&self) -> bool {
match *self {
ElementData::Persistent(_) => true,
_ => false,
}
}
/// Sets an element up for restyle, returning None for an unstyled element.
pub fn restyle(&mut self) -> Option<&mut RestyleData> {
if self.is_unstyled_initial() {
return None;
}
// If the caller never consumed the initial style, make sure that the
// change hint represents the delta from zero, rather than a delta from
// a previous style that was never observed. Ideally this shouldn't
// happen, but we handle it for robustness' sake.
let damage_override = if self.is_styled_initial() {
RestyleDamage::rebuild_and_reflow()
} else {
RestyleDamage::empty()
};
if !self.is_restyle() {
// Play some tricks to reshape the enum without cloning ElementStyles.
let old = mem::replace(self, ElementData::new(None));
let styles = match old {
ElementData::Initial(Some(s)) => s,
ElementData::Persistent(s) => s,
_ => unreachable!()
};
*self = ElementData::Restyle(RestyleData::new(styles));
}
let restyle = self.as_restyle_mut().unwrap();
restyle.damage |= damage_override;
Some(restyle)
}
/// Converts Initial and Restyle to Persistent. No-op for Persistent.
pub fn persist(&mut self) {
if self.is_persistent() {
return;
}
// Play some tricks to reshape the enum without cloning ElementStyles.
let old = mem::replace(self, ElementData::new(None));
let styles = match old {
ElementData::Initial(i) => i.unwrap(),
ElementData::Restyle(r) => r.styles,
ElementData::Persistent(_) => unreachable!(),
};
*self = ElementData::Persistent(styles);
}
/// Return the restyle damage (if any).
pub fn damage(&self) -> RestyleDamage {
use self::ElementData::*;
match *self {
Initial(ref s) => {
debug_assert!(s.is_some());
RestyleDamage::rebuild_and_reflow()
},
Restyle(ref r) => {
debug_assert!(r.has_current_styles());
r.damage
},
Persistent(_) => RestyleDamage::empty(),
}
}
/// A version of the above, with the assertions replaced with warnings to
/// be more robust in corner-cases. This will go away soon.
#[cfg(feature = "gecko")]
pub fn damage_sloppy(&self) -> RestyleDamage {
use self::ElementData::*;
match *self {
Initial(ref s) => {
if s.is_none() {
error!("Accessing damage on unstyled element");
}
RestyleDamage::rebuild_and_reflow()
},
Restyle(ref r) => {
if !r.has_current_styles() {
error!("Accessing damage on dirty element");
}
r.damage
},
Persistent(_) => RestyleDamage::empty(),
}
}
/// Returns true if this element's style is up-to-date and has no potential
/// invalidation.
pub fn has_current_styles(&self) -> bool {
use self::ElementData::*;
match *self {
Initial(ref x) => x.is_some(),
Restyle(ref x) => x.has_current_styles(),
Persistent(_) => true,
}
}
/// Get the element styles, if any.
pub fn get_styles(&self) -> Option<&ElementStyles> {
use self::ElementData::*;
match *self {
Initial(ref x) => x.as_ref(),
Restyle(ref x) => Some(x.styles()),
Persistent(ref x) => Some(x),
}
}
/// Get the element styles. Panic if the element has never been styled.
pub fn styles(&self) -> &ElementStyles {
self.get_styles().expect("Calling styles() on unstyled ElementData")
}
/// Get a mutable reference to the element styles, if any.
pub fn get_styles_mut(&mut self) -> Option<&mut ElementStyles> {
use self::ElementData::*;
match *self {
Initial(ref mut x) => x.as_mut(),
Restyle(ref mut x) => Some(x.styles_mut()),
Persistent(ref mut x) => Some(x),
}
}
/// Get a mutable reference to the element styles. Panic if the element has
/// never been styled.
pub fn styles_mut(&mut self) -> &mut ElementStyles {
self.get_styles_mut().expect("Calling styles_mut() on unstyled ElementData")
}
/// Finishes the styling of the element, effectively setting the style in
/// the data.
pub fn finish_styling(&mut self, styles: ElementStyles, damage: RestyleDamage) {
use self::ElementData::*;
match *self {
Initial(ref mut x) => {
debug_assert!(x.is_none());
debug_assert!(damage == RestyleDamage::rebuild_and_reflow());
*x = Some(styles);
},
Restyle(ref mut x) => x.finish_styling(styles, damage),
Persistent(_) => panic!("Calling finish_styling on Persistent ElementData"),
};
}
}