servo/components/style/traversal.rs
Martin Robinson 364235ac0c Include animations and transitions in the cascade
Instead of applying animations and transitions to styled elements,
include them in the cascade. This allows them to interact properly with
things like font-size and !important rules.
2020-06-09 11:41:07 +02:00

858 lines
31 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Traversing the DOM tree; the bloom filter.
use crate::context::{ElementCascadeInputs, SharedStyleContext, StyleContext};
use crate::data::{ElementData, ElementStyles};
use crate::dom::{NodeInfo, OpaqueNode, TElement, TNode};
use crate::invalidation::element::restyle_hints::RestyleHint;
use crate::matching::{ChildCascadeRequirement, MatchMethods};
use crate::selector_parser::PseudoElement;
use crate::sharing::StyleSharingTarget;
use crate::style_resolver::{PseudoElementResolution, StyleResolverForElement};
use crate::stylist::RuleInclusion;
use crate::traversal_flags::TraversalFlags;
use selectors::NthIndexCache;
use smallvec::SmallVec;
/// A per-traversal-level chunk of data. This is sent down by the traversal, and
/// currently only holds the dom depth for the bloom filter.
///
/// NB: Keep this as small as possible, please!
#[derive(Clone, Debug)]
pub struct PerLevelTraversalData {
/// The current dom depth.
///
/// This is kept with cooperation from the traversal code and the bloom
/// filter.
pub current_dom_depth: usize,
}
/// We use this structure, rather than just returning a boolean from pre_traverse,
/// to enfore that callers process root invalidations before starting the traversal.
pub struct PreTraverseToken<E: TElement>(Option<E>);
impl<E: TElement> PreTraverseToken<E> {
/// Whether we should traverse children.
pub fn should_traverse(&self) -> bool {
self.0.is_some()
}
/// Returns the traversal root for the current traversal.
pub(crate) fn traversal_root(self) -> Option<E> {
self.0
}
}
/// A global variable holding the state of
/// `is_servo_nonincremental_layout()`.
/// See [#22854](https://github.com/servo/servo/issues/22854).
#[cfg(feature = "servo")]
pub static IS_SERVO_NONINCREMENTAL_LAYOUT: std::sync::atomic::AtomicBool =
std::sync::atomic::AtomicBool::new(false);
#[cfg(feature = "servo")]
#[inline]
fn is_servo_nonincremental_layout() -> bool {
use std::sync::atomic::Ordering;
IS_SERVO_NONINCREMENTAL_LAYOUT.load(Ordering::Relaxed)
}
#[cfg(not(feature = "servo"))]
#[inline]
fn is_servo_nonincremental_layout() -> bool {
false
}
/// A DOM Traversal trait, that is used to generically implement styling for
/// Gecko and Servo.
pub trait DomTraversal<E: TElement>: Sync {
/// Process `node` on the way down, before its children have been processed.
///
/// The callback is invoked for each child node that should be processed by
/// the traversal.
fn process_preorder<F>(
&self,
data: &PerLevelTraversalData,
context: &mut StyleContext<E>,
node: E::ConcreteNode,
note_child: F,
) where
F: FnMut(E::ConcreteNode);
/// Process `node` on the way up, after its children have been processed.
///
/// This is only executed if `needs_postorder_traversal` returns true.
fn process_postorder(&self, contect: &mut StyleContext<E>, node: E::ConcreteNode);
/// Boolean that specifies whether a bottom up traversal should be
/// performed.
///
/// If it's false, then process_postorder has no effect at all.
fn needs_postorder_traversal() -> bool {
true
}
/// Handles the postorder step of the traversal, if it exists, by bubbling
/// up the parent chain.
///
/// If we are the last child that finished processing, recursively process
/// our parent. Else, stop. Also, stop at the root.
///
/// Thus, if we start with all the leaves of a tree, we end up traversing
/// the whole tree bottom-up because each parent will be processed exactly
/// once (by the last child that finishes processing).
///
/// The only communication between siblings is that they both
/// fetch-and-subtract the parent's children count. This makes it safe to
/// call durign the parallel traversal.
fn handle_postorder_traversal(
&self,
context: &mut StyleContext<E>,
root: OpaqueNode,
mut node: E::ConcreteNode,
children_to_process: isize,
) {
// If the postorder step is a no-op, don't bother.
if !Self::needs_postorder_traversal() {
return;
}
if children_to_process == 0 {
// We are a leaf. Walk up the chain.
loop {
self.process_postorder(context, node);
if node.opaque() == root {
break;
}
let parent = node.traversal_parent().unwrap();
let remaining = parent.did_process_child();
if remaining != 0 {
// The parent has other unprocessed descendants. We only
// perform postorder processing after the last descendant
// has been processed.
break;
}
node = parent.as_node();
}
} else {
// Otherwise record the number of children to process when the time
// comes.
node.as_element()
.unwrap()
.store_children_to_process(children_to_process);
}
}
/// Style invalidations happen when traversing from a parent to its children.
/// However, this mechanism can't handle style invalidations on the root. As
/// such, we have a pre-traversal step to handle that part and determine whether
/// a full traversal is needed.
fn pre_traverse(root: E, shared_context: &SharedStyleContext) -> PreTraverseToken<E> {
let traversal_flags = shared_context.traversal_flags;
let mut data = root.mutate_data();
let mut data = data.as_mut().map(|d| &mut **d);
if let Some(ref mut data) = data {
if !traversal_flags.for_animation_only() {
// Invalidate our style, and that of our siblings and
// descendants as needed.
let invalidation_result = data.invalidate_style_if_needed(
root,
shared_context,
None,
&mut NthIndexCache::default(),
);
if invalidation_result.has_invalidated_siblings() {
let actual_root = root.traversal_parent().expect(
"How in the world can you invalidate \
siblings without a parent?",
);
unsafe { actual_root.set_dirty_descendants() }
return PreTraverseToken(Some(actual_root));
}
}
}
let should_traverse =
Self::element_needs_traversal(root, traversal_flags, data.as_mut().map(|d| &**d));
// If we're not going to traverse at all, we may need to clear some state
// off the root (which would normally be done at the end of recalc_style_at).
if !should_traverse && data.is_some() {
clear_state_after_traversing(root, data.unwrap(), traversal_flags);
}
PreTraverseToken(if should_traverse { Some(root) } else { None })
}
/// Returns true if traversal should visit a text node. The style system
/// never processes text nodes, but Servo overrides this to visit them for
/// flow construction when necessary.
fn text_node_needs_traversal(node: E::ConcreteNode, _parent_data: &ElementData) -> bool {
debug_assert!(node.is_text_node());
false
}
/// Returns true if traversal is needed for the given element and subtree.
fn element_needs_traversal(
el: E,
traversal_flags: TraversalFlags,
data: Option<&ElementData>,
) -> bool {
debug!(
"element_needs_traversal({:?}, {:?}, {:?})",
el, traversal_flags, data
);
// In case of animation-only traversal we need to traverse the element
// if the element has animation only dirty descendants bit,
// animation-only restyle hint or recascade.
if traversal_flags.for_animation_only() {
return data.map_or(false, |d| d.has_styles()) &&
(el.has_animation_only_dirty_descendants() ||
data.as_ref()
.unwrap()
.hint
.has_animation_hint_or_recascade());
}
// Non-incremental layout visits every node.
if is_servo_nonincremental_layout() {
return true;
}
// Unwrap the data.
let data = match data {
Some(d) if d.has_styles() => d,
_ => return true,
};
// If the dirty descendants bit is set, we need to traverse no matter
// what. Skip examining the ElementData.
if el.has_dirty_descendants() {
return true;
}
// If we have a restyle hint or need to recascade, we need to visit the
// element.
//
// Note that this is different than checking has_current_styles_for_traversal(),
// since that can return true even if we have a restyle hint indicating
// that the element's descendants (but not necessarily the element) need
// restyling.
if !data.hint.is_empty() {
return true;
}
// Servo uses the post-order traversal for flow construction, so we need
// to traverse any element with damage so that we can perform fixup /
// reconstruction on our way back up the tree.
if cfg!(feature = "servo") && !data.damage.is_empty() {
return true;
}
trace!("{:?} doesn't need traversal", el);
false
}
/// Returns true if we want to cull this subtree from the travesal.
fn should_cull_subtree(
&self,
context: &mut StyleContext<E>,
parent: E,
parent_data: &ElementData,
) -> bool {
debug_assert!(
parent.has_current_styles_for_traversal(parent_data, context.shared.traversal_flags)
);
// If the parent computed display:none, we don't style the subtree.
if parent_data.styles.is_display_none() {
debug!("Parent {:?} is display:none, culling traversal", parent);
return true;
}
return false;
}
/// Return the shared style context common to all worker threads.
fn shared_context(&self) -> &SharedStyleContext;
}
/// Manually resolve style by sequentially walking up the parent chain to the
/// first styled Element, ignoring pending restyles. The resolved style is made
/// available via a callback, and can be dropped by the time this function
/// returns in the display:none subtree case.
pub fn resolve_style<E>(
context: &mut StyleContext<E>,
element: E,
rule_inclusion: RuleInclusion,
pseudo: Option<&PseudoElement>,
) -> ElementStyles
where
E: TElement,
{
debug_assert!(
rule_inclusion == RuleInclusion::DefaultOnly ||
pseudo.map_or(false, |p| p.is_before_or_after()) ||
element.borrow_data().map_or(true, |d| !d.has_styles()),
"Why are we here?"
);
let mut ancestors_requiring_style_resolution = SmallVec::<[E; 16]>::new();
// Clear the bloom filter, just in case the caller is reusing TLS.
context.thread_local.bloom_filter.clear();
let mut style = None;
let mut ancestor = element.traversal_parent();
while let Some(current) = ancestor {
if rule_inclusion == RuleInclusion::All {
if let Some(data) = current.borrow_data() {
if let Some(ancestor_style) = data.styles.get_primary() {
style = Some(ancestor_style.clone());
break;
}
}
}
ancestors_requiring_style_resolution.push(current);
ancestor = current.traversal_parent();
}
if let Some(ancestor) = ancestor {
context.thread_local.bloom_filter.rebuild(ancestor);
context.thread_local.bloom_filter.push(ancestor);
}
let mut layout_parent_style = style.clone();
while let Some(style) = layout_parent_style.take() {
if !style.is_display_contents() {
layout_parent_style = Some(style);
break;
}
ancestor = ancestor.unwrap().traversal_parent();
layout_parent_style = ancestor.map(|a| a.borrow_data().unwrap().styles.primary().clone());
}
for ancestor in ancestors_requiring_style_resolution.iter().rev() {
context.thread_local.bloom_filter.assert_complete(*ancestor);
// Actually `PseudoElementResolution` doesn't really matter here.
// (but it does matter below!).
let primary_style = StyleResolverForElement::new(
*ancestor,
context,
rule_inclusion,
PseudoElementResolution::IfApplicable,
)
.resolve_primary_style(
style.as_ref().map(|s| &**s),
layout_parent_style.as_ref().map(|s| &**s),
);
let is_display_contents = primary_style.style().is_display_contents();
style = Some(primary_style.style.0);
if !is_display_contents {
layout_parent_style = style.clone();
}
context.thread_local.bloom_filter.push(*ancestor);
}
context.thread_local.bloom_filter.assert_complete(element);
StyleResolverForElement::new(
element,
context,
rule_inclusion,
PseudoElementResolution::Force,
)
.resolve_style(
style.as_ref().map(|s| &**s),
layout_parent_style.as_ref().map(|s| &**s),
)
.into()
}
/// Calculates the style for a single node.
#[inline]
#[allow(unsafe_code)]
pub fn recalc_style_at<E, D, F>(
traversal: &D,
traversal_data: &PerLevelTraversalData,
context: &mut StyleContext<E>,
element: E,
data: &mut ElementData,
note_child: F,
) where
E: TElement,
D: DomTraversal<E>,
F: FnMut(E::ConcreteNode),
{
use std::cmp;
let flags = context.shared.traversal_flags;
let is_initial_style = !data.has_styles();
context.thread_local.statistics.elements_traversed += 1;
debug_assert!(
flags.intersects(TraversalFlags::AnimationOnly) ||
!element.has_snapshot() ||
element.handled_snapshot(),
"Should've handled snapshots here already"
);
let compute_self = !element.has_current_styles_for_traversal(data, flags);
debug!(
"recalc_style_at: {:?} (compute_self={:?}, \
dirty_descendants={:?}, data={:?})",
element,
compute_self,
element.has_dirty_descendants(),
data
);
let mut child_cascade_requirement = ChildCascadeRequirement::CanSkipCascade;
// Compute style for this element if necessary.
if compute_self {
child_cascade_requirement = compute_style(traversal_data, context, element, data);
if element.is_in_native_anonymous_subtree() {
// We must always cascade native anonymous subtrees, since they
// may have pseudo-elements underneath that would inherit from the
// closest non-NAC ancestor instead of us.
child_cascade_requirement = cmp::max(
child_cascade_requirement,
ChildCascadeRequirement::MustCascadeChildren,
);
}
// If we're restyling this element to display:none, throw away all style
// data in the subtree, notify the caller to early-return.
if data.styles.is_display_none() {
debug!(
"{:?} style is display:none - clearing data from descendants.",
element
);
unsafe {
clear_descendant_data(element);
}
}
// Inform any paint worklets of changed style, to speculatively
// evaluate the worklet code. In the case that the size hasn't changed,
// this will result in increased concurrency between script and layout.
notify_paint_worklet(context, data);
} else {
debug_assert!(data.has_styles());
data.set_traversed_without_styling();
}
// Now that matching and cascading is done, clear the bits corresponding to
// those operations and compute the propagated restyle hint (unless we're
// not processing invalidations, in which case don't need to propagate it
// and must avoid clearing it).
debug_assert!(
flags.for_animation_only() || !data.hint.has_animation_hint(),
"animation restyle hint should be handled during \
animation-only restyles"
);
let propagated_hint = data.hint.propagate(&flags);
trace!(
"propagated_hint={:?}, cascade_requirement={:?}, \
is_display_none={:?}, implementing_pseudo={:?}",
propagated_hint,
child_cascade_requirement,
data.styles.is_display_none(),
element.implemented_pseudo_element()
);
debug_assert!(
element.has_current_styles_for_traversal(data, flags),
"Should have computed style or haven't yet valid computed \
style in case of animation-only restyle"
);
let has_dirty_descendants_for_this_restyle = if flags.for_animation_only() {
element.has_animation_only_dirty_descendants()
} else {
element.has_dirty_descendants()
};
// Before examining each child individually, try to prove that our children
// don't need style processing. They need processing if any of the following
// conditions hold:
//
// * We have the dirty descendants bit.
// * We're propagating a restyle hint.
// * We can't skip the cascade.
// * This is a servo non-incremental traversal.
//
// Additionally, there are a few scenarios where we avoid traversing the
// subtree even if descendant styles are out of date. These cases are
// enumerated in should_cull_subtree().
let mut traverse_children = has_dirty_descendants_for_this_restyle ||
!propagated_hint.is_empty() ||
!child_cascade_requirement.can_skip_cascade() ||
is_servo_nonincremental_layout();
traverse_children =
traverse_children && !traversal.should_cull_subtree(context, element, &data);
// Examine our children, and enqueue the appropriate ones for traversal.
if traverse_children {
note_children::<E, D, F>(
context,
element,
data,
propagated_hint,
child_cascade_requirement,
is_initial_style,
note_child,
);
}
// FIXME(bholley): Make these assertions pass for servo.
if cfg!(feature = "gecko") && cfg!(debug_assertions) && data.styles.is_display_none() {
debug_assert!(!element.has_dirty_descendants());
debug_assert!(!element.has_animation_only_dirty_descendants());
}
clear_state_after_traversing(element, data, flags);
}
fn clear_state_after_traversing<E>(element: E, data: &mut ElementData, flags: TraversalFlags)
where
E: TElement,
{
if flags.intersects(TraversalFlags::FinalAnimationTraversal) {
debug_assert!(flags.for_animation_only());
data.clear_restyle_flags_and_damage();
unsafe {
element.unset_animation_only_dirty_descendants();
}
}
}
fn compute_style<E>(
traversal_data: &PerLevelTraversalData,
context: &mut StyleContext<E>,
element: E,
data: &mut ElementData,
) -> ChildCascadeRequirement
where
E: TElement,
{
use crate::data::RestyleKind::*;
context.thread_local.statistics.elements_styled += 1;
let kind = data.restyle_kind(context.shared);
debug!("compute_style: {:?} (kind={:?})", element, kind);
if data.has_styles() {
data.set_restyled();
}
let mut important_rules_changed = false;
let new_styles = match kind {
MatchAndCascade => {
debug_assert!(
!context.shared.traversal_flags.for_animation_only(),
"MatchAndCascade shouldn't be processed during \
animation-only traversal"
);
// Ensure the bloom filter is up to date.
context
.thread_local
.bloom_filter
.insert_parents_recovering(element, traversal_data.current_dom_depth);
context.thread_local.bloom_filter.assert_complete(element);
debug_assert_eq!(
context.thread_local.bloom_filter.matching_depth(),
traversal_data.current_dom_depth
);
// This is only relevant for animations as of right now.
important_rules_changed = true;
let mut target = StyleSharingTarget::new(element);
// Now that our bloom filter is set up, try the style sharing
// cache.
match target.share_style_if_possible(context) {
Some(shared_styles) => {
context.thread_local.statistics.styles_shared += 1;
shared_styles
},
None => {
context.thread_local.statistics.elements_matched += 1;
// Perform the matching and cascading.
let new_styles = {
let mut resolver = StyleResolverForElement::new(
element,
context,
RuleInclusion::All,
PseudoElementResolution::IfApplicable,
);
resolver.resolve_style_with_default_parents()
};
context.thread_local.sharing_cache.insert_if_possible(
&element,
&new_styles.primary,
Some(&mut target),
traversal_data.current_dom_depth,
&context.shared,
);
new_styles
},
}
},
CascadeWithReplacements(flags) => {
// Skipping full matching, load cascade inputs from previous values.
let mut cascade_inputs = ElementCascadeInputs::new_from_element_data(data);
important_rules_changed = element.replace_rules(flags, context, &mut cascade_inputs);
let mut resolver = StyleResolverForElement::new(
element,
context,
RuleInclusion::All,
PseudoElementResolution::IfApplicable,
);
resolver.cascade_styles_with_default_parents(cascade_inputs)
},
CascadeOnly => {
// Skipping full matching, load cascade inputs from previous values.
let cascade_inputs = ElementCascadeInputs::new_from_element_data(data);
let new_styles = {
let mut resolver = StyleResolverForElement::new(
element,
context,
RuleInclusion::All,
PseudoElementResolution::IfApplicable,
);
resolver.cascade_styles_with_default_parents(cascade_inputs)
};
// Insert into the cache, but only if this style isn't reused from a
// sibling or cousin. Otherwise, recascading a bunch of identical
// elements would unnecessarily flood the cache with identical entries.
//
// This is analogous to the obvious "don't insert an element that just
// got a hit in the style sharing cache" behavior in the MatchAndCascade
// handling above.
//
// Note that, for the MatchAndCascade path, we still insert elements that
// shared styles via the rule node, because we know that there's something
// different about them that caused them to miss the sharing cache before
// selector matching. If we didn't, we would still end up with the same
// number of eventual styles, but would potentially miss out on various
// opportunities for skipping selector matching, which could hurt
// performance.
if !new_styles.primary.reused_via_rule_node {
context.thread_local.sharing_cache.insert_if_possible(
&element,
&new_styles.primary,
None,
traversal_data.current_dom_depth,
&context.shared,
);
}
new_styles
},
};
element.finish_restyle(context, data, new_styles, important_rules_changed)
}
#[cfg(feature = "servo-layout-2013")]
fn notify_paint_worklet<E>(context: &StyleContext<E>, data: &ElementData)
where
E: TElement,
{
use crate::values::generics::image::Image;
use style_traits::ToCss;
// We speculatively evaluate any paint worklets during styling.
// This allows us to run paint worklets in parallel with style and layout.
// Note that this is wasted effort if the size of the node has
// changed, but in may cases it won't have.
if let Some(ref values) = data.styles.primary {
for image in &values.get_background().background_image.0 {
let (name, arguments) = match *image {
Image::PaintWorklet(ref worklet) => (&worklet.name, &worklet.arguments),
_ => continue,
};
let painter = match context.shared.registered_speculative_painters.get(name) {
Some(painter) => painter,
None => continue,
};
let properties = painter
.properties()
.iter()
.filter_map(|(name, id)| id.as_shorthand().err().map(|id| (name, id)))
.map(|(name, id)| (name.clone(), values.computed_value_to_string(id)))
.collect();
let arguments = arguments
.iter()
.map(|argument| argument.to_css_string())
.collect();
debug!("Notifying paint worklet {}.", painter.name());
painter.speculatively_draw_a_paint_image(properties, arguments);
}
}
}
#[cfg(not(feature = "servo-layout-2013"))]
fn notify_paint_worklet<E>(_context: &StyleContext<E>, _data: &ElementData)
where
E: TElement,
{
// The CSS paint API is Servo-only at the moment
}
fn note_children<E, D, F>(
context: &mut StyleContext<E>,
element: E,
data: &ElementData,
propagated_hint: RestyleHint,
cascade_requirement: ChildCascadeRequirement,
is_initial_style: bool,
mut note_child: F,
) where
E: TElement,
D: DomTraversal<E>,
F: FnMut(E::ConcreteNode),
{
trace!("note_children: {:?}", element);
let flags = context.shared.traversal_flags;
// Loop over all the traversal children.
for child_node in element.traversal_children() {
let child = match child_node.as_element() {
Some(el) => el,
None => {
if is_servo_nonincremental_layout() ||
D::text_node_needs_traversal(child_node, data)
{
note_child(child_node);
}
continue;
},
};
let mut child_data = child.mutate_data();
let mut child_data = child_data.as_mut().map(|d| &mut **d);
trace!(
" > {:?} -> {:?} + {:?}, pseudo: {:?}",
child,
child_data.as_ref().map(|d| d.hint),
propagated_hint,
child.implemented_pseudo_element()
);
if let Some(ref mut child_data) = child_data {
let mut child_hint = propagated_hint;
match cascade_requirement {
ChildCascadeRequirement::CanSkipCascade => {},
ChildCascadeRequirement::MustCascadeDescendants => {
child_hint |= RestyleHint::RECASCADE_SELF | RestyleHint::RECASCADE_DESCENDANTS;
},
ChildCascadeRequirement::MustCascadeChildrenIfInheritResetStyle => {
use crate::computed_value_flags::ComputedValueFlags;
if child_data
.styles
.primary()
.flags
.contains(ComputedValueFlags::INHERITS_RESET_STYLE)
{
child_hint |= RestyleHint::RECASCADE_SELF;
}
},
ChildCascadeRequirement::MustCascadeChildren => {
child_hint |= RestyleHint::RECASCADE_SELF;
},
}
child_data.hint.insert(child_hint);
// Handle element snapshots and invalidation of descendants and siblings
// as needed.
//
// NB: This will be a no-op if there's no snapshot.
child_data.invalidate_style_if_needed(
child,
&context.shared,
Some(&context.thread_local.stack_limit_checker),
&mut context.thread_local.nth_index_cache,
);
}
if D::element_needs_traversal(child, flags, child_data.map(|d| &*d)) {
note_child(child_node);
// Set the dirty descendants bit on the parent as needed, so that we
// can find elements during the post-traversal.
//
// Note that these bits may be cleared again at the bottom of
// recalc_style_at if requested by the caller.
if !is_initial_style {
if flags.for_animation_only() {
unsafe {
element.set_animation_only_dirty_descendants();
}
} else {
unsafe {
element.set_dirty_descendants();
}
}
}
}
}
}
/// Clear style data for all the subtree under `root` (but not for root itself).
///
/// We use a list to avoid unbounded recursion, which we need to avoid in the
/// parallel traversal because the rayon stacks are small.
pub unsafe fn clear_descendant_data<E>(root: E)
where
E: TElement,
{
let mut parents = SmallVec::<[E; 32]>::new();
parents.push(root);
while let Some(p) = parents.pop() {
for kid in p.traversal_children() {
if let Some(kid) = kid.as_element() {
// We maintain an invariant that, if an element has data, all its
// ancestors have data as well.
//
// By consequence, any element without data has no descendants with
// data.
if kid.has_data() {
kid.clear_data();
parents.push(kid);
}
}
}
}
// Make sure not to clear NODE_NEEDS_FRAME on the root.
root.clear_descendant_bits();
}