mirror of
https://github.com/servo/servo.git
synced 2025-06-17 12:54:28 +00:00
Transition events are not yet supported, and the only animatable properties are `top`, `right`, `bottom`, and `left`. However, all other features of transitions are supported. There are no automated tests at present because I'm not sure how best to test it, but three manual tests are included.
116 lines
2.6 KiB
Rust
116 lines
2.6 KiB
Rust
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
//! Parametric Bézier curves.
|
|
//!
|
|
//! This is based on `WebCore/platform/graphics/UnitBezier.h` in WebKit.
|
|
|
|
use geom::point::Point2D;
|
|
use std::num::Float;
|
|
|
|
const NEWTON_METHOD_ITERATIONS: u8 = 8;
|
|
|
|
pub struct Bezier {
|
|
ax: f64,
|
|
bx: f64,
|
|
cx: f64,
|
|
ay: f64,
|
|
by: f64,
|
|
cy: f64,
|
|
}
|
|
|
|
impl Bezier {
|
|
#[inline]
|
|
pub fn new(p1: Point2D<f64>, p2: Point2D<f64>) -> Bezier {
|
|
let cx = 3.0 * p1.x;
|
|
let bx = 3.0 * (p2.x - p1.x) - cx;
|
|
|
|
let cy = 3.0 * p1.y;
|
|
let by = 3.0 * (p2.y - p1.y) - cy;
|
|
|
|
Bezier {
|
|
ax: 1.0 - cx - bx,
|
|
bx: bx,
|
|
cx: cx,
|
|
ay: 1.0 - cy - by,
|
|
by: by,
|
|
cy: cy,
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn sample_curve_x(&self, t: f64) -> f64 {
|
|
// ax * t^3 + bx * t^2 + cx * t
|
|
((self.ax * t + self.bx) * t + self.cx) * t
|
|
}
|
|
|
|
#[inline]
|
|
fn sample_curve_y(&self, t: f64) -> f64 {
|
|
((self.ay * t + self.by) * t + self.cy) * t
|
|
}
|
|
|
|
#[inline]
|
|
fn sample_curve_derivative_x(&self, t: f64) -> f64 {
|
|
(3.0 * self.ax * t + 2.0 * self.bx) * t + self.cx
|
|
}
|
|
|
|
#[inline]
|
|
fn solve_curve_x(&self, x: f64, epsilon: f64) -> f64 {
|
|
// Fast path: Use Newton's method.
|
|
let mut t = x;
|
|
for _ in range(0, NEWTON_METHOD_ITERATIONS) {
|
|
let x2 = self.sample_curve_x(t);
|
|
if x2.approx_eq(x, epsilon) {
|
|
return t
|
|
}
|
|
let dx = self.sample_curve_derivative_x(t);
|
|
if dx.approx_eq(0.0, 1e-6) {
|
|
break
|
|
}
|
|
t -= (x2 - x) / dx;
|
|
}
|
|
|
|
// Slow path: Use bisection.
|
|
let (mut lo, mut hi, mut t) = (0.0, 1.0, x);
|
|
|
|
if t < lo {
|
|
return lo
|
|
}
|
|
if t > hi {
|
|
return hi
|
|
}
|
|
|
|
while lo < hi {
|
|
let x2 = self.sample_curve_x(t);
|
|
if x2.approx_eq(x, epsilon) {
|
|
return t
|
|
}
|
|
if x > x2 {
|
|
lo = t
|
|
} else {
|
|
hi = t
|
|
}
|
|
t = (hi - lo) / 2.0 + lo
|
|
}
|
|
|
|
t
|
|
}
|
|
|
|
#[inline]
|
|
pub fn solve(&self, x: f64, epsilon: f64) -> f64 {
|
|
self.sample_curve_y(self.solve_curve_x(x, epsilon))
|
|
}
|
|
}
|
|
|
|
trait ApproxEq {
|
|
fn approx_eq(self, value: Self, epsilon: Self) -> bool;
|
|
}
|
|
|
|
impl ApproxEq for f64 {
|
|
#[inline]
|
|
fn approx_eq(self, value: f64, epsilon: f64) -> bool {
|
|
(self - value).abs() < epsilon
|
|
}
|
|
}
|
|
|