servo/components/compositing/surface_map.rs
Martin Robinson 1aedead955 Have BufferMap store NativeSurfaces and rename to SurfaceMap
We currently store LayerBuffers, because previously NativeSurfaces did
not record their own size. Now we can store NativeSurfaces directly,
which saves a bit of space in the surface cache and allows us to create
LayerBuffers only in the PaintTask.

This also means that instead of sending cached LayerBuffers, the
compositor can just send cached NativeSurfaces to the PaintTask.
2015-07-24 11:12:39 -07:00

163 lines
5.4 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use std::collections::HashMap;
use std::collections::hash_map::Entry::{Occupied, Vacant};
use euclid::size::Size2D;
use layers::platform::surface::{NativeDisplay, NativeSurface};
use std::hash::{Hash, Hasher};
/// This is a struct used to store surfaces when they are not in use.
/// The paint task can quickly query for a particular size of surface when it
/// needs it.
pub struct SurfaceMap {
/// A HashMap that stores the Buffers.
map: HashMap<SurfaceKey, SurfaceValue>,
/// The current amount of memory stored by the SurfaceMap's surfaces.
mem: usize,
/// The maximum allowed memory. Unused surfaces will be deleted
/// when this threshold is exceeded.
max_mem: usize,
/// A monotonically increasing counter to track how recently tile sizes were used.
counter: usize,
}
/// A key with which to store surfaces. It is based on the size of the surface.
#[derive(Eq, Copy, Clone)]
struct SurfaceKey([i32; 2]);
impl Hash for SurfaceKey {
fn hash<H: Hasher>(&self, state: &mut H) {
let SurfaceKey(ref bytes) = *self;
bytes.hash(state);
}
}
impl PartialEq for SurfaceKey {
fn eq(&self, other: &SurfaceKey) -> bool {
let SurfaceKey(s) = *self;
let SurfaceKey(o) = *other;
s[0] == o[0] && s[1] == o[1]
}
}
/// Create a key from a given size
impl SurfaceKey {
fn get(input: Size2D<i32>) -> SurfaceKey {
SurfaceKey([input.width, input.height])
}
}
/// A helper struct to keep track of surfaces in the HashMap
struct SurfaceValue {
/// An array of surfaces, all the same size
surfaces: Vec<NativeSurface>,
/// The counter when this size was last requested
last_action: usize,
}
impl SurfaceMap {
// Creates a new SurfaceMap with a given surface limit.
pub fn new(max_mem: usize) -> SurfaceMap {
SurfaceMap {
map: HashMap::new(),
mem: 0,
max_mem: max_mem,
counter: 0,
}
}
pub fn insert_surfaces(&mut self, display: &NativeDisplay, surfaces: Vec<NativeSurface>) {
for surface in surfaces.into_iter() {
self.insert(display, surface);
}
}
/// Insert a new buffer into the map.
pub fn insert(&mut self, display: &NativeDisplay, mut new_surface: NativeSurface) {
let new_key = SurfaceKey::get(new_surface.get_size());
// If all our surfaces are the same size and we're already at our
// memory limit, no need to store this new buffer; just let it drop.
let new_total_memory_usage = self.mem + new_surface.get_memory_usage();
if new_total_memory_usage > self.max_mem && self.map.len() == 1 &&
self.map.contains_key(&new_key) {
new_surface.destroy(display);
return;
}
self.mem = new_total_memory_usage;
new_surface.mark_wont_leak();
// use lazy insertion function to prevent unnecessary allocation
let counter = &self.counter;
match self.map.entry(new_key) {
Occupied(entry) => {
entry.into_mut().surfaces.push(new_surface);
}
Vacant(entry) => {
entry.insert(SurfaceValue {
surfaces: vec!(new_surface),
last_action: *counter,
});
}
}
let mut opt_key: Option<SurfaceKey> = None;
while self.mem > self.max_mem {
let old_key = match opt_key {
Some(key) => key,
None => {
match self.map.iter().min_by(|&(_, x)| x.last_action) {
Some((k, _)) => *k,
None => panic!("SurfaceMap: tried to delete with no elements in map"),
}
}
};
if {
let list = &mut self.map.get_mut(&old_key).unwrap().surfaces;
let mut condemned_surface = list.pop().take().unwrap();
self.mem -= condemned_surface.get_memory_usage();
condemned_surface.destroy(display);
list.is_empty()
}
{ // then
self.map.remove(&old_key); // Don't store empty vectors!
opt_key = None;
} else {
opt_key = Some(old_key);
}
}
}
// Try to find a buffer for the given size.
pub fn find(&mut self, size: Size2D<i32>) -> Option<NativeSurface> {
let mut flag = false; // True if key needs to be popped after retrieval.
let key = SurfaceKey::get(size);
let ret = match self.map.get_mut(&key) {
Some(ref mut surface_val) => {
surface_val.last_action = self.counter;
self.counter += 1;
let surface = surface_val.surfaces.pop().take().unwrap();
self.mem -= surface.get_memory_usage();
if surface_val.surfaces.is_empty() {
flag = true;
}
Some(surface)
}
None => None,
};
if flag {
self.map.remove(&key); // Don't store empty vectors!
}
ret
}
pub fn mem(&self) -> usize {
self.mem
}
}