servo/components/util/bloom.rs
Patrick Walton 2a790d06dd Use Gecko's simpler Bloom filter instead of one based on hash
stretching.

This preserves the usage of the Bloom filter throughout style recalc,
but the implementation is rewritten. Provides a 15% improvement on
Guardians of the Galaxy.
2014-10-10 17:02:27 -07:00

337 lines
7.8 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Simple counting bloom filters.
use string_cache::{Atom, Namespace};
static KEY_SIZE: uint = 12;
static ARRAY_SIZE: uint = 1 << KEY_SIZE;
static KEY_MASK: u32 = (1 << KEY_SIZE) - 1;
static KEY_SHIFT: uint = 16;
/// A counting Bloom filter with 8-bit counters. For now we assume
/// that having two hash functions is enough, but we may revisit that
/// decision later.
///
/// The filter uses an array with 2**KeySize entries.
///
/// Assuming a well-distributed hash function, a Bloom filter with
/// array size M containing N elements and
/// using k hash function has expected false positive rate exactly
///
/// $ (1 - (1 - 1/M)^{kN})^k $
///
/// because each array slot has a
///
/// $ (1 - 1/M)^{kN} $
///
/// chance of being 0, and the expected false positive rate is the
/// probability that all of the k hash functions will hit a nonzero
/// slot.
///
/// For reasonable assumptions (M large, kN large, which should both
/// hold if we're worried about false positives) about M and kN this
/// becomes approximately
///
/// $$ (1 - \exp(-kN/M))^k $$
///
/// For our special case of k == 2, that's $(1 - \exp(-2N/M))^2$,
/// or in other words
///
/// $$ N/M = -0.5 * \ln(1 - \sqrt(r)) $$
///
/// where r is the false positive rate. This can be used to compute
/// the desired KeySize for a given load N and false positive rate r.
///
/// If N/M is assumed small, then the false positive rate can
/// further be approximated as 4*N^2/M^2. So increasing KeySize by
/// 1, which doubles M, reduces the false positive rate by about a
/// factor of 4, and a false positive rate of 1% corresponds to
/// about M/N == 20.
///
/// What this means in practice is that for a few hundred keys using a
/// KeySize of 12 gives false positive rates on the order of 0.25-4%.
///
/// Similarly, using a KeySize of 10 would lead to a 4% false
/// positive rate for N == 100 and to quite bad false positive
/// rates for larger N.
pub struct BloomFilter {
counters: [u8, ..ARRAY_SIZE],
}
impl Clone for BloomFilter {
#[inline]
fn clone(&self) -> BloomFilter {
BloomFilter {
counters: self.counters,
}
}
}
impl BloomFilter {
/// Creates a new bloom filter.
#[inline]
pub fn new() -> BloomFilter {
BloomFilter {
counters: [0, ..ARRAY_SIZE],
}
}
#[inline]
fn first_slot(&self, hash: u32) -> &u8 {
&self.counters[hash1(hash) as uint]
}
#[inline]
fn first_mut_slot(&mut self, hash: u32) -> &mut u8 {
&mut self.counters[hash1(hash) as uint]
}
#[inline]
fn second_slot(&self, hash: u32) -> &u8 {
&self.counters[hash2(hash) as uint]
}
#[inline]
fn second_mut_slot(&mut self, hash: u32) -> &mut u8 {
&mut self.counters[hash2(hash) as uint]
}
#[inline]
pub fn clear(&mut self) {
self.counters = [0, ..ARRAY_SIZE]
}
#[inline]
fn insert_hash(&mut self, hash: u32) {
{
let slot1 = self.first_mut_slot(hash);
if !full(slot1) {
*slot1 += 1
}
}
{
let slot2 = self.second_mut_slot(hash);
if !full(slot2) {
*slot2 += 1
}
}
}
/// Inserts an item into the bloom filter.
#[inline]
pub fn insert<T:BloomHash>(&mut self, elem: &T) {
self.insert_hash(elem.bloom_hash())
}
#[inline]
fn remove_hash(&mut self, hash: u32) {
{
let slot1 = self.first_mut_slot(hash);
if !full(slot1) {
*slot1 -= 1
}
}
{
let slot2 = self.second_mut_slot(hash);
if !full(slot2) {
*slot2 -= 1
}
}
}
/// Removes an item from the bloom filter.
#[inline]
pub fn remove<T:BloomHash>(&mut self, elem: &T) {
self.remove_hash(elem.bloom_hash())
}
#[inline]
fn might_contain_hash(&self, hash: u32) -> bool {
*self.first_slot(hash) != 0 && *self.second_slot(hash) != 0
}
/// Check whether the filter might contain an item. This can
/// sometimes return true even if the item is not in the filter,
/// but will never return false for items that are actually in the
/// filter.
#[inline]
pub fn might_contain<T:BloomHash>(&self, elem: &T) -> bool {
self.might_contain_hash(elem.bloom_hash())
}
}
pub trait BloomHash {
fn bloom_hash(&self) -> u32;
}
impl BloomHash for int {
#[inline]
fn bloom_hash(&self) -> u32 {
((*self >> 32) ^ *self) as u32
}
}
impl BloomHash for uint {
#[inline]
fn bloom_hash(&self) -> u32 {
((*self >> 32) ^ *self) as u32
}
}
impl BloomHash for Atom {
#[inline]
fn bloom_hash(&self) -> u32 {
((self.data >> 32) ^ self.data) as u32
}
}
impl BloomHash for Namespace {
#[inline]
fn bloom_hash(&self) -> u32 {
let Namespace(ref atom) = *self;
atom.bloom_hash()
}
}
#[inline]
fn full(slot: &u8) -> bool {
*slot == 0xff
}
#[inline]
fn hash1(hash: u32) -> u32 {
hash & KEY_MASK
}
#[inline]
fn hash2(hash: u32) -> u32 {
(hash >> KEY_SHIFT) & KEY_MASK
}
#[test]
fn create_and_insert_some_stuff() {
use std::iter::range;
let mut bf = BloomFilter::new();
for i in range(0u, 1000) {
bf.insert(&i);
}
for i in range(0u, 1000) {
assert!(bf.might_contain(&i));
}
let false_positives =
range(1001u, 2000).filter(|i| bf.might_contain(i)).count();
assert!(false_positives < 10) // 1%.
for i in range(0u, 100) {
bf.remove(&i);
}
for i in range(100u, 1000) {
assert!(bf.might_contain(&i));
}
let false_positives = range(0u, 100).filter(|i| bf.might_contain(i)).count();
assert!(false_positives < 2); // 2%.
bf.clear();
for i in range(0u, 2000) {
assert!(!bf.might_contain(&i));
}
}
#[cfg(test)]
mod bench {
extern crate test;
use std::hash::hash;
use std::iter;
use super::BloomFilter;
#[bench]
fn create_insert_1000_remove_100_lookup_100(b: &mut test::Bencher) {
b.iter(|| {
let mut bf = BloomFilter::new();
for i in iter::range(0u, 1000) {
bf.insert(&i);
}
for i in iter::range(0u, 100) {
bf.remove(&i);
}
for i in iter::range(100u, 200) {
test::black_box(bf.might_contain(&i));
}
});
}
#[bench]
fn might_contain(b: &mut test::Bencher) {
let mut bf = BloomFilter::new();
for i in iter::range(0u, 1000) {
bf.insert(&i);
}
let mut i = 0u;
b.bench_n(1000, |b| {
b.iter(|| {
test::black_box(bf.might_contain(&i));
i += 1;
});
});
}
#[bench]
fn insert(b: &mut test::Bencher) {
let mut bf = BloomFilter::new();
b.bench_n(1000, |b| {
let mut i = 0u;
b.iter(|| {
test::black_box(bf.insert(&i));
i += 1;
});
});
}
#[bench]
fn remove(b: &mut test::Bencher) {
let mut bf = BloomFilter::new();
for i in range(0u, 1000) {
bf.insert(&i);
}
b.bench_n(1000, |b| {
let mut i = 0u;
b.iter(|| {
bf.remove(&i);
i += 1;
});
});
test::black_box(bf.might_contain(&0u));
}
#[bench]
fn hash_a_uint(b: &mut test::Bencher) {
let mut i = 0u;
b.iter(|| {
test::black_box(hash(&i));
i += 1;
})
}
}