servo/components/style/rule_tree/mod.rs
Emilio Cobos Álvarez c52bae1923 style: Remove an invalid assert.
This assert was wrong. The assert may fire if we resurrect the node from a
different thread and insert a kid fast enough.

We allow resurrecting nodes (bumping the nodes from zero to one) to avoid
allocation churn.

In particular, while the thread dropping the node gets to read the children (so
after the fetch_sub from the refcount, but before the read() of the children),
another thread could plausibly bumped the refcount back, and added a children.

This is a very big edge case of course, but I'm kinda sad I hadn't realized
before.

Differential Revision: https://phabricator.services.mozilla.com/D63286
2020-04-16 16:35:07 +02:00

1860 lines
64 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
#![allow(unsafe_code)]
//! The rule tree.
use crate::applicable_declarations::ApplicableDeclarationList;
#[cfg(feature = "gecko")]
use crate::gecko::selector_parser::PseudoElement;
use crate::hash::{self, FxHashMap};
use crate::properties::{Importance, LonghandIdSet, PropertyDeclarationBlock};
use crate::shared_lock::{Locked, SharedRwLockReadGuard, StylesheetGuards};
use crate::stylesheets::{Origin, StyleRule};
use crate::thread_state;
use malloc_size_of::{MallocShallowSizeOf, MallocSizeOf, MallocSizeOfOps};
use parking_lot::RwLock;
use servo_arc::{Arc, ArcBorrow, ArcUnion, ArcUnionBorrow};
use smallvec::SmallVec;
use std::io::{self, Write};
use std::mem;
use std::ptr;
use std::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
/// The rule tree, the structure servo uses to preserve the results of selector
/// matching.
///
/// This is organized as a tree of rules. When a node matches a set of rules,
/// they're inserted in order in the tree, starting with the less specific one.
///
/// When a rule is inserted in the tree, other elements may share the path up to
/// a given rule. If that's the case, we don't duplicate child nodes, but share
/// them.
///
/// When the rule node refcount drops to zero, it doesn't get freed. It gets
/// instead put into a free list, and it is potentially GC'd after a while in a
/// single-threaded fashion.
///
/// That way, a rule node that represents a likely-to-match-again rule (like a
/// :hover rule) can be reused if we haven't GC'd it yet.
///
/// See the discussion at https://github.com/servo/servo/pull/15562 and the IRC
/// logs at http://logs.glob.uno/?c=mozilla%23servo&s=3+Apr+2017&e=3+Apr+2017
/// logs from http://logs.glob.uno/?c=mozilla%23servo&s=3+Apr+2017&e=3+Apr+2017#c644094
/// to se a discussion about the different memory orderings used here.
#[derive(Debug)]
pub struct RuleTree {
root: StrongRuleNode,
}
impl Drop for RuleTree {
fn drop(&mut self) {
// GC the rule tree.
unsafe {
self.gc();
}
// After the GC, the free list should be empty.
debug_assert_eq!(
self.root.get().next_free.load(Ordering::Relaxed),
FREE_LIST_SENTINEL
);
// Remove the sentinel. This indicates that GCs will no longer occur.
// Any further drops of StrongRuleNodes must occur on the main thread,
// and will trigger synchronous dropping of the Rule nodes.
self.root
.get()
.next_free
.store(ptr::null_mut(), Ordering::Relaxed);
}
}
impl MallocSizeOf for RuleTree {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
let mut n = 0;
let mut stack = SmallVec::<[_; 32]>::new();
stack.push(self.root.downgrade());
while let Some(node) = stack.pop() {
n += unsafe { ops.malloc_size_of(node.ptr()) };
let children = unsafe { (*node.ptr()).children.read() };
children.shallow_size_of(ops);
children.each(|c| stack.push(c.clone()));
}
n
}
}
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
struct ChildKey(CascadeLevel, ptr::NonNull<()>);
unsafe impl Send for ChildKey {}
unsafe impl Sync for ChildKey {}
/// A style source for the rule node. It can either be a CSS style rule or a
/// declaration block.
///
/// Note that, even though the declaration block from inside the style rule
/// could be enough to implement the rule tree, keeping the whole rule provides
/// more debuggability, and also the ability of show those selectors to
/// devtools.
#[derive(Clone, Debug)]
pub struct StyleSource(ArcUnion<Locked<StyleRule>, Locked<PropertyDeclarationBlock>>);
impl PartialEq for StyleSource {
fn eq(&self, other: &Self) -> bool {
ArcUnion::ptr_eq(&self.0, &other.0)
}
}
impl StyleSource {
/// Creates a StyleSource from a StyleRule.
pub fn from_rule(rule: Arc<Locked<StyleRule>>) -> Self {
StyleSource(ArcUnion::from_first(rule))
}
#[inline]
fn key(&self) -> ptr::NonNull<()> {
self.0.ptr()
}
/// Creates a StyleSource from a PropertyDeclarationBlock.
pub fn from_declarations(decls: Arc<Locked<PropertyDeclarationBlock>>) -> Self {
StyleSource(ArcUnion::from_second(decls))
}
fn dump<W: Write>(&self, guard: &SharedRwLockReadGuard, writer: &mut W) {
if let Some(ref rule) = self.0.as_first() {
let rule = rule.read_with(guard);
let _ = write!(writer, "{:?}", rule.selectors);
}
let _ = write!(writer, " -> {:?}", self.read(guard).declarations());
}
/// Read the style source guard, and obtain thus read access to the
/// underlying property declaration block.
#[inline]
pub fn read<'a>(&'a self, guard: &'a SharedRwLockReadGuard) -> &'a PropertyDeclarationBlock {
let block: &Locked<PropertyDeclarationBlock> = match self.0.borrow() {
ArcUnionBorrow::First(ref rule) => &rule.get().read_with(guard).block,
ArcUnionBorrow::Second(ref block) => block.get(),
};
block.read_with(guard)
}
/// Returns the style rule if applicable, otherwise None.
pub fn as_rule(&self) -> Option<ArcBorrow<Locked<StyleRule>>> {
self.0.as_first()
}
/// Returns the declaration block if applicable, otherwise None.
pub fn as_declarations(&self) -> Option<ArcBorrow<Locked<PropertyDeclarationBlock>>> {
self.0.as_second()
}
}
/// This value exists here so a node that pushes itself to the list can know
/// that is in the free list by looking at is next pointer, and comparing it
/// with null.
///
/// The root node doesn't have a null pointer in the free list, but this value.
const FREE_LIST_SENTINEL: *mut RuleNode = 0x01 as *mut RuleNode;
/// A second sentinel value for the free list, indicating that it's locked (i.e.
/// another thread is currently adding an entry). We spin if we find this value.
const FREE_LIST_LOCKED: *mut RuleNode = 0x02 as *mut RuleNode;
/// A counter to track how many shadow root rules deep we are. This is used to
/// handle:
///
/// https://drafts.csswg.org/css-scoping/#shadow-cascading
///
/// See the static functions for the meaning of different values.
#[derive(Clone, Copy, Debug, Eq, Hash, MallocSizeOf, Ord, PartialEq, PartialOrd)]
pub struct ShadowCascadeOrder(i8);
impl ShadowCascadeOrder {
/// A level for the outermost shadow tree (the shadow tree we own, and the
/// ones from the slots we're slotted in).
#[inline]
pub fn for_outermost_shadow_tree() -> Self {
Self(-1)
}
/// A level for the element's tree.
#[inline]
fn for_same_tree() -> Self {
Self(0)
}
/// A level for the innermost containing tree (the one closest to the
/// element).
#[inline]
pub fn for_innermost_containing_tree() -> Self {
Self(1)
}
/// Decrement the level, moving inwards. We should only move inwards if
/// we're traversing slots.
#[inline]
pub fn dec(&mut self) {
debug_assert!(self.0 < 0);
self.0 = self.0.saturating_sub(1);
}
/// The level, moving inwards. We should only move inwards if we're
/// traversing slots.
#[inline]
pub fn inc(&mut self) {
debug_assert_ne!(self.0, -1);
self.0 = self.0.saturating_add(1);
}
}
impl std::ops::Neg for ShadowCascadeOrder {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self(self.0.neg())
}
}
impl RuleTree {
/// Construct a new rule tree.
pub fn new() -> Self {
RuleTree {
root: StrongRuleNode::new(Box::new(RuleNode::root())),
}
}
/// Get the root rule node.
pub fn root(&self) -> &StrongRuleNode {
&self.root
}
fn dump<W: Write>(&self, guards: &StylesheetGuards, writer: &mut W) {
let _ = writeln!(writer, " + RuleTree");
self.root.get().dump(guards, writer, 0);
}
/// Dump the rule tree to stdout.
pub fn dump_stdout(&self, guards: &StylesheetGuards) {
let mut stdout = io::stdout();
self.dump(guards, &mut stdout);
}
/// Inserts the given rules, that must be in proper order by specifity, and
/// returns the corresponding rule node representing the last inserted one.
///
/// !important rules are detected and inserted into the appropriate position
/// in the rule tree. This allows selector matching to ignore importance,
/// while still maintaining the appropriate cascade order in the rule tree.
pub fn insert_ordered_rules_with_important<'a, I>(
&self,
iter: I,
guards: &StylesheetGuards,
) -> StrongRuleNode
where
I: Iterator<Item = (StyleSource, CascadeLevel)>,
{
use self::CascadeLevel::*;
let mut current = self.root.clone();
let mut found_important = false;
let mut important_author = SmallVec::<[(StyleSource, ShadowCascadeOrder); 4]>::new();
let mut important_user = SmallVec::<[StyleSource; 4]>::new();
let mut important_ua = SmallVec::<[StyleSource; 4]>::new();
let mut transition = None;
for (source, level) in iter {
debug_assert!(!level.is_important(), "Important levels handled internally");
let any_important = {
let pdb = source.read(level.guard(guards));
pdb.any_important()
};
if any_important {
found_important = true;
match level {
AuthorNormal {
shadow_cascade_order,
} => {
important_author.push((source.clone(), shadow_cascade_order));
},
UANormal => important_ua.push(source.clone()),
UserNormal => important_user.push(source.clone()),
_ => {},
};
}
// We don't optimize out empty rules, even though we could.
//
// Inspector relies on every rule being inserted in the normal level
// at least once, in order to return the rules with the correct
// specificity order.
//
// TODO(emilio): If we want to apply these optimizations without
// breaking inspector's expectations, we'd need to run
// selector-matching again at the inspector's request. That may or
// may not be a better trade-off.
if matches!(level, Transitions) && found_important {
// There can be at most one transition, and it will come at
// the end of the iterator. Stash it and apply it after
// !important rules.
debug_assert!(transition.is_none());
transition = Some(source);
} else {
current = current.ensure_child(self.root.downgrade(), source, level);
}
}
// Early-return in the common case of no !important declarations.
if !found_important {
return current;
}
// Insert important declarations, in order of increasing importance,
// followed by any transition rule.
//
// Inner shadow wins over same-tree, which wins over outer-shadow.
//
// We negate the shadow cascade order to preserve the right PartialOrd
// behavior.
if !important_author.is_empty() &&
important_author.first().unwrap().1 != important_author.last().unwrap().1
{
// We only need to sort if the important rules come from
// different trees, but we need this sort to be stable.
//
// FIXME(emilio): This could maybe be smarter, probably by chunking
// the important rules while inserting, and iterating the outer
// chunks in reverse order.
//
// That is, if we have rules with levels like: -1 -1 -1 0 0 0 1 1 1,
// we're really only sorting the chunks, while keeping elements
// inside the same chunk already sorted. Seems like we could try to
// keep a SmallVec-of-SmallVecs with the chunks and just iterate the
// outer in reverse.
important_author.sort_by_key(|&(_, order)| -order);
}
for (source, shadow_cascade_order) in important_author.drain(..) {
current = current.ensure_child(
self.root.downgrade(),
source,
AuthorImportant {
shadow_cascade_order: -shadow_cascade_order,
},
);
}
for source in important_user.drain(..) {
current = current.ensure_child(self.root.downgrade(), source, UserImportant);
}
for source in important_ua.drain(..) {
current = current.ensure_child(self.root.downgrade(), source, UAImportant);
}
if let Some(source) = transition {
current = current.ensure_child(self.root.downgrade(), source, Transitions);
}
current
}
/// Given a list of applicable declarations, insert the rules and return the
/// corresponding rule node.
pub fn compute_rule_node(
&self,
applicable_declarations: &mut ApplicableDeclarationList,
guards: &StylesheetGuards,
) -> StrongRuleNode {
self.insert_ordered_rules_with_important(
applicable_declarations.drain(..).map(|d| d.for_rule_tree()),
guards,
)
}
/// Insert the given rules, that must be in proper order by specifity, and
/// return the corresponding rule node representing the last inserted one.
pub fn insert_ordered_rules<'a, I>(&self, iter: I) -> StrongRuleNode
where
I: Iterator<Item = (StyleSource, CascadeLevel)>,
{
self.insert_ordered_rules_from(self.root.clone(), iter)
}
fn insert_ordered_rules_from<'a, I>(&self, from: StrongRuleNode, iter: I) -> StrongRuleNode
where
I: Iterator<Item = (StyleSource, CascadeLevel)>,
{
let mut current = from;
for (source, level) in iter {
current = current.ensure_child(self.root.downgrade(), source, level);
}
current
}
/// This can only be called when no other threads is accessing this tree.
pub unsafe fn gc(&self) {
self.root.gc();
}
/// This can only be called when no other threads is accessing this tree.
pub unsafe fn maybe_gc(&self) {
#[cfg(debug_assertions)]
self.maybe_dump_stats();
self.root.maybe_gc();
}
#[cfg(debug_assertions)]
fn maybe_dump_stats(&self) {
use itertools::Itertools;
use std::cell::Cell;
use std::time::{Duration, Instant};
if !log_enabled!(log::Level::Trace) {
return;
}
const RULE_TREE_STATS_INTERVAL: Duration = Duration::from_secs(2);
thread_local! {
pub static LAST_STATS: Cell<Instant> = Cell::new(Instant::now());
};
let should_dump = LAST_STATS.with(|s| {
let now = Instant::now();
if now.duration_since(s.get()) < RULE_TREE_STATS_INTERVAL {
return false;
}
s.set(now);
true
});
if !should_dump {
return;
}
let mut children_count = FxHashMap::default();
let mut stack = SmallVec::<[_; 32]>::new();
stack.push(self.root.clone());
while let Some(node) = stack.pop() {
let children = node.get().children.read();
*children_count.entry(children.len()).or_insert(0) += 1;
children.each(|c| stack.push(c.upgrade()));
}
trace!("Rule tree stats:");
let counts = children_count.keys().sorted();
for count in counts {
trace!(" {} - {}", count, children_count[count]);
}
}
/// Replaces a rule in a given level (if present) for another rule.
///
/// Returns the resulting node that represents the new path, or None if
/// the old path is still valid.
pub fn update_rule_at_level(
&self,
level: CascadeLevel,
pdb: Option<ArcBorrow<Locked<PropertyDeclarationBlock>>>,
path: &StrongRuleNode,
guards: &StylesheetGuards,
important_rules_changed: &mut bool,
) -> Option<StrongRuleNode> {
// TODO(emilio): Being smarter with lifetimes we could avoid a bit of
// the refcount churn.
let mut current = path.clone();
*important_rules_changed = false;
// First walk up until the first less-or-equally specific rule.
let mut children = SmallVec::<[_; 10]>::new();
while current.get().level > level {
children.push((
current.get().source.as_ref().unwrap().clone(),
current.get().level,
));
current = current.parent().unwrap().clone();
}
// Then remove the one at the level we want to replace, if any.
//
// NOTE: Here we assume that only one rule can be at the level we're
// replacing.
//
// This is certainly true for HTML style attribute rules, animations and
// transitions, but could not be so for SMIL animations, which we'd need
// to special-case (isn't hard, it's just about removing the `if` and
// special cases, and replacing them for a `while` loop, avoiding the
// optimizations).
if current.get().level == level {
*important_rules_changed |= level.is_important();
let current_decls = current.get().source.as_ref().unwrap().as_declarations();
// If the only rule at the level we're replacing is exactly the
// same as `pdb`, we're done, and `path` is still valid.
if let (Some(ref pdb), Some(ref current_decls)) = (pdb, current_decls) {
// If the only rule at the level we're replacing is exactly the
// same as `pdb`, we're done, and `path` is still valid.
//
// TODO(emilio): Another potential optimization is the one where
// we can just replace the rule at that level for `pdb`, and
// then we don't need to re-create the children, and `path` is
// also equally valid. This is less likely, and would require an
// in-place mutation of the source, which is, at best, fiddly,
// so let's skip it for now.
let is_here_already = ArcBorrow::ptr_eq(pdb, current_decls);
if is_here_already {
debug!("Picking the fast path in rule replacement");
return None;
}
}
if current_decls.is_some() {
current = current.parent().unwrap().clone();
}
}
// Insert the rule if it's relevant at this level in the cascade.
//
// These optimizations are likely to be important, because the levels
// where replacements apply (style and animations) tend to trigger
// pretty bad styling cases already.
if let Some(pdb) = pdb {
if level.is_important() {
if pdb.read_with(level.guard(guards)).any_important() {
current = current.ensure_child(
self.root.downgrade(),
StyleSource::from_declarations(pdb.clone_arc()),
level,
);
*important_rules_changed = true;
}
} else {
if pdb.read_with(level.guard(guards)).any_normal() {
current = current.ensure_child(
self.root.downgrade(),
StyleSource::from_declarations(pdb.clone_arc()),
level,
);
}
}
}
// Now the rule is in the relevant place, push the children as
// necessary.
let rule = self.insert_ordered_rules_from(current, children.drain(..).rev());
Some(rule)
}
/// Returns new rule nodes without Transitions level rule.
pub fn remove_transition_rule_if_applicable(&self, path: &StrongRuleNode) -> StrongRuleNode {
// Return a clone if there is no transition level.
if path.cascade_level() != CascadeLevel::Transitions {
return path.clone();
}
path.parent().unwrap().clone()
}
/// Returns new rule node without rules from declarative animations.
pub fn remove_animation_rules(&self, path: &StrongRuleNode) -> StrongRuleNode {
// Return a clone if there are no animation rules.
if !path.has_animation_or_transition_rules() {
return path.clone();
}
let iter = path
.self_and_ancestors()
.take_while(|node| node.cascade_level() >= CascadeLevel::SMILOverride);
let mut last = path;
let mut children = SmallVec::<[_; 10]>::new();
for node in iter {
if !node.cascade_level().is_animation() {
children.push((
node.get().source.as_ref().unwrap().clone(),
node.cascade_level(),
));
}
last = node;
}
let rule = self
.insert_ordered_rules_from(last.parent().unwrap().clone(), children.drain(..).rev());
rule
}
/// Returns new rule node by adding animation rules at transition level.
/// The additional rules must be appropriate for the transition
/// level of the cascade, which is the highest level of the cascade.
/// (This is the case for one current caller, the cover rule used
/// for CSS transitions.)
pub fn add_animation_rules_at_transition_level(
&self,
path: &StrongRuleNode,
pdb: Arc<Locked<PropertyDeclarationBlock>>,
guards: &StylesheetGuards,
) -> StrongRuleNode {
let mut dummy = false;
self.update_rule_at_level(
CascadeLevel::Transitions,
Some(pdb.borrow_arc()),
path,
guards,
&mut dummy,
)
.expect("Should return a valid rule node")
}
}
/// The number of RuleNodes added to the free list before we will consider
/// doing a GC when calling maybe_gc(). (The value is copied from Gecko,
/// where it likely did not result from a rigorous performance analysis.)
const RULE_TREE_GC_INTERVAL: usize = 300;
/// The cascade level these rules are relevant at, as per[1][2][3].
///
/// Presentational hints for SVG and HTML are in the "author-level
/// zero-specificity" level, that is, right after user rules, and before author
/// rules.
///
/// The order of variants declared here is significant, and must be in
/// _ascending_ order of precedence.
///
/// See also [4] for the Shadow DOM bits. We rely on the invariant that rules
/// from outside the tree the element is in can't affect the element.
///
/// The opposite is not true (i.e., :host and ::slotted) from an "inner" shadow
/// tree may affect an element connected to the document or an "outer" shadow
/// tree.
///
/// [1]: https://drafts.csswg.org/css-cascade/#cascade-origin
/// [2]: https://drafts.csswg.org/css-cascade/#preshint
/// [3]: https://html.spec.whatwg.org/multipage/#presentational-hints
/// [4]: https://drafts.csswg.org/css-scoping/#shadow-cascading
#[repr(u8)]
#[derive(Clone, Copy, Debug, Eq, Hash, MallocSizeOf, PartialEq, PartialOrd)]
pub enum CascadeLevel {
/// Normal User-Agent rules.
UANormal,
/// User normal rules.
UserNormal,
/// Presentational hints.
PresHints,
/// Shadow DOM styles from author styles.
AuthorNormal {
/// The order in the shadow tree hierarchy. This number is relative to
/// the tree of the element, and thus the only invariants that need to
/// be preserved is:
///
/// * Zero is the same tree as the element that matched the rule. This
/// is important so that we can optimize style attribute insertions.
///
/// * The levels are ordered in accordance with
/// https://drafts.csswg.org/css-scoping/#shadow-cascading
shadow_cascade_order: ShadowCascadeOrder,
},
/// SVG SMIL animations.
SMILOverride,
/// CSS animations and script-generated animations.
Animations,
/// Author-supplied important rules.
AuthorImportant {
/// The order in the shadow tree hierarchy, inverted, so that PartialOrd
/// does the right thing.
shadow_cascade_order: ShadowCascadeOrder,
},
/// User important rules.
UserImportant,
/// User-agent important rules.
UAImportant,
/// Transitions
Transitions,
}
impl CascadeLevel {
/// Pack this cascade level in a single byte.
///
/// We have 10 levels, which we can represent with 4 bits, and then a
/// cascade order optionally, which we can clamp to three bits max, and
/// represent with a fourth bit for the sign.
///
/// So this creates: SOOODDDD
///
/// Where `S` is the sign of the order (one if negative, 0 otherwise), `O`
/// is the absolute value of the order, and `D`s are the discriminant.
#[inline]
pub fn to_byte_lossy(&self) -> u8 {
let (discriminant, order) = match *self {
Self::UANormal => (0, 0),
Self::UserNormal => (1, 0),
Self::PresHints => (2, 0),
Self::AuthorNormal {
shadow_cascade_order,
} => (3, shadow_cascade_order.0),
Self::SMILOverride => (4, 0),
Self::Animations => (5, 0),
Self::AuthorImportant {
shadow_cascade_order,
} => (6, shadow_cascade_order.0),
Self::UserImportant => (7, 0),
Self::UAImportant => (8, 0),
Self::Transitions => (9, 0),
};
debug_assert_eq!(discriminant & 0xf, discriminant);
if order == 0 {
return discriminant;
}
let negative = order < 0;
let value = std::cmp::min(order.abs() as u8, 0b111);
(negative as u8) << 7 | value << 4 | discriminant
}
/// Convert back from the single-byte representation of the cascade level
/// explained above.
#[inline]
pub fn from_byte(b: u8) -> Self {
let order = {
let abs = ((b & 0b01110000) >> 4) as i8;
let negative = b & 0b10000000 != 0;
if negative {
-abs
} else {
abs
}
};
let discriminant = b & 0xf;
let level = match discriminant {
0 => Self::UANormal,
1 => Self::UserNormal,
2 => Self::PresHints,
3 => {
return Self::AuthorNormal {
shadow_cascade_order: ShadowCascadeOrder(order),
}
},
4 => Self::SMILOverride,
5 => Self::Animations,
6 => {
return Self::AuthorImportant {
shadow_cascade_order: ShadowCascadeOrder(order),
}
},
7 => Self::UserImportant,
8 => Self::UAImportant,
9 => Self::Transitions,
_ => unreachable!("Didn't expect {} as a discriminant", discriminant),
};
debug_assert_eq!(order, 0, "Didn't expect an order value for {:?}", level);
level
}
/// Select a lock guard for this level
pub fn guard<'a>(&self, guards: &'a StylesheetGuards<'a>) -> &'a SharedRwLockReadGuard<'a> {
match *self {
CascadeLevel::UANormal |
CascadeLevel::UserNormal |
CascadeLevel::UserImportant |
CascadeLevel::UAImportant => guards.ua_or_user,
_ => guards.author,
}
}
/// Returns the cascade level for author important declarations from the
/// same tree as the element.
#[inline]
pub fn same_tree_author_important() -> Self {
CascadeLevel::AuthorImportant {
shadow_cascade_order: ShadowCascadeOrder::for_same_tree(),
}
}
/// Returns the cascade level for author normal declarations from the same
/// tree as the element.
#[inline]
pub fn same_tree_author_normal() -> Self {
CascadeLevel::AuthorNormal {
shadow_cascade_order: ShadowCascadeOrder::for_same_tree(),
}
}
/// Returns whether this cascade level represents important rules of some
/// sort.
#[inline]
pub fn is_important(&self) -> bool {
match *self {
CascadeLevel::AuthorImportant { .. } |
CascadeLevel::UserImportant |
CascadeLevel::UAImportant => true,
_ => false,
}
}
/// Returns the importance relevant for this rule. Pretty similar to
/// `is_important`.
#[inline]
pub fn importance(&self) -> Importance {
if self.is_important() {
Importance::Important
} else {
Importance::Normal
}
}
/// Returns the cascade origin of the rule.
#[inline]
pub fn origin(&self) -> Origin {
match *self {
CascadeLevel::UAImportant | CascadeLevel::UANormal => Origin::UserAgent,
CascadeLevel::UserImportant | CascadeLevel::UserNormal => Origin::User,
CascadeLevel::PresHints |
CascadeLevel::AuthorNormal { .. } |
CascadeLevel::AuthorImportant { .. } |
CascadeLevel::SMILOverride |
CascadeLevel::Animations |
CascadeLevel::Transitions => Origin::Author,
}
}
/// Returns whether this cascade level represents an animation rules.
#[inline]
pub fn is_animation(&self) -> bool {
match *self {
CascadeLevel::SMILOverride | CascadeLevel::Animations | CascadeLevel::Transitions => {
true
},
_ => false,
}
}
}
/// The children of a single rule node.
///
/// We optimize the case of no kids and a single child, since they're by far the
/// most common case and it'd cause a bunch of bloat for no reason.
///
/// The children remove themselves when they go away, which means that it's ok
/// for us to store weak pointers to them.
enum RuleNodeChildren {
/// There are no kids.
Empty,
/// There's just one kid. This is an extremely common case, so we don't
/// bother allocating a map for it.
One(WeakRuleNode),
/// At least at one point in time there was more than one kid (that is to
/// say, we don't bother re-allocating if children are removed dynamically).
Map(Box<FxHashMap<ChildKey, WeakRuleNode>>),
}
impl MallocShallowSizeOf for RuleNodeChildren {
fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
match *self {
RuleNodeChildren::One(..) | RuleNodeChildren::Empty => 0,
RuleNodeChildren::Map(ref m) => {
// Want to account for both the box and the hashmap.
m.shallow_size_of(ops) + (**m).shallow_size_of(ops)
},
}
}
}
impl Default for RuleNodeChildren {
fn default() -> Self {
RuleNodeChildren::Empty
}
}
impl RuleNodeChildren {
/// Executes a given function for each of the children.
fn each(&self, mut f: impl FnMut(&WeakRuleNode)) {
match *self {
RuleNodeChildren::Empty => {},
RuleNodeChildren::One(ref child) => f(child),
RuleNodeChildren::Map(ref map) => {
for (_key, kid) in map.iter() {
f(kid)
}
},
}
}
fn len(&self) -> usize {
match *self {
RuleNodeChildren::Empty => 0,
RuleNodeChildren::One(..) => 1,
RuleNodeChildren::Map(ref map) => map.len(),
}
}
fn is_empty(&self) -> bool {
self.len() == 0
}
fn get(&self, key: &ChildKey) -> Option<&WeakRuleNode> {
match *self {
RuleNodeChildren::Empty => return None,
RuleNodeChildren::One(ref kid) => {
// We're read-locked, so no need to do refcount stuff, since the
// child is only removed from the main thread, _and_ it'd need
// to write-lock us anyway.
if unsafe { (*kid.ptr()).key() } == *key {
Some(kid)
} else {
None
}
},
RuleNodeChildren::Map(ref map) => map.get(&key),
}
}
fn get_or_insert_with(
&mut self,
key: ChildKey,
get_new_child: impl FnOnce() -> StrongRuleNode,
) -> StrongRuleNode {
let existing_child_key = match *self {
RuleNodeChildren::Empty => {
let new = get_new_child();
debug_assert_eq!(new.get().key(), key);
*self = RuleNodeChildren::One(new.downgrade());
return new;
},
RuleNodeChildren::One(ref weak) => unsafe {
// We're locked necessarily, so it's fine to look at our
// weak-child without refcount-traffic.
let existing_child_key = (*weak.ptr()).key();
if existing_child_key == key {
return weak.upgrade();
}
existing_child_key
},
RuleNodeChildren::Map(ref mut map) => {
return match map.entry(key) {
hash::map::Entry::Occupied(ref occupied) => occupied.get().upgrade(),
hash::map::Entry::Vacant(vacant) => {
let new = get_new_child();
debug_assert_eq!(new.get().key(), key);
vacant.insert(new.downgrade());
new
},
};
},
};
let existing_child = match mem::replace(self, RuleNodeChildren::Empty) {
RuleNodeChildren::One(o) => o,
_ => unreachable!(),
};
// Two rule-nodes are still a not-totally-uncommon thing, so
// avoid over-allocating entries.
//
// TODO(emilio): Maybe just inline two kids too?
let mut children = Box::new(FxHashMap::with_capacity_and_hasher(2, Default::default()));
children.insert(existing_child_key, existing_child);
let new = get_new_child();
debug_assert_eq!(new.get().key(), key);
children.insert(key, new.downgrade());
*self = RuleNodeChildren::Map(children);
new
}
fn remove(&mut self, key: &ChildKey) -> Option<WeakRuleNode> {
match *self {
RuleNodeChildren::Empty => return None,
RuleNodeChildren::One(ref one) => {
if unsafe { (*one.ptr()).key() } != *key {
return None;
}
},
RuleNodeChildren::Map(ref mut multiple) => {
return multiple.remove(key);
},
}
match mem::replace(self, RuleNodeChildren::Empty) {
RuleNodeChildren::One(o) => Some(o),
_ => unreachable!(),
}
}
}
/// A node in the rule tree.
pub struct RuleNode {
/// The root node. Only the root has no root pointer, for obvious reasons.
root: Option<WeakRuleNode>,
/// The parent rule node. Only the root has no parent.
parent: Option<StrongRuleNode>,
/// The actual style source, either coming from a selector in a StyleRule,
/// or a raw property declaration block (like the style attribute).
///
/// None for the root node.
source: Option<StyleSource>,
/// The cascade level this rule is positioned at.
level: CascadeLevel,
refcount: AtomicUsize,
/// Only used for the root, stores the number of free rule nodes that are
/// around.
free_count: AtomicUsize,
/// The children of a given rule node. Children remove themselves from here
/// when they go away.
children: RwLock<RuleNodeChildren>,
/// The next item in the rule tree free list, that starts on the root node.
///
/// When this is set to null, that means that the rule tree has been torn
/// down, and GCs will no longer occur. When this happens, StrongRuleNodes
/// may only be dropped on the main thread, and teardown happens
/// synchronously.
next_free: AtomicPtr<RuleNode>,
}
unsafe impl Sync for RuleTree {}
unsafe impl Send for RuleTree {}
// On Gecko builds, hook into the leak checking machinery.
#[cfg(feature = "gecko_refcount_logging")]
mod gecko_leak_checking {
use super::RuleNode;
use std::mem::size_of;
use std::os::raw::{c_char, c_void};
extern "C" {
fn NS_LogCtor(aPtr: *mut c_void, aTypeName: *const c_char, aSize: u32);
fn NS_LogDtor(aPtr: *mut c_void, aTypeName: *const c_char, aSize: u32);
}
static NAME: &'static [u8] = b"RuleNode\0";
/// Logs the creation of a heap-allocated object to Gecko's leak-checking machinery.
pub fn log_ctor(ptr: *const RuleNode) {
let s = NAME as *const [u8] as *const u8 as *const c_char;
unsafe {
NS_LogCtor(ptr as *mut c_void, s, size_of::<RuleNode>() as u32);
}
}
/// Logs the destruction of a heap-allocated object to Gecko's leak-checking machinery.
pub fn log_dtor(ptr: *const RuleNode) {
let s = NAME as *const [u8] as *const u8 as *const c_char;
unsafe {
NS_LogDtor(ptr as *mut c_void, s, size_of::<RuleNode>() as u32);
}
}
}
#[inline(always)]
fn log_new(_ptr: *const RuleNode) {
#[cfg(feature = "gecko_refcount_logging")]
gecko_leak_checking::log_ctor(_ptr);
}
#[inline(always)]
fn log_drop(_ptr: *const RuleNode) {
#[cfg(feature = "gecko_refcount_logging")]
gecko_leak_checking::log_dtor(_ptr);
}
impl RuleNode {
fn new(
root: WeakRuleNode,
parent: StrongRuleNode,
source: StyleSource,
level: CascadeLevel,
) -> Self {
debug_assert!(root.upgrade().parent().is_none());
RuleNode {
root: Some(root),
parent: Some(parent),
source: Some(source),
level: level,
refcount: AtomicUsize::new(1),
children: Default::default(),
free_count: AtomicUsize::new(0),
next_free: AtomicPtr::new(ptr::null_mut()),
}
}
fn root() -> Self {
RuleNode {
root: None,
parent: None,
source: None,
level: CascadeLevel::UANormal,
refcount: AtomicUsize::new(1),
free_count: AtomicUsize::new(0),
children: Default::default(),
next_free: AtomicPtr::new(FREE_LIST_SENTINEL),
}
}
fn key(&self) -> ChildKey {
ChildKey(
self.level,
self.source
.as_ref()
.expect("Called key() on the root node")
.key(),
)
}
fn is_root(&self) -> bool {
self.parent.is_none()
}
fn free_count(&self) -> &AtomicUsize {
debug_assert!(self.is_root());
&self.free_count
}
/// Remove this rule node from the child list.
///
/// This is expected to be called before freeing the node from the free
/// list, on the main thread.
unsafe fn remove_from_child_list(&self) {
debug!(
"Remove from child list: {:?}, parent: {:?}",
self as *const RuleNode,
self.parent.as_ref().map(|p| p.ptr())
);
if let Some(parent) = self.parent.as_ref() {
let weak = parent.get().children.write().remove(&self.key());
assert_eq!(weak.unwrap().ptr() as *const _, self as *const _);
}
}
fn dump<W: Write>(&self, guards: &StylesheetGuards, writer: &mut W, indent: usize) {
const INDENT_INCREMENT: usize = 4;
for _ in 0..indent {
let _ = write!(writer, " ");
}
let _ = writeln!(
writer,
" - {:?} (ref: {:?}, parent: {:?})",
self as *const _,
self.refcount.load(Ordering::Relaxed),
self.parent.as_ref().map(|p| p.ptr())
);
for _ in 0..indent {
let _ = write!(writer, " ");
}
if self.source.is_some() {
self.source
.as_ref()
.unwrap()
.dump(self.level.guard(guards), writer);
} else {
if indent != 0 {
warn!("How has this happened?");
}
let _ = write!(writer, "(root)");
}
let _ = write!(writer, "\n");
self.children.read().each(|child| {
child
.upgrade()
.get()
.dump(guards, writer, indent + INDENT_INCREMENT);
});
}
}
#[derive(Clone)]
struct WeakRuleNode {
p: ptr::NonNull<RuleNode>,
}
/// A strong reference to a rule node.
#[derive(Debug, Eq, Hash, PartialEq)]
pub struct StrongRuleNode {
p: ptr::NonNull<RuleNode>,
}
unsafe impl Send for StrongRuleNode {}
unsafe impl Sync for StrongRuleNode {}
#[cfg(feature = "servo")]
malloc_size_of_is_0!(StrongRuleNode);
impl StrongRuleNode {
fn new(n: Box<RuleNode>) -> Self {
debug_assert_eq!(n.parent.is_none(), !n.source.is_some());
// TODO(emilio): Use into_raw_non_null when it's stable.
let ptr = unsafe { ptr::NonNull::new_unchecked(Box::into_raw(n)) };
log_new(ptr.as_ptr());
debug!("Creating rule node: {:p}", ptr);
StrongRuleNode::from_ptr(ptr)
}
fn from_ptr(p: ptr::NonNull<RuleNode>) -> Self {
StrongRuleNode { p }
}
fn downgrade(&self) -> WeakRuleNode {
WeakRuleNode::from_ptr(self.p)
}
/// Get the parent rule node of this rule node.
pub fn parent(&self) -> Option<&StrongRuleNode> {
self.get().parent.as_ref()
}
fn ensure_child(
&self,
root: WeakRuleNode,
source: StyleSource,
level: CascadeLevel,
) -> StrongRuleNode {
use parking_lot::RwLockUpgradableReadGuard;
debug_assert!(
self.get().level <= level,
"Should be ordered (instead {:?} > {:?}), from {:?} and {:?}",
self.get().level,
level,
self.get().source,
source,
);
let key = ChildKey(level, source.key());
let read_guard = self.get().children.upgradable_read();
if let Some(child) = read_guard.get(&key) {
return child.upgrade();
}
RwLockUpgradableReadGuard::upgrade(read_guard).get_or_insert_with(key, move || {
StrongRuleNode::new(Box::new(RuleNode::new(
root,
self.clone(),
source.clone(),
level,
)))
})
}
/// Raw pointer to the RuleNode
#[inline]
pub fn ptr(&self) -> *mut RuleNode {
self.p.as_ptr()
}
fn get(&self) -> &RuleNode {
if cfg!(debug_assertions) {
let node = unsafe { &*self.p.as_ptr() };
assert!(node.refcount.load(Ordering::Relaxed) > 0);
}
unsafe { &*self.p.as_ptr() }
}
/// Get the style source corresponding to this rule node. May return `None`
/// if it's the root node, which means that the node hasn't matched any
/// rules.
pub fn style_source(&self) -> Option<&StyleSource> {
self.get().source.as_ref()
}
/// The cascade level for this node
pub fn cascade_level(&self) -> CascadeLevel {
self.get().level
}
/// Get the importance that this rule node represents.
pub fn importance(&self) -> Importance {
self.get().level.importance()
}
/// Get an iterator for this rule node and its ancestors.
pub fn self_and_ancestors(&self) -> SelfAndAncestors {
SelfAndAncestors {
current: Some(self),
}
}
/// Returns whether this node has any child, only intended for testing
/// purposes, and called on a single-threaded fashion only.
pub unsafe fn has_children_for_testing(&self) -> bool {
!self.get().children.read().is_empty()
}
unsafe fn pop_from_free_list(&self) -> Option<WeakRuleNode> {
// NB: This can run from the root node destructor, so we can't use
// `get()`, since it asserts the refcount is bigger than zero.
let me = &*self.p.as_ptr();
debug_assert!(me.is_root());
// FIXME(#14213): Apparently the layout data can be gone from script.
//
// That's... suspicious, but it's fine if it happens for the rule tree
// case, so just don't crash in the case we're doing the final GC in
// script.
debug_assert!(
!thread_state::get().is_worker() &&
(thread_state::get().is_layout() || thread_state::get().is_script())
);
let current = me.next_free.load(Ordering::Relaxed);
if current == FREE_LIST_SENTINEL {
return None;
}
debug_assert!(
!current.is_null(),
"Multiple threads are operating on the free list at the \
same time?"
);
debug_assert!(
current != self.p.as_ptr(),
"How did the root end up in the free list?"
);
let next = (*current)
.next_free
.swap(ptr::null_mut(), Ordering::Relaxed);
debug_assert!(
!next.is_null(),
"How did a null pointer end up in the free list?"
);
me.next_free.store(next, Ordering::Relaxed);
debug!(
"Popping from free list: cur: {:?}, next: {:?}",
current, next
);
Some(WeakRuleNode::from_ptr(ptr::NonNull::new_unchecked(current)))
}
unsafe fn assert_free_list_has_no_duplicates_or_null(&self) {
assert!(cfg!(debug_assertions), "This is an expensive check!");
use crate::hash::FxHashSet;
let me = &*self.p.as_ptr();
assert!(me.is_root());
let mut current = self.p.as_ptr();
let mut seen = FxHashSet::default();
while current != FREE_LIST_SENTINEL {
let next = (*current).next_free.load(Ordering::Relaxed);
assert!(!next.is_null());
assert!(!seen.contains(&next));
seen.insert(next);
current = next;
}
}
unsafe fn gc(&self) {
if cfg!(debug_assertions) {
self.assert_free_list_has_no_duplicates_or_null();
}
// NB: This can run from the root node destructor, so we can't use
// `get()`, since it asserts the refcount is bigger than zero.
let me = &*self.p.as_ptr();
debug_assert!(me.is_root(), "Can't call GC on a non-root node!");
while let Some(weak) = self.pop_from_free_list() {
let node = &*weak.p.as_ptr();
if node.refcount.load(Ordering::Relaxed) != 0 {
// Nothing to do, the node is still alive.
continue;
}
debug!("GC'ing {:?}", weak.p.as_ptr());
node.remove_from_child_list();
log_drop(weak.p.as_ptr());
let _ = Box::from_raw(weak.p.as_ptr());
}
me.free_count().store(0, Ordering::Relaxed);
debug_assert_eq!(me.next_free.load(Ordering::Relaxed), FREE_LIST_SENTINEL);
}
unsafe fn maybe_gc(&self) {
debug_assert!(self.get().is_root(), "Can't call GC on a non-root node!");
if self.get().free_count().load(Ordering::Relaxed) > RULE_TREE_GC_INTERVAL {
self.gc();
}
}
/// Returns true if any properties specified by `rule_type_mask` was set by
/// an author rule.
#[cfg(feature = "gecko")]
pub fn has_author_specified_rules<E>(
&self,
mut element: E,
mut pseudo: Option<PseudoElement>,
guards: &StylesheetGuards,
rule_type_mask: u32,
author_colors_allowed: bool,
) -> bool
where
E: crate::dom::TElement,
{
use crate::gecko_bindings::structs::NS_AUTHOR_SPECIFIED_BACKGROUND;
use crate::gecko_bindings::structs::NS_AUTHOR_SPECIFIED_BORDER;
use crate::gecko_bindings::structs::NS_AUTHOR_SPECIFIED_PADDING;
use crate::properties::{CSSWideKeyword, LonghandId};
use crate::properties::{PropertyDeclaration, PropertyDeclarationId};
use std::borrow::Cow;
// Reset properties:
const BACKGROUND_PROPS: &'static [LonghandId] =
&[LonghandId::BackgroundColor, LonghandId::BackgroundImage];
const BORDER_PROPS: &'static [LonghandId] = &[
LonghandId::BorderTopColor,
LonghandId::BorderTopStyle,
LonghandId::BorderTopWidth,
LonghandId::BorderRightColor,
LonghandId::BorderRightStyle,
LonghandId::BorderRightWidth,
LonghandId::BorderBottomColor,
LonghandId::BorderBottomStyle,
LonghandId::BorderBottomWidth,
LonghandId::BorderLeftColor,
LonghandId::BorderLeftStyle,
LonghandId::BorderLeftWidth,
LonghandId::BorderTopLeftRadius,
LonghandId::BorderTopRightRadius,
LonghandId::BorderBottomRightRadius,
LonghandId::BorderBottomLeftRadius,
LonghandId::BorderInlineStartColor,
LonghandId::BorderInlineStartStyle,
LonghandId::BorderInlineStartWidth,
LonghandId::BorderInlineEndColor,
LonghandId::BorderInlineEndStyle,
LonghandId::BorderInlineEndWidth,
LonghandId::BorderBlockStartColor,
LonghandId::BorderBlockStartStyle,
LonghandId::BorderBlockStartWidth,
LonghandId::BorderBlockEndColor,
LonghandId::BorderBlockEndStyle,
LonghandId::BorderBlockEndWidth,
];
const PADDING_PROPS: &'static [LonghandId] = &[
LonghandId::PaddingTop,
LonghandId::PaddingRight,
LonghandId::PaddingBottom,
LonghandId::PaddingLeft,
LonghandId::PaddingInlineStart,
LonghandId::PaddingInlineEnd,
LonghandId::PaddingBlockStart,
LonghandId::PaddingBlockEnd,
];
// Set of properties that we are currently interested in.
let mut properties = LonghandIdSet::new();
if rule_type_mask & NS_AUTHOR_SPECIFIED_BACKGROUND != 0 {
for id in BACKGROUND_PROPS {
properties.insert(*id);
}
}
if rule_type_mask & NS_AUTHOR_SPECIFIED_BORDER != 0 {
for id in BORDER_PROPS {
properties.insert(*id);
}
}
if rule_type_mask & NS_AUTHOR_SPECIFIED_PADDING != 0 {
for id in PADDING_PROPS {
properties.insert(*id);
}
}
// If author colors are not allowed, don't look at those properties
// (except for background-color which is special and we handle below).
if !author_colors_allowed {
properties.remove_all(LonghandIdSet::ignored_when_colors_disabled());
if rule_type_mask & NS_AUTHOR_SPECIFIED_BACKGROUND != 0 {
properties.insert(LonghandId::BackgroundColor);
}
}
let mut element_rule_node = Cow::Borrowed(self);
loop {
// We need to be careful not to count styles covered up by
// user-important or UA-important declarations. But we do want to
// catch explicit inherit styling in those and check our parent
// element to see whether we have user styling for those properties.
// Note that we don't care here about inheritance due to lack of a
// specified value, since all the properties we care about are reset
// properties.
let mut inherited_properties = LonghandIdSet::new();
let mut have_explicit_ua_inherit = false;
for node in element_rule_node.self_and_ancestors() {
let source = node.style_source();
let declarations = if source.is_some() {
source
.as_ref()
.unwrap()
.read(node.cascade_level().guard(guards))
.declaration_importance_iter()
} else {
continue;
};
// Iterate over declarations of the longhands we care about.
let node_importance = node.importance();
let longhands = declarations.rev().filter_map(|(declaration, importance)| {
if importance != node_importance {
return None;
}
match declaration.id() {
PropertyDeclarationId::Longhand(id) => Some((id, declaration)),
_ => None,
}
});
let is_author = node.cascade_level().origin() == Origin::Author;
for (id, declaration) in longhands {
if !properties.contains(id) {
continue;
}
if is_author {
if !author_colors_allowed {
if let PropertyDeclaration::BackgroundColor(ref color) = *declaration {
if color.is_transparent() {
return true;
}
continue;
}
}
return true;
}
// This property was set by a non-author rule.
// Stop looking for it in this element's rule
// nodes.
properties.remove(id);
// However, if it is inherited, then it might be
// inherited from an author rule from an
// ancestor element's rule nodes.
if declaration.get_css_wide_keyword() == Some(CSSWideKeyword::Inherit) {
have_explicit_ua_inherit = true;
inherited_properties.insert(id);
}
}
}
if !have_explicit_ua_inherit {
break;
}
// Continue to the parent element and search for the inherited properties.
if let Some(pseudo) = pseudo.take() {
if pseudo.inherits_from_default_values() {
break;
}
} else {
element = match element.inheritance_parent() {
Some(parent) => parent,
None => break,
};
let parent_data = element.mutate_data().unwrap();
let parent_rule_node = parent_data.styles.primary().rules().clone();
element_rule_node = Cow::Owned(parent_rule_node);
}
properties = inherited_properties;
}
false
}
/// Returns true if there is either animation or transition level rule.
pub fn has_animation_or_transition_rules(&self) -> bool {
self.self_and_ancestors()
.take_while(|node| node.cascade_level() >= CascadeLevel::SMILOverride)
.any(|node| node.cascade_level().is_animation())
}
/// Get a set of properties whose CascadeLevel are higher than Animations
/// but not equal to Transitions.
///
/// If there are any custom properties, we set the boolean value of the
/// returned tuple to true.
pub fn get_properties_overriding_animations(
&self,
guards: &StylesheetGuards,
) -> (LonghandIdSet, bool) {
use crate::properties::PropertyDeclarationId;
// We want to iterate over cascade levels that override the animations
// level, i.e. !important levels and the transitions level.
//
// However, we actually want to skip the transitions level because
// although it is higher in the cascade than animations, when both
// transitions and animations are present for a given element and
// property, transitions are suppressed so that they don't actually
// override animations.
let iter = self
.self_and_ancestors()
.skip_while(|node| node.cascade_level() == CascadeLevel::Transitions)
.take_while(|node| node.cascade_level() > CascadeLevel::Animations);
let mut result = (LonghandIdSet::new(), false);
for node in iter {
let style = node.style_source().unwrap();
for (decl, important) in style
.read(node.cascade_level().guard(guards))
.declaration_importance_iter()
{
// Although we are only iterating over cascade levels that
// override animations, in a given property declaration block we
// can have a mixture of !important and non-!important
// declarations but only the !important declarations actually
// override animations.
if important.important() {
match decl.id() {
PropertyDeclarationId::Longhand(id) => result.0.insert(id),
PropertyDeclarationId::Custom(_) => result.1 = true,
}
}
}
}
result
}
}
/// An iterator over a rule node and its ancestors.
#[derive(Clone)]
pub struct SelfAndAncestors<'a> {
current: Option<&'a StrongRuleNode>,
}
impl<'a> Iterator for SelfAndAncestors<'a> {
type Item = &'a StrongRuleNode;
fn next(&mut self) -> Option<Self::Item> {
self.current.map(|node| {
self.current = node.parent();
node
})
}
}
impl Clone for StrongRuleNode {
fn clone(&self) -> Self {
debug!(
"{:?}: {:?}+",
self.ptr(),
self.get().refcount.load(Ordering::Relaxed)
);
debug_assert!(self.get().refcount.load(Ordering::Relaxed) > 0);
self.get().refcount.fetch_add(1, Ordering::Relaxed);
StrongRuleNode::from_ptr(self.p)
}
}
impl Drop for StrongRuleNode {
#[cfg_attr(feature = "servo", allow(unused_mut))]
fn drop(&mut self) {
let node = unsafe { &*self.ptr() };
debug!(
"{:?}: {:?}-",
self.ptr(),
node.refcount.load(Ordering::Relaxed)
);
debug!(
"Dropping node: {:?}, root: {:?}, parent: {:?}",
self.ptr(),
node.root.as_ref().map(|r| r.ptr()),
node.parent.as_ref().map(|p| p.ptr())
);
let should_drop = {
debug_assert!(node.refcount.load(Ordering::Relaxed) > 0);
node.refcount.fetch_sub(1, Ordering::Relaxed) == 1
};
if !should_drop {
return;
}
if node.parent.is_none() {
debug!("Dropping root node!");
// The free list should be null by this point
debug_assert!(node.next_free.load(Ordering::Relaxed).is_null());
log_drop(self.ptr());
let _ = unsafe { Box::from_raw(self.ptr()) };
return;
}
let root = unsafe { &*node.root.as_ref().unwrap().ptr() };
let free_list = &root.next_free;
let mut old_head = free_list.load(Ordering::Relaxed);
// If the free list is null, that means that the rule tree has been
// formally torn down, and the last standard GC has already occurred.
// We require that any callers using the rule tree at this point are
// on the main thread only, which lets us trigger a synchronous GC
// here to avoid leaking anything. We use the GC machinery, rather
// than just dropping directly, so that we benefit from the iterative
// destruction and don't trigger unbounded recursion during drop. See
// [1] and the associated crashtest.
//
// [1] https://bugzilla.mozilla.org/show_bug.cgi?id=439184
if old_head.is_null() {
debug_assert!(
!thread_state::get().is_worker() &&
(thread_state::get().is_layout() || thread_state::get().is_script())
);
// Add the node as the sole entry in the free list.
debug_assert!(node.next_free.load(Ordering::Relaxed).is_null());
node.next_free.store(FREE_LIST_SENTINEL, Ordering::Relaxed);
free_list.store(node as *const _ as *mut _, Ordering::Relaxed);
// Invoke the GC.
//
// Note that we need hold a strong reference to the root so that it
// doesn't go away during the GC (which would happen if we're freeing
// the last external reference into the rule tree). This is nicely
// enforced by having the gc() method live on StrongRuleNode rather than
// RuleNode.
let strong_root: StrongRuleNode = node.root.as_ref().unwrap().upgrade();
unsafe {
strong_root.gc();
}
// Leave the free list null, like we found it, such that additional
// drops for straggling rule nodes will take this same codepath.
debug_assert_eq!(root.next_free.load(Ordering::Relaxed), FREE_LIST_SENTINEL);
root.next_free.store(ptr::null_mut(), Ordering::Relaxed);
// Return. If strong_root is the last strong reference to the root,
// this re-enter StrongRuleNode::drop, and take the root-dropping
// path earlier in this function.
return;
}
// We're sure we're already in the free list, don't spinloop if we're.
// Note that this is just a fast path, so it doesn't need to have an
// strong memory ordering.
if node.next_free.load(Ordering::Relaxed) != ptr::null_mut() {
return;
}
// Ensure we "lock" the free list head swapping it with FREE_LIST_LOCKED.
//
// Note that we use Acquire/Release semantics for the free list
// synchronization, in order to guarantee that the next_free
// reads/writes we do below are properly visible from multiple threads
// racing.
loop {
match free_list.compare_exchange_weak(
old_head,
FREE_LIST_LOCKED,
Ordering::Acquire,
Ordering::Relaxed,
) {
Ok(..) => {
if old_head != FREE_LIST_LOCKED {
break;
}
},
Err(new) => old_head = new,
}
}
// If other thread has raced with use while using the same rule node,
// just store the old head again, we're done.
//
// Note that we can use relaxed operations for loading since we're
// effectively locking the free list with Acquire/Release semantics, and
// the memory ordering is already guaranteed by that locking/unlocking.
if node.next_free.load(Ordering::Relaxed) != ptr::null_mut() {
free_list.store(old_head, Ordering::Release);
return;
}
// Else store the old head as the next pointer, and store ourselves as
// the new head of the free list.
//
// This can be relaxed since this pointer won't be read until GC.
node.next_free.store(old_head, Ordering::Relaxed);
// Increment the free count. This doesn't need to be an RMU atomic
// operation, because the free list is "locked".
let old_free_count = root.free_count().load(Ordering::Relaxed);
root.free_count()
.store(old_free_count + 1, Ordering::Relaxed);
// This can be release because of the locking of the free list, that
// ensures that all the other nodes racing with this one are using
// `Acquire`.
free_list.store(self.ptr(), Ordering::Release);
}
}
impl<'a> From<&'a StrongRuleNode> for WeakRuleNode {
fn from(node: &'a StrongRuleNode) -> Self {
WeakRuleNode::from_ptr(node.p)
}
}
impl WeakRuleNode {
#[inline]
fn ptr(&self) -> *mut RuleNode {
self.p.as_ptr()
}
fn upgrade(&self) -> StrongRuleNode {
debug!("Upgrading weak node: {:p}", self.ptr());
let node = unsafe { &*self.ptr() };
node.refcount.fetch_add(1, Ordering::Relaxed);
StrongRuleNode::from_ptr(self.p)
}
fn from_ptr(p: ptr::NonNull<RuleNode>) -> Self {
WeakRuleNode { p }
}
}