servo/components/layout/block.rs
2014-09-08 20:21:42 -06:00

2428 lines
112 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! CSS block formatting contexts.
//!
//! Terminology Note:
//! As per the CSS Spec, the term 'absolute positioning' here refers to
//! elements with position = 'absolute' or 'fixed'.
//! The term 'positioned element' refers to elements with position =
//! 'relative', 'absolute', or 'fixed'.
//!
//! CB: Containing Block of the current flow.
#![deny(unsafe_block)]
use construct::FlowConstructor;
use context::LayoutContext;
use floats::{ClearBoth, ClearLeft, ClearRight, FloatKind, Floats, PlacementInfo};
use flow::{BaseFlow, BlockFlowClass, FlowClass, Flow, ImmutableFlowUtils};
use flow::{MutableFlowUtils, PreorderFlowTraversal, PostorderFlowTraversal, mut_base};
use flow;
use fragment::{Fragment, ImageFragment, ScannedTextFragment};
use layout_debug;
use model::{Auto, IntrinsicISizes, MarginCollapseInfo, MarginsCollapse};
use model::{MarginsCollapseThrough, MaybeAuto, NoCollapsibleMargins, Specified, specified};
use model::{specified_or_none};
use wrapper::ThreadSafeLayoutNode;
use style::ComputedValues;
use style::computed_values::{clear, position};
use collections::dlist::DList;
use geom::{Size2D, Point2D, Rect};
use gfx::color;
use gfx::display_list::{BackgroundAndBorderLevel, BlockLevel, ContentStackingLevel, DisplayList};
use gfx::display_list::{FloatStackingLevel, PositionedDescendantStackingLevel};
use gfx::display_list::{RootOfStackingContextLevel};
use gfx::render_task::RenderLayer;
use servo_msg::compositor_msg::{FixedPosition, LayerId, Scrollable};
use servo_util::geometry::Au;
use servo_util::geometry;
use servo_util::logical_geometry::WritingMode;
use servo_util::logical_geometry::{LogicalPoint, LogicalRect, LogicalSize};
use std::fmt;
use std::mem;
use style::computed_values::{LPA_Auto, LPA_Length, LPA_Percentage, LPN_Length, LPN_None};
use style::computed_values::{LPN_Percentage, LP_Length, LP_Percentage};
use style::computed_values::{display, float, overflow};
use sync::Arc;
/// Information specific to floated blocks.
#[deriving(Encodable)]
pub struct FloatedBlockInfo {
pub containing_inline_size: Au,
/// Offset relative to where the parent tried to position this flow
pub rel_pos: LogicalPoint<Au>,
/// Index into the fragment list for inline floats
pub index: Option<uint>,
/// Left or right?
pub float_kind: FloatKind,
}
impl FloatedBlockInfo {
pub fn new(float_kind: FloatKind, writing_mode: WritingMode) -> FloatedBlockInfo {
FloatedBlockInfo {
containing_inline_size: Au(0),
rel_pos: LogicalPoint::new(writing_mode, Au(0), Au(0)),
index: None,
float_kind: float_kind,
}
}
}
/// The solutions for the block-size-and-margins constraint equation.
struct BSizeConstraintSolution {
block_start: Au,
_block_end: Au,
block_size: Au,
margin_block_start: Au,
margin_block_end: Au
}
impl BSizeConstraintSolution {
fn new(block_start: Au, block_end: Au, block_size: Au, margin_block_start: Au, margin_block_end: Au)
-> BSizeConstraintSolution {
BSizeConstraintSolution {
block_start: block_start,
_block_end: block_end,
block_size: block_size,
margin_block_start: margin_block_start,
margin_block_end: margin_block_end,
}
}
/// Solve the vertical constraint equation for absolute non-replaced elements.
///
/// CSS Section 10.6.4
/// Constraint equation:
/// block-start + block-end + block-size + margin-block-start + margin-block-end
/// = absolute containing block block-size - (vertical padding and border)
/// [aka available_block-size]
///
/// Return the solution for the equation.
fn solve_vertical_constraints_abs_nonreplaced(block_size: MaybeAuto,
block_start_margin: MaybeAuto,
block_end_margin: MaybeAuto,
block_start: MaybeAuto,
block_end: MaybeAuto,
content_block_size: Au,
available_block_size: Au,
static_b_offset: Au)
-> BSizeConstraintSolution {
// Distance from the block-start edge of the Absolute Containing Block to the
// block-start margin edge of a hypothetical box that would have been the
// first box of the element.
let static_position_block_start = static_b_offset;
let (block_start, block_end, block_size, margin_block_start, margin_block_end) = match (block_start, block_end, block_size) {
(Auto, Auto, Auto) => {
let margin_block_start = block_start_margin.specified_or_zero();
let margin_block_end = block_end_margin.specified_or_zero();
let block_start = static_position_block_start;
// Now it is the same situation as block-start Specified and block-end
// and block-size Auto.
let block_size = content_block_size;
let sum = block_start + block_size + margin_block_start + margin_block_end;
(block_start, available_block_size - sum, block_size, margin_block_start, margin_block_end)
}
(Specified(block_start), Specified(block_end), Specified(block_size)) => {
match (block_start_margin, block_end_margin) {
(Auto, Auto) => {
let total_margin_val = available_block_size - block_start - block_end - block_size;
(block_start, block_end, block_size,
total_margin_val.scale_by(0.5),
total_margin_val.scale_by(0.5))
}
(Specified(margin_block_start), Auto) => {
let sum = block_start + block_end + block_size + margin_block_start;
(block_start, block_end, block_size, margin_block_start, available_block_size - sum)
}
(Auto, Specified(margin_block_end)) => {
let sum = block_start + block_end + block_size + margin_block_end;
(block_start, block_end, block_size, available_block_size - sum, margin_block_end)
}
(Specified(margin_block_start), Specified(margin_block_end)) => {
// Values are over-constrained. Ignore value for 'block-end'.
let sum = block_start + block_size + margin_block_start + margin_block_end;
(block_start, available_block_size - sum, block_size, margin_block_start, margin_block_end)
}
}
}
// For the rest of the cases, auto values for margin are set to 0
// If only one is Auto, solve for it
(Auto, Specified(block_end), Specified(block_size)) => {
let margin_block_start = block_start_margin.specified_or_zero();
let margin_block_end = block_end_margin.specified_or_zero();
let sum = block_end + block_size + margin_block_start + margin_block_end;
(available_block_size - sum, block_end, block_size, margin_block_start, margin_block_end)
}
(Specified(block_start), Auto, Specified(block_size)) => {
let margin_block_start = block_start_margin.specified_or_zero();
let margin_block_end = block_end_margin.specified_or_zero();
let sum = block_start + block_size + margin_block_start + margin_block_end;
(block_start, available_block_size - sum, block_size, margin_block_start, margin_block_end)
}
(Specified(block_start), Specified(block_end), Auto) => {
let margin_block_start = block_start_margin.specified_or_zero();
let margin_block_end = block_end_margin.specified_or_zero();
let sum = block_start + block_end + margin_block_start + margin_block_end;
(block_start, block_end, available_block_size - sum, margin_block_start, margin_block_end)
}
// If block-size is auto, then block-size is content block-size. Solve for the
// non-auto value.
(Specified(block_start), Auto, Auto) => {
let margin_block_start = block_start_margin.specified_or_zero();
let margin_block_end = block_end_margin.specified_or_zero();
let block_size = content_block_size;
let sum = block_start + block_size + margin_block_start + margin_block_end;
(block_start, available_block_size - sum, block_size, margin_block_start, margin_block_end)
}
(Auto, Specified(block_end), Auto) => {
let margin_block_start = block_start_margin.specified_or_zero();
let margin_block_end = block_end_margin.specified_or_zero();
let block_size = content_block_size;
let sum = block_end + block_size + margin_block_start + margin_block_end;
(available_block_size - sum, block_end, block_size, margin_block_start, margin_block_end)
}
(Auto, Auto, Specified(block_size)) => {
let margin_block_start = block_start_margin.specified_or_zero();
let margin_block_end = block_end_margin.specified_or_zero();
let block_start = static_position_block_start;
let sum = block_start + block_size + margin_block_start + margin_block_end;
(block_start, available_block_size - sum, block_size, margin_block_start, margin_block_end)
}
};
BSizeConstraintSolution::new(block_start, block_end, block_size, margin_block_start, margin_block_end)
}
/// Solve the vertical constraint equation for absolute replaced elements.
///
/// Assumption: The used value for block-size has already been calculated.
///
/// CSS Section 10.6.5
/// Constraint equation:
/// block-start + block-end + block-size + margin-block-start + margin-block-end
/// = absolute containing block block-size - (vertical padding and border)
/// [aka available_block-size]
///
/// Return the solution for the equation.
fn solve_vertical_constraints_abs_replaced(block_size: Au,
block_start_margin: MaybeAuto,
block_end_margin: MaybeAuto,
block_start: MaybeAuto,
block_end: MaybeAuto,
_: Au,
available_block_size: Au,
static_b_offset: Au)
-> BSizeConstraintSolution {
// Distance from the block-start edge of the Absolute Containing Block to the
// block-start margin edge of a hypothetical box that would have been the
// first box of the element.
let static_position_block_start = static_b_offset;
let (block_start, block_end, block_size, margin_block_start, margin_block_end) = match (block_start, block_end) {
(Auto, Auto) => {
let margin_block_start = block_start_margin.specified_or_zero();
let margin_block_end = block_end_margin.specified_or_zero();
let block_start = static_position_block_start;
let sum = block_start + block_size + margin_block_start + margin_block_end;
(block_start, available_block_size - sum, block_size, margin_block_start, margin_block_end)
}
(Specified(block_start), Specified(block_end)) => {
match (block_start_margin, block_end_margin) {
(Auto, Auto) => {
let total_margin_val = available_block_size - block_start - block_end - block_size;
(block_start, block_end, block_size,
total_margin_val.scale_by(0.5),
total_margin_val.scale_by(0.5))
}
(Specified(margin_block_start), Auto) => {
let sum = block_start + block_end + block_size + margin_block_start;
(block_start, block_end, block_size, margin_block_start, available_block_size - sum)
}
(Auto, Specified(margin_block_end)) => {
let sum = block_start + block_end + block_size + margin_block_end;
(block_start, block_end, block_size, available_block_size - sum, margin_block_end)
}
(Specified(margin_block_start), Specified(margin_block_end)) => {
// Values are over-constrained. Ignore value for 'block-end'.
let sum = block_start + block_size + margin_block_start + margin_block_end;
(block_start, available_block_size - sum, block_size, margin_block_start, margin_block_end)
}
}
}
// If only one is Auto, solve for it
(Auto, Specified(block_end)) => {
let margin_block_start = block_start_margin.specified_or_zero();
let margin_block_end = block_end_margin.specified_or_zero();
let sum = block_end + block_size + margin_block_start + margin_block_end;
(available_block_size - sum, block_end, block_size, margin_block_start, margin_block_end)
}
(Specified(block_start), Auto) => {
let margin_block_start = block_start_margin.specified_or_zero();
let margin_block_end = block_end_margin.specified_or_zero();
let sum = block_start + block_size + margin_block_start + margin_block_end;
(block_start, available_block_size - sum, block_size, margin_block_start, margin_block_end)
}
};
BSizeConstraintSolution::new(block_start, block_end, block_size, margin_block_start, margin_block_end)
}
}
/// Performs block-size calculations potentially multiple times, taking
/// (assuming an horizontal writing mode) `height`, `min-height`, and `max-height`
/// into account. After each call to `next()`, the caller must call `.try()` with the
/// current calculated value of `height`.
///
/// See CSS 2.1 § 10.7.
struct CandidateBSizeIterator {
block_size: MaybeAuto,
max_block_size: Option<Au>,
min_block_size: Au,
candidate_value: Au,
status: CandidateBSizeIteratorStatus,
}
impl CandidateBSizeIterator {
/// Creates a new candidate block-size iterator. `block_container_block-size` is `None` if the block-size
/// of the block container has not been determined yet. It will always be `Some` in the case of
/// absolutely-positioned containing blocks.
pub fn new(style: &ComputedValues, block_container_block_size: Option<Au>)
-> CandidateBSizeIterator {
// Per CSS 2.1 § 10.7, (assuming an horizontal writing mode,)
// percentages in `min-height` and `max-height` refer to the height of
// the containing block.
// If that is not determined yet by the time we need to resolve
// `min-height` and `max-height`, percentage values are ignored.
let block_size = match (style.content_block_size(), block_container_block_size) {
(LPA_Percentage(percent), Some(block_container_block_size)) => {
Specified(block_container_block_size.scale_by(percent))
}
(LPA_Percentage(_), None) | (LPA_Auto, _) => Auto,
(LPA_Length(length), _) => Specified(length),
};
let max_block_size = match (style.max_block_size(), block_container_block_size) {
(LPN_Percentage(percent), Some(block_container_block_size)) => {
Some(block_container_block_size.scale_by(percent))
}
(LPN_Percentage(_), None) | (LPN_None, _) => None,
(LPN_Length(length), _) => Some(length),
};
let min_block_size = match (style.min_block_size(), block_container_block_size) {
(LP_Percentage(percent), Some(block_container_block_size)) => {
block_container_block_size.scale_by(percent)
}
(LP_Percentage(_), None) => Au(0),
(LP_Length(length), _) => length,
};
CandidateBSizeIterator {
block_size: block_size,
max_block_size: max_block_size,
min_block_size: min_block_size,
candidate_value: Au(0),
status: InitialCandidateBSizeStatus,
}
}
}
impl Iterator<MaybeAuto> for CandidateBSizeIterator {
fn next(&mut self) -> Option<MaybeAuto> {
self.status = match self.status {
InitialCandidateBSizeStatus => TryingBSizeCandidateBSizeStatus,
TryingBSizeCandidateBSizeStatus => {
match self.max_block_size {
Some(max_block_size) if self.candidate_value > max_block_size => {
TryingMaxCandidateBSizeStatus
}
_ if self.candidate_value < self.min_block_size => TryingMinCandidateBSizeStatus,
_ => FoundCandidateBSizeStatus,
}
}
TryingMaxCandidateBSizeStatus => {
if self.candidate_value < self.min_block_size {
TryingMinCandidateBSizeStatus
} else {
FoundCandidateBSizeStatus
}
}
TryingMinCandidateBSizeStatus | FoundCandidateBSizeStatus => {
FoundCandidateBSizeStatus
}
};
match self.status {
TryingBSizeCandidateBSizeStatus => Some(self.block_size),
TryingMaxCandidateBSizeStatus => {
Some(Specified(self.max_block_size.unwrap()))
}
TryingMinCandidateBSizeStatus => {
Some(Specified(self.min_block_size))
}
FoundCandidateBSizeStatus => None,
InitialCandidateBSizeStatus => fail!(),
}
}
}
enum CandidateBSizeIteratorStatus {
InitialCandidateBSizeStatus,
TryingBSizeCandidateBSizeStatus,
TryingMaxCandidateBSizeStatus,
TryingMinCandidateBSizeStatus,
FoundCandidateBSizeStatus,
}
// A helper function used in block-size calculation.
fn translate_including_floats(cur_b: &mut Au, delta: Au, floats: &mut Floats) {
*cur_b = *cur_b + delta;
let writing_mode = floats.writing_mode;
floats.translate(LogicalSize::new(writing_mode, Au(0), -delta));
}
/// The real assign-block-sizes traversal for flows with position 'absolute'.
///
/// This is a traversal of an Absolute Flow tree.
/// - Relatively positioned flows and the Root flow start new Absolute flow trees.
/// - The kids of a flow in this tree will be the flows for which it is the
/// absolute Containing Block.
/// - Thus, leaf nodes and inner non-root nodes are all Absolute Flows.
///
/// A Flow tree can have several Absolute Flow trees (depending on the number
/// of relatively positioned flows it has).
///
/// Note that flows with position 'fixed' just form a flat list as they all
/// have the Root flow as their CB.
struct AbsoluteAssignBSizesTraversal<'a>(&'a LayoutContext<'a>);
impl<'a> PreorderFlowTraversal for AbsoluteAssignBSizesTraversal<'a> {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
let block_flow = flow.as_block();
// The root of the absolute flow tree is definitely not absolutely
// positioned. Nothing to process here.
if block_flow.is_root_of_absolute_flow_tree() {
return true;
}
let AbsoluteAssignBSizesTraversal(ref ctx) = *self;
block_flow.calculate_abs_block_size_and_margins(*ctx);
true
}
}
/// The store-overflow traversal particular to absolute flows.
///
/// Propagate overflow up the Absolute flow tree and update overflow up to and
/// not including the root of the Absolute flow tree.
/// After that, it is up to the normal store-overflow traversal to propagate
/// it further up.
struct AbsoluteStoreOverflowTraversal<'a>{
layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for AbsoluteStoreOverflowTraversal<'a> {
#[inline]
fn process(&mut self, flow: &mut Flow) -> bool {
// This will be taken care of by the normal store-overflow traversal.
if flow.is_root_of_absolute_flow_tree() {
return true;
}
flow.store_overflow(self.layout_context);
true
}
}
enum BlockType {
BlockReplacedType,
BlockNonReplacedType,
AbsoluteReplacedType,
AbsoluteNonReplacedType,
FloatReplacedType,
FloatNonReplacedType,
}
#[deriving(Clone, PartialEq)]
pub enum MarginsMayCollapseFlag {
MarginsMayCollapse,
MarginsMayNotCollapse,
}
#[deriving(PartialEq)]
enum FormattingContextType {
NonformattingContext,
BlockFormattingContext,
OtherFormattingContext,
}
// Propagates the `layers_needed_for_descendants` flag appropriately from a child. This is called
// as part of block-size assignment.
//
// If any fixed descendants of kids are present, this kid needs a layer.
//
// FIXME(#2006, pcwalton): This is too layer-happy. Like WebKit, we shouldn't do this unless
// the positioned descendants are actually on top of the fixed kids.
//
// TODO(#1244, #2007, pcwalton): Do this for CSS transforms and opacity too, at least if they're
// animating.
fn propagate_layer_flag_from_child(layers_needed_for_descendants: &mut bool, kid: &mut Flow) {
if kid.is_absolute_containing_block() {
let kid_base = flow::mut_base(kid);
if kid_base.flags.needs_layer() {
*layers_needed_for_descendants = true
}
} else {
let kid_base = flow::mut_base(kid);
if kid_base.flags.layers_needed_for_descendants() {
*layers_needed_for_descendants = true
}
}
}
// A block formatting context.
#[deriving(Encodable)]
pub struct BlockFlow {
/// Data common to all flows.
pub base: BaseFlow,
/// The associated fragment.
pub fragment: Fragment,
/// TODO: is_root should be a bit field to conserve memory.
/// Whether this block flow is the root flow.
pub is_root: bool,
/// Static y offset of an absolute flow from its CB.
pub static_b_offset: Au,
/// The inline-size of the last float prior to this block. This is used to speculatively lay out
/// block formatting contexts.
previous_float_inline_size: Option<Au>,
/// Additional floating flow members.
pub float: Option<Box<FloatedBlockInfo>>
}
impl BlockFlow {
pub fn from_node(constructor: &mut FlowConstructor, node: &ThreadSafeLayoutNode) -> BlockFlow {
BlockFlow {
base: BaseFlow::new((*node).clone()),
fragment: Fragment::new(constructor, node),
is_root: false,
static_b_offset: Au::new(0),
previous_float_inline_size: None,
float: None
}
}
pub fn from_node_and_fragment(node: &ThreadSafeLayoutNode, fragment: Fragment) -> BlockFlow {
BlockFlow {
base: BaseFlow::new((*node).clone()),
fragment: fragment,
is_root: false,
static_b_offset: Au::new(0),
previous_float_inline_size: None,
float: None
}
}
pub fn float_from_node(constructor: &mut FlowConstructor,
node: &ThreadSafeLayoutNode,
float_kind: FloatKind)
-> BlockFlow {
let base = BaseFlow::new((*node).clone());
BlockFlow {
fragment: Fragment::new(constructor, node),
is_root: false,
static_b_offset: Au::new(0),
previous_float_inline_size: None,
float: Some(box FloatedBlockInfo::new(float_kind, base.writing_mode)),
base: base,
}
}
/// Return the type of this block.
///
/// This determines the algorithm used to calculate inline-size, block-size, and the
/// relevant margins for this Block.
fn block_type(&self) -> BlockType {
if self.is_absolutely_positioned() {
if self.is_replaced_content() {
AbsoluteReplacedType
} else {
AbsoluteNonReplacedType
}
} else if self.is_float() {
if self.is_replaced_content() {
FloatReplacedType
} else {
FloatNonReplacedType
}
} else {
if self.is_replaced_content() {
BlockReplacedType
} else {
BlockNonReplacedType
}
}
}
/// Compute the used value of inline-size for this Block.
fn compute_used_inline_size(&mut self, ctx: &LayoutContext, containing_block_inline_size: Au) {
let block_type = self.block_type();
match block_type {
AbsoluteReplacedType => {
let inline_size_computer = AbsoluteReplaced;
inline_size_computer.compute_used_inline_size(self, ctx, containing_block_inline_size);
}
AbsoluteNonReplacedType => {
let inline_size_computer = AbsoluteNonReplaced;
inline_size_computer.compute_used_inline_size(self, ctx, containing_block_inline_size);
}
FloatReplacedType => {
let inline_size_computer = FloatReplaced;
inline_size_computer.compute_used_inline_size(self, ctx, containing_block_inline_size);
}
FloatNonReplacedType => {
let inline_size_computer = FloatNonReplaced;
inline_size_computer.compute_used_inline_size(self, ctx, containing_block_inline_size);
}
BlockReplacedType => {
let inline_size_computer = BlockReplaced;
inline_size_computer.compute_used_inline_size(self, ctx, containing_block_inline_size);
}
BlockNonReplacedType => {
let inline_size_computer = BlockNonReplaced;
inline_size_computer.compute_used_inline_size(self, ctx, containing_block_inline_size);
}
}
}
/// Return this flow's fragment.
pub fn fragment<'a>(&'a mut self) -> &'a mut Fragment {
&mut self.fragment
}
/// Return the static x offset from the appropriate Containing Block for this flow.
pub fn static_i_offset(&self) -> Au {
if self.is_fixed() {
self.base.fixed_static_i_offset
} else {
self.base.absolute_static_i_offset
}
}
/// Return the size of the Containing Block for this flow.
///
/// Right now, this only gets the Containing Block size for absolutely
/// positioned elements.
/// Note: Assume this is called in a top-down traversal, so it is ok to
/// reference the CB.
#[inline]
pub fn containing_block_size(&mut self, viewport_size: Size2D<Au>) -> LogicalSize<Au> {
assert!(self.is_absolutely_positioned());
if self.is_fixed() {
// Initial containing block is the CB for the root
LogicalSize::from_physical(self.base.writing_mode, viewport_size)
} else {
self.base.absolute_cb.generated_containing_block_rect().size
}
}
/// Traverse the Absolute flow tree in preorder.
///
/// Traverse all your direct absolute descendants, who will then traverse
/// their direct absolute descendants.
/// Also, set the static y offsets for each descendant (using the value
/// which was bubbled up during normal assign-block-size).
///
/// Return true if the traversal is to continue or false to stop.
fn traverse_preorder_absolute_flows<T:PreorderFlowTraversal>(&mut self,
traversal: &mut T)
-> bool {
let flow = self as &mut Flow;
if traversal.should_prune(flow) {
return true
}
if !traversal.process(flow) {
return false
}
let cb_block_start_edge_offset = flow.generated_containing_block_rect().start.b;
let mut descendant_offset_iter = mut_base(flow).abs_descendants.iter_with_offset();
// Pass in the respective static y offset for each descendant.
for (ref mut descendant_link, ref y_offset) in descendant_offset_iter {
let block = descendant_link.as_block();
// The stored y_offset is wrt to the flow box.
// Translate it to the CB (which is the padding box).
block.static_b_offset = **y_offset - cb_block_start_edge_offset;
if !block.traverse_preorder_absolute_flows(traversal) {
return false
}
}
true
}
/// Traverse the Absolute flow tree in postorder.
///
/// Return true if the traversal is to continue or false to stop.
fn traverse_postorder_absolute_flows<T:PostorderFlowTraversal>(&mut self,
traversal: &mut T)
-> bool {
let flow = self as &mut Flow;
if traversal.should_prune(flow) {
return true
}
for descendant_link in mut_base(flow).abs_descendants.iter() {
let block = descendant_link.as_block();
if !block.traverse_postorder_absolute_flows(traversal) {
return false
}
}
traversal.process(flow)
}
/// Return true if this has a replaced fragment.
///
/// The only two types of replaced fragments currently are text fragments
/// and image fragments.
fn is_replaced_content(&self) -> bool {
match self.fragment.specific {
ScannedTextFragment(_) | ImageFragment(_) => true,
_ => false,
}
}
/// Return shrink-to-fit inline-size.
///
/// This is where we use the preferred inline-sizes and minimum inline-sizes
/// calculated in the bubble-inline-sizes traversal.
fn get_shrink_to_fit_inline_size(&self, available_inline_size: Au) -> Au {
geometry::min(self.base.intrinsic_inline_sizes.preferred_inline_size,
geometry::max(self.base.intrinsic_inline_sizes.minimum_inline_size, available_inline_size))
}
/// Collect and update static y-offsets bubbled up by kids.
///
/// This would essentially give us offsets of all absolutely positioned
/// direct descendants and all fixed descendants, in tree order.
///
/// Assume that this is called in a bottom-up traversal (specifically, the
/// assign-block-size traversal). So, kids have their flow origin already set.
/// In the case of absolute flow kids, they have their hypothetical box
/// position already set.
fn collect_static_b_offsets_from_kids(&mut self) {
let mut abs_descendant_y_offsets = Vec::new();
for kid in self.base.child_iter() {
let mut gives_abs_offsets = true;
if kid.is_block_like() {
let kid_block = kid.as_block();
if kid_block.is_fixed() || kid_block.is_absolutely_positioned() {
// It won't contribute any offsets for descendants because it
// would be the CB for them.
gives_abs_offsets = false;
// Give the offset for the current absolute flow alone.
abs_descendant_y_offsets.push(kid_block.get_hypothetical_block_start_edge());
} else if kid_block.is_positioned() {
// It won't contribute any offsets because it would be the CB
// for the descendants.
gives_abs_offsets = false;
}
}
if gives_abs_offsets {
let kid_base = flow::mut_base(kid);
// Avoid copying the offset vector.
let offsets = mem::replace(&mut kid_base.abs_descendants.static_b_offsets, Vec::new());
// Consume all the static y-offsets bubbled up by kid.
for y_offset in offsets.move_iter() {
// The offsets are wrt the kid flow box. Translate them to current flow.
abs_descendant_y_offsets.push(y_offset + kid_base.position.start.b);
}
}
}
self.base.abs_descendants.static_b_offsets = abs_descendant_y_offsets;
}
/// If this is the root flow, shifts all kids down and adjusts our size to account for
/// root flow margins, which should never be collapsed according to CSS § 8.3.1.
///
/// TODO(#2017, pcwalton): This is somewhat inefficient (traverses kids twice); can we do
/// better?
fn adjust_fragments_for_collapsed_margins_if_root(&mut self) {
if !self.is_root() {
return
}
let (block_start_margin_value, block_end_margin_value) = match self.base.collapsible_margins {
MarginsCollapseThrough(_) => fail!("Margins unexpectedly collapsed through root flow."),
MarginsCollapse(block_start_margin, block_end_margin) => {
(block_start_margin.collapse(), block_end_margin.collapse())
}
NoCollapsibleMargins(block_start, block_end) => (block_start, block_end),
};
// Shift all kids down (or up, if margins are negative) if necessary.
if block_start_margin_value != Au(0) {
for kid in self.base.child_iter() {
let kid_base = flow::mut_base(kid);
kid_base.position.start.b = kid_base.position.start.b + block_start_margin_value
}
}
self.base.position.size.block = self.base.position.size.block + block_start_margin_value +
block_end_margin_value;
self.fragment.border_box.size.block = self.fragment.border_box.size.block + block_start_margin_value +
block_end_margin_value;
}
/// Assign block-size for current flow.
///
/// * Collapse margins for flow's children and set in-flow child flows' y-coordinates now that
/// we know their block-sizes.
/// * Calculate and set the block-size of the current flow.
/// * Calculate block-size, vertical margins, and y-coordinate for the flow's box. Ideally, this
/// should be calculated using CSS § 10.6.7.
///
/// For absolute flows, we store the calculated content block-size for the flow. We defer the
/// calculation of the other values until a later traversal.
///
/// `inline(always)` because this is only ever called by in-order or non-in-order top-level
/// methods
#[inline(always)]
pub fn assign_block_size_block_base<'a>(&mut self,
layout_context: &'a LayoutContext<'a>,
margins_may_collapse: MarginsMayCollapseFlag) {
let _scope = layout_debug_scope!("assign_block_size_block_base {:s}", self.base.debug_id());
// Our current border-box position.
let mut cur_b = Au(0);
// Absolute positioning establishes a block formatting context. Don't propagate floats
// in or out. (But do propagate them between kids.)
if self.is_absolutely_positioned() {
self.base.floats = Floats::new(self.fragment.style.writing_mode);
}
if margins_may_collapse != MarginsMayCollapse {
self.base.floats = Floats::new(self.fragment.style.writing_mode);
}
let mut margin_collapse_info = MarginCollapseInfo::new();
self.base.floats.translate(LogicalSize::new(
self.fragment.style.writing_mode, -self.fragment.inline_start_offset(), Au(0)));
// The sum of our block-start border and block-start padding.
let block_start_offset = self.fragment.border_padding.block_start;
translate_including_floats(&mut cur_b, block_start_offset, &mut self.base.floats);
let can_collapse_block_start_margin_with_kids =
margins_may_collapse == MarginsMayCollapse &&
!self.is_absolutely_positioned() &&
self.fragment.border_padding.block_start == Au(0);
margin_collapse_info.initialize_block_start_margin(&self.fragment,
can_collapse_block_start_margin_with_kids);
// At this point, `cur_b` is at the content edge of our box. Now iterate over children.
let mut floats = self.base.floats.clone();
let mut layers_needed_for_descendants = false;
for kid in self.base.child_iter() {
if kid.is_absolutely_positioned() {
// Assume that the *hypothetical box* for an absolute flow starts immediately after
// the block-end border edge of the previous flow.
flow::mut_base(kid).position.start.b = cur_b;
kid.assign_block_size_for_inorder_child_if_necessary(layout_context);
propagate_layer_flag_from_child(&mut layers_needed_for_descendants, kid);
// Skip the collapsing and float processing for absolute flow kids and continue
// with the next flow.
continue
}
// Assign block-size now for the child if it was impacted by floats and we couldn't before.
flow::mut_base(kid).floats = floats.clone();
if kid.is_float() {
// FIXME(pcwalton): Using `position.start.b` to mean the float ceiling is a
// bit of a hack.
flow::mut_base(kid).position.start.b =
margin_collapse_info.current_float_ceiling();
propagate_layer_flag_from_child(&mut layers_needed_for_descendants, kid);
let kid_was_impacted_by_floats =
kid.assign_block_size_for_inorder_child_if_necessary(layout_context);
assert!(kid_was_impacted_by_floats); // As it was a float itself...
let kid_base = flow::mut_base(kid);
kid_base.position.start.b = cur_b;
floats = kid_base.floats.clone();
continue
}
// If we have clearance, assume there are no floats in.
//
// FIXME(#2008, pcwalton): This could be wrong if we have `clear: left` or `clear:
// right` and there are still floats to impact, of course. But this gets complicated
// with margin collapse. Possibly the right thing to do is to lay out the block again
// in this rare case. (Note that WebKit can lay blocks out twice; this may be related,
// although I haven't looked into it closely.)
if kid.float_clearance() != clear::none {
flow::mut_base(kid).floats = Floats::new(self.fragment.style.writing_mode)
}
// Lay the child out if this was an in-order traversal.
let kid_was_impacted_by_floats =
kid.assign_block_size_for_inorder_child_if_necessary(layout_context);
// Mark flows for layerization if necessary to handle painting order correctly.
propagate_layer_flag_from_child(&mut layers_needed_for_descendants, kid);
// Handle any (possibly collapsed) top margin.
let delta = margin_collapse_info.advance_block_start_margin(
&flow::base(kid).collapsible_margins);
translate_including_floats(&mut cur_b, delta, &mut floats);
// Clear past the floats that came in, if necessary.
let clearance = match kid.float_clearance() {
clear::none => Au(0),
clear::left => floats.clearance(ClearLeft),
clear::right => floats.clearance(ClearRight),
clear::both => floats.clearance(ClearBoth),
};
cur_b = cur_b + clearance;
// At this point, `cur_b` is at the border edge of the child.
flow::mut_base(kid).position.start.b = cur_b;
// Now pull out the child's outgoing floats. We didn't do this immediately after the
// `assign_block-size_for_inorder_child_if_necessary` call because clearance on a block
// operates on the floats that come *in*, not the floats that go *out*.
if kid_was_impacted_by_floats {
floats = flow::mut_base(kid).floats.clone()
}
// Move past the child's border box. Do not use the `translate_including_floats`
// function here because the child has already translated floats past its border box.
let kid_base = flow::mut_base(kid);
cur_b = cur_b + kid_base.position.size.block;
// Handle any (possibly collapsed) block-end margin.
let delta = margin_collapse_info.advance_block_end_margin(&kid_base.collapsible_margins);
translate_including_floats(&mut cur_b, delta, &mut floats);
}
// Mark ourselves for layerization if that will be necessary to paint in the proper order
// (CSS 2.1, Appendix E).
self.base.flags.set_layers_needed_for_descendants(layers_needed_for_descendants);
// Collect various offsets needed by absolutely positioned descendants.
self.collect_static_b_offsets_from_kids();
// Add in our block-end margin and compute our collapsible margins.
let can_collapse_block_end_margin_with_kids =
margins_may_collapse == MarginsMayCollapse &&
!self.is_absolutely_positioned() &&
self.fragment.border_padding.block_end == Au(0);
let (collapsible_margins, delta) =
margin_collapse_info.finish_and_compute_collapsible_margins(
&self.fragment,
can_collapse_block_end_margin_with_kids);
self.base.collapsible_margins = collapsible_margins;
translate_including_floats(&mut cur_b, delta, &mut floats);
// FIXME(#2003, pcwalton): The max is taken here so that you can scroll the page, but this
// is not correct behavior according to CSS 2.1 § 10.5. Instead I think we should treat the
// root element as having `overflow: scroll` and use the layers-based scrolling
// infrastructure to make it scrollable.
let mut block_size = cur_b - block_start_offset;
if self.is_root() {
let screen_size = LogicalSize::from_physical(
self.fragment.style.writing_mode, layout_context.shared.screen_size);
block_size = Au::max(screen_size.block, block_size)
}
if self.is_absolutely_positioned() {
// The content block-size includes all the floats per CSS 2.1 § 10.6.7. The easiest way to
// handle this is to just treat this as clearance.
block_size = block_size + floats.clearance(ClearBoth);
// Fixed position layers get layers.
if self.is_fixed() {
self.base.flags.set_needs_layer(true)
}
// Store the content block-size for use in calculating the absolute flow's dimensions
// later.
self.fragment.border_box.size.block = block_size;
return
}
let mut candidate_block_size_iterator = CandidateBSizeIterator::new(self.fragment.style(),
None);
for candidate_block_size in candidate_block_size_iterator {
candidate_block_size_iterator.candidate_value = match candidate_block_size {
Auto => block_size,
Specified(value) => value
}
}
// Adjust `cur_b` as necessary to account for the explicitly-specified block-size.
block_size = candidate_block_size_iterator.candidate_value;
let delta = block_size - (cur_b - block_start_offset);
translate_including_floats(&mut cur_b, delta, &mut floats);
// Compute content block-size and noncontent block-size.
let block_end_offset = self.fragment.border_padding.block_end;
translate_including_floats(&mut cur_b, block_end_offset, &mut floats);
// Now that `cur_b` is at the block-end of the border box, compute the final border box
// position.
self.fragment.border_box.size.block = cur_b;
self.fragment.border_box.start.b = Au(0);
self.base.position.size.block = cur_b;
self.base.floats = floats.clone();
self.adjust_fragments_for_collapsed_margins_if_root();
if self.is_root_of_absolute_flow_tree() {
// Assign block-sizes for all flows in this Absolute flow tree.
// This is preorder because the block-size of an absolute flow may depend on
// the block-size of its CB, which may also be an absolute flow.
self.traverse_preorder_absolute_flows(&mut AbsoluteAssignBSizesTraversal(
layout_context));
// Store overflow for all absolute descendants.
self.traverse_postorder_absolute_flows(&mut AbsoluteStoreOverflowTraversal {
layout_context: layout_context,
});
}
}
/// Add placement information about current float flow for use by the parent.
///
/// Also, use information given by parent about other floats to find out our relative position.
///
/// This does not give any information about any float descendants because they do not affect
/// elements outside of the subtree rooted at this float.
///
/// This function is called on a kid flow by a parent. Therefore, `assign_block-size_float` was
/// already called on this kid flow by the traversal function. So, the values used are
/// well-defined.
pub fn place_float(&mut self) {
let block_size = self.fragment.border_box.size.block;
let clearance = match self.fragment.clear() {
None => Au(0),
Some(clear) => self.base.floats.clearance(clear),
};
let margin_block_size = self.fragment.margin.block_start_end();
let info = PlacementInfo {
size: LogicalSize::new(
self.fragment.style.writing_mode,
self.base.position.size.inline + self.fragment.margin.inline_start_end() +
self.fragment.border_padding.inline_start_end(),
block_size + margin_block_size),
ceiling: clearance + self.base.position.start.b,
max_inline_size: self.float.get_ref().containing_inline_size,
kind: self.float.get_ref().float_kind,
};
// Place the float and return the `Floats` back to the parent flow.
// After, grab the position and use that to set our position.
self.base.floats.add_float(&info);
self.float.get_mut_ref().rel_pos = self.base.floats.last_float_pos().unwrap();
}
/// Assign block-size for current flow.
///
/// + Set in-flow child flows' y-coordinates now that we know their
/// block-sizes. This _doesn't_ do any margin collapsing for its children.
/// + Calculate block-size and y-coordinate for the flow's box. Ideally, this
/// should be calculated using CSS Section 10.6.7
///
/// It does not calculate the block-size of the flow itself.
pub fn assign_block_size_float<'a>(&mut self, ctx: &'a LayoutContext<'a>) {
let _scope = layout_debug_scope!("assign_block_size_float {:s}", self.base.debug_id());
let mut floats = Floats::new(self.fragment.style.writing_mode);
for kid in self.base.child_iter() {
flow::mut_base(kid).floats = floats.clone();
kid.assign_block_size_for_inorder_child_if_necessary(ctx);
floats = flow::mut_base(kid).floats.clone();
}
let block_start_offset = self.fragment.margin.block_start + self.fragment.border_padding.block_start;
let mut cur_b = block_start_offset;
// cur_b is now at the block-start content edge
for kid in self.base.child_iter() {
let child_base = flow::mut_base(kid);
child_base.position.start.b = cur_b;
// cur_b is now at the block-end margin edge of kid
cur_b = cur_b + child_base.position.size.block;
}
// Intrinsic height should include floating descendants with a margin
// below the element's bottom edge (see CSS Section 10.6.7).
let content_block_size = geometry::max(
cur_b - block_start_offset,
floats.clearance(ClearBoth));
// Floats establish a block formatting context, so we discard the output floats here.
drop(floats);
// The associated fragment has the border box of this flow.
self.fragment.border_box.start.b = self.fragment.margin.block_start;
// Calculate content block-size, taking `min-block-size` and `max-block-size` into account.
let mut candidate_block_size_iterator = CandidateBSizeIterator::new(self.fragment.style(), None);
for candidate_block_size in candidate_block_size_iterator {
candidate_block_size_iterator.candidate_value = match candidate_block_size {
Auto => content_block_size,
Specified(value) => value,
}
}
let content_block_size = candidate_block_size_iterator.candidate_value;
let noncontent_block_size = self.fragment.border_padding.block_start_end();
debug!("assign_block_size_float -- block_size: {}", content_block_size + noncontent_block_size);
self.fragment.border_box.size.block = content_block_size + noncontent_block_size;
}
fn build_display_list_block_common(&mut self,
layout_context: &LayoutContext,
offset: LogicalPoint<Au>,
background_border_level: BackgroundAndBorderLevel) {
let rel_offset =
self.fragment.relative_position(&self.base
.absolute_position_info
.relative_containing_block_size);
// FIXME(#2795): Get the real container size
let container_size = Size2D::zero();
// Add the box that starts the block context.
let mut display_list = DisplayList::new();
let mut accumulator = self.fragment.build_display_list(
&mut display_list,
layout_context,
self.base.abs_position + (offset + rel_offset).to_physical(
self.base.writing_mode, container_size),
background_border_level);
let mut child_layers = DList::new();
for kid in self.base.child_iter() {
if kid.is_absolutely_positioned() {
// All absolute flows will be handled by their containing block.
continue
}
accumulator.push_child(&mut display_list, kid);
child_layers.append(mem::replace(&mut flow::mut_base(kid).layers, DList::new()))
}
// Process absolute descendant links.
for abs_descendant_link in self.base.abs_descendants.iter() {
// TODO(pradeep): Send in our absolute position directly.
accumulator.push_child(&mut display_list, abs_descendant_link);
child_layers.append(mem::replace(&mut flow::mut_base(abs_descendant_link).layers,
DList::new()));
}
accumulator.finish(&mut *self, display_list);
self.base.layers = child_layers
}
/// Add display items for current block.
///
/// Set the absolute position for children after doing any offsetting for
/// position: relative.
pub fn build_display_list_block(&mut self, layout_context: &LayoutContext) {
if self.is_float() {
// TODO(#2009, pcwalton): This is a pseudo-stacking context. We need to merge `z-index:
// auto` kids into the parent stacking context, when that is supported.
self.build_display_list_float(layout_context)
} else if self.is_absolutely_positioned() {
self.build_display_list_abs(layout_context)
} else {
let writing_mode = self.base.writing_mode;
self.build_display_list_block_common(
layout_context, LogicalPoint::zero(writing_mode), BlockLevel)
}
}
pub fn build_display_list_float(&mut self, layout_context: &LayoutContext) {
let float_offset = self.float.get_ref().rel_pos;
self.build_display_list_block_common(layout_context,
float_offset,
RootOfStackingContextLevel);
self.base.display_list = mem::replace(&mut self.base.display_list,
DisplayList::new()).flatten(FloatStackingLevel)
}
/// Calculate and set the block-size, offsets, etc. for absolutely positioned flow.
///
/// The layout for its in-flow children has been done during normal layout.
/// This is just the calculation of:
/// + block-size for the flow
/// + y-coordinate of the flow wrt its Containing Block.
/// + block-size, vertical margins, and y-coordinate for the flow's box.
fn calculate_abs_block_size_and_margins(&mut self, ctx: &LayoutContext) {
let containing_block_block_size = self.containing_block_size(ctx.shared.screen_size).block;
let static_b_offset = self.static_b_offset;
// This is the stored content block-size value from assign-block-size
let content_block_size = self.fragment.content_box().size.block;
let mut solution = None;
{
// Non-auto margin-block-start and margin-block-end values have already been
// calculated during assign-inline-size.
let margin = self.fragment.style().logical_margin();
let margin_block_start = match margin.block_start {
LPA_Auto => Auto,
_ => Specified(self.fragment.margin.block_start)
};
let margin_block_end = match margin.block_end {
LPA_Auto => Auto,
_ => Specified(self.fragment.margin.block_end)
};
let block_start;
let block_end;
{
let position = self.fragment.style().logical_position();
block_start = MaybeAuto::from_style(position.block_start, containing_block_block_size);
block_end = MaybeAuto::from_style(position.block_end, containing_block_block_size);
}
let available_block_size = containing_block_block_size - self.fragment.border_padding.block_start_end();
if self.is_replaced_content() {
// Calculate used value of block-size just like we do for inline replaced elements.
// TODO: Pass in the containing block block-size when Fragment's
// assign-block-size can handle it correctly.
self.fragment.assign_replaced_block_size_if_necessary();
// TODO: Right now, this content block-size value includes the
// margin because of erroneous block-size calculation in fragment.
// Check this when that has been fixed.
let block_size_used_val = self.fragment.border_box.size.block;
solution = Some(BSizeConstraintSolution::solve_vertical_constraints_abs_replaced(
block_size_used_val,
margin_block_start,
margin_block_end,
block_start,
block_end,
content_block_size,
available_block_size,
static_b_offset));
} else {
let style = self.fragment.style();
let mut candidate_block_size_iterator =
CandidateBSizeIterator::new(style, Some(containing_block_block_size));
for block_size_used_val in candidate_block_size_iterator {
solution =
Some(BSizeConstraintSolution::solve_vertical_constraints_abs_nonreplaced(
block_size_used_val,
margin_block_start,
margin_block_end,
block_start,
block_end,
content_block_size,
available_block_size,
static_b_offset));
candidate_block_size_iterator.candidate_value = solution.unwrap().block_size
}
}
}
let solution = solution.unwrap();
self.fragment.margin.block_start = solution.margin_block_start;
self.fragment.margin.block_end = solution.margin_block_end;
self.fragment.border_box.start.b = Au(0);
self.fragment.border_box.size.block = solution.block_size + self.fragment.border_padding.block_start_end();
self.base.position.start.b = solution.block_start + self.fragment.margin.block_start;
self.base.position.size.block = solution.block_size + self.fragment.border_padding.block_start_end();
}
/// Add display items for Absolutely Positioned flow.
fn build_display_list_abs(&mut self, layout_context: &LayoutContext) {
let writing_mode = self.base.writing_mode;
self.build_display_list_block_common(layout_context,
LogicalPoint::zero(writing_mode),
RootOfStackingContextLevel);
if !self.base.absolute_position_info.layers_needed_for_positioned_flows &&
!self.base.flags.needs_layer() {
// We didn't need a layer.
//
// TODO(#781, pcwalton): `z-index`.
self.base.display_list =
mem::replace(&mut self.base.display_list,
DisplayList::new()).flatten(PositionedDescendantStackingLevel(0));
return
}
// If we got here, then we need a new layer.
let layer_rect = self.base.position.union(&self.base.overflow);
let size = Size2D(layer_rect.size.inline.to_nearest_px() as uint,
layer_rect.size.block.to_nearest_px() as uint);
let origin = Point2D(layer_rect.start.i.to_nearest_px() as uint,
layer_rect.start.b.to_nearest_px() as uint);
let scroll_policy = if self.is_fixed() {
FixedPosition
} else {
Scrollable
};
let display_list = mem::replace(&mut self.base.display_list, DisplayList::new());
let new_layer = RenderLayer {
id: self.layer_id(0),
display_list: Arc::new(display_list.flatten(ContentStackingLevel)),
position: Rect(origin, size),
background_color: color::rgba(1.0, 1.0, 1.0, 0.0),
scroll_policy: scroll_policy,
};
self.base.layers.push(new_layer)
}
/// Return the block-start outer edge of the hypothetical box for an absolute flow.
///
/// This is wrt its parent flow box.
///
/// During normal layout assign-block-size, the absolute flow's position is
/// roughly set to its static position (the position it would have had in
/// the normal flow).
fn get_hypothetical_block_start_edge(&self) -> Au {
self.base.position.start.b
}
/// Assigns the computed inline-start content edge and inline-size to all the children of this block flow.
/// Also computes whether each child will be impacted by floats.
///
/// `#[inline(always)]` because this is called only from block or table inline-size assignment and
/// the code for block layout is significantly simpler.
#[inline(always)]
pub fn propagate_assigned_inline_size_to_children(&mut self,
inline_start_content_edge: Au,
content_inline_size: Au,
opt_col_inline_sizes: Option<Vec<Au>>) {
// Keep track of whether floats could impact each child.
let mut inline_start_floats_impact_child = self.base.flags.impacted_by_left_floats();
let mut inline_end_floats_impact_child = self.base.flags.impacted_by_right_floats();
let absolute_static_i_offset = if self.is_positioned() {
// This flow is the containing block. The static X offset will be the inline-start padding
// edge.
self.fragment.border_padding.inline_start
- self.fragment.style().logical_border_width().inline_start
} else {
// For kids, the inline-start margin edge will be at our inline-start content edge. The current static
// offset is at our inline-start margin edge. So move in to the inline-start content edge.
self.base.absolute_static_i_offset + inline_start_content_edge
};
let fixed_static_i_offset = self.base.fixed_static_i_offset + inline_start_content_edge;
let flags = self.base.flags.clone();
// This value is used only for table cells.
let mut inline_start_margin_edge = inline_start_content_edge;
// The inline-size of the last float, if there was one. This is used for estimating the inline-sizes of
// block formatting contexts. (We estimate that the inline-size of any block formatting context
// that we see will be based on the inline-size of the containing block as well as the last float
// seen before it.)
let mut last_float_inline_size = None;
for (i, kid) in self.base.child_iter().enumerate() {
if kid.is_block_flow() {
let kid_block = kid.as_block();
kid_block.base.absolute_static_i_offset = absolute_static_i_offset;
kid_block.base.fixed_static_i_offset = fixed_static_i_offset;
if kid_block.is_float() {
last_float_inline_size = Some(kid_block.base.intrinsic_inline_sizes.preferred_inline_size)
} else {
kid_block.previous_float_inline_size = last_float_inline_size
}
}
// The inline-start margin edge of the child flow is at our inline-start content edge, and its inline-size
// is our content inline-size.
flow::mut_base(kid).position.start.i = inline_start_content_edge;
flow::mut_base(kid).position.size.inline = content_inline_size;
// Determine float impaction.
match kid.float_clearance() {
clear::none => {}
clear::left => inline_start_floats_impact_child = false,
clear::right => inline_end_floats_impact_child = false,
clear::both => {
inline_start_floats_impact_child = false;
inline_end_floats_impact_child = false;
}
}
{
let kid_base = flow::mut_base(kid);
inline_start_floats_impact_child = inline_start_floats_impact_child ||
kid_base.flags.has_left_floated_descendants();
inline_end_floats_impact_child = inline_end_floats_impact_child ||
kid_base.flags.has_right_floated_descendants();
kid_base.flags.set_impacted_by_left_floats(inline_start_floats_impact_child);
kid_base.flags.set_impacted_by_right_floats(inline_end_floats_impact_child);
}
// Handle tables.
match opt_col_inline_sizes {
Some(ref col_inline_sizes) => {
propagate_column_inline_sizes_to_child(kid,
i,
content_inline_size,
col_inline_sizes.as_slice(),
&mut inline_start_margin_edge)
}
None => {}
}
// Per CSS 2.1 § 16.3.1, text alignment propagates to all children in flow.
//
// TODO(#2018, pcwalton): Do this in the cascade instead.
flow::mut_base(kid).flags.propagate_text_alignment_from_parent(flags.clone())
}
}
/// Determines the type of formatting context this is. See the definition of
/// `FormattingContextType`.
fn formatting_context_type(&self) -> FormattingContextType {
let style = self.fragment.style();
if style.get_box().float != float::none {
return OtherFormattingContext
}
match style.get_box().display {
display::table_cell | display::table_caption | display::inline_block => {
OtherFormattingContext
}
_ if style.get_box().position == position::static_ &&
style.get_box().overflow != overflow::visible => {
BlockFormattingContext
}
_ => NonformattingContext,
}
}
}
impl Flow for BlockFlow {
fn class(&self) -> FlowClass {
BlockFlowClass
}
fn as_block<'a>(&'a mut self) -> &'a mut BlockFlow {
self
}
fn as_immutable_block<'a>(&'a self) -> &'a BlockFlow {
self
}
/// Returns the direction that this flow clears floats in, if any.
fn float_clearance(&self) -> clear::T {
self.fragment.style().get_box().clear
}
/// Pass 1 of reflow: computes minimum and preferred inline-sizes.
///
/// Recursively (bottom-up) determine the flow's minimum and preferred inline-sizes. When called on
/// this flow, all child flows have had their minimum and preferred inline-sizes set. This function
/// must decide minimum/preferred inline-sizes based on its children's inline-sizes and the dimensions of
/// any fragments it is responsible for flowing.
///
/// TODO(pcwalton): Inline blocks.
fn bubble_inline_sizes(&mut self, _: &LayoutContext) {
let _scope = layout_debug_scope!("bubble_inline_sizes {:s}", self.base.debug_id());
let mut flags = self.base.flags;
flags.set_has_left_floated_descendants(false);
flags.set_has_right_floated_descendants(false);
// If this block has a fixed width, just use that for the minimum
// and preferred width, rather than bubbling up children inline
// width.
let fixed_width = match self.fragment.style().get_box().width {
LPA_Length(_) => true,
_ => false,
};
// Find the maximum inline-size from children.
let mut intrinsic_inline_sizes = IntrinsicISizes::new();
for child_ctx in self.base.child_iter() {
assert!(child_ctx.is_block_flow() ||
child_ctx.is_inline_flow() ||
child_ctx.is_table_kind());
let child_base = flow::mut_base(child_ctx);
if !fixed_width {
intrinsic_inline_sizes.minimum_inline_size =
geometry::max(intrinsic_inline_sizes.minimum_inline_size,
child_base.intrinsic_inline_sizes.total_minimum_inline_size());
intrinsic_inline_sizes.preferred_inline_size =
geometry::max(intrinsic_inline_sizes.preferred_inline_size,
child_base.intrinsic_inline_sizes.total_preferred_inline_size());
}
flags.union_floated_descendants_flags(child_base.flags);
}
let fragment_intrinsic_inline_sizes = self.fragment.intrinsic_inline_sizes();
intrinsic_inline_sizes.minimum_inline_size = geometry::max(intrinsic_inline_sizes.minimum_inline_size,
fragment_intrinsic_inline_sizes.minimum_inline_size);
intrinsic_inline_sizes.preferred_inline_size = geometry::max(intrinsic_inline_sizes.preferred_inline_size,
fragment_intrinsic_inline_sizes.preferred_inline_size);
intrinsic_inline_sizes.surround_inline_size = fragment_intrinsic_inline_sizes.surround_inline_size;
self.base.intrinsic_inline_sizes = intrinsic_inline_sizes;
match self.fragment.style().get_box().float {
float::none => {}
float::left => flags.set_has_left_floated_descendants(true),
float::right => flags.set_has_right_floated_descendants(true),
}
self.base.flags = flags
}
/// Recursively (top-down) determines the actual inline-size of child contexts and fragments. When
/// called on this context, the context has had its inline-size set by the parent context.
///
/// Dual fragments consume some inline-size first, and the remainder is assigned to all child (block)
/// contexts.
fn assign_inline_sizes(&mut self, layout_context: &LayoutContext) {
let _scope = layout_debug_scope!("block::assign_inline_sizes {:s}", self.base.debug_id());
debug!("assign_inline_sizes({}): assigning inline_size for flow",
if self.is_float() {
"float"
} else {
"block"
});
if self.is_root() {
debug!("Setting root position");
self.base.position.start = LogicalPoint::zero(self.base.writing_mode);
self.base.position.size.inline = LogicalSize::from_physical(
self.base.writing_mode, layout_context.shared.screen_size).inline;
self.base.floats = Floats::new(self.base.writing_mode);
// The root element is never impacted by floats.
self.base.flags.set_impacted_by_left_floats(false);
self.base.flags.set_impacted_by_right_floats(false);
}
// Our inline-size was set to the inline-size of the containing block by the flow's parent. Now compute
// the real value.
let containing_block_inline_size = self.base.position.size.inline;
self.compute_used_inline_size(layout_context, containing_block_inline_size);
if self.is_float() {
self.float.get_mut_ref().containing_inline_size = containing_block_inline_size;
}
// Formatting contexts are never impacted by floats.
match self.formatting_context_type() {
NonformattingContext => {}
BlockFormattingContext => {
self.base.flags.set_impacted_by_left_floats(false);
self.base.flags.set_impacted_by_right_floats(false);
// We can't actually compute the inline-size of this block now, because floats might
// affect it. Speculate that its inline-size is equal to the inline-size computed above minus
// the inline-size of the previous float.
match self.previous_float_inline_size {
None => {}
Some(previous_float_inline_size) => {
self.fragment.border_box.size.inline =
self.fragment.border_box.size.inline - previous_float_inline_size
}
}
}
OtherFormattingContext => {
self.base.flags.set_impacted_by_left_floats(false);
self.base.flags.set_impacted_by_right_floats(false);
}
}
// Move in from the inline-start border edge
let inline_start_content_edge = self.fragment.border_box.start.i + self.fragment.border_padding.inline_start;
let padding_and_borders = self.fragment.border_padding.inline_start_end();
let content_inline_size = self.fragment.border_box.size.inline - padding_and_borders;
if self.is_float() {
self.base.position.size.inline = content_inline_size;
}
self.propagate_assigned_inline_size_to_children(inline_start_content_edge, content_inline_size, None);
}
/// Assigns block-sizes in-order; or, if this is a float, places the float. The default
/// implementation simply assigns block-sizes if this flow is impacted by floats. Returns true if
/// this child was impacted by floats or false otherwise.
///
/// This is called on child flows by the parent. Hence, we can assume that `assign_block-size` has
/// already been called on the child (because of the bottom-up traversal).
fn assign_block_size_for_inorder_child_if_necessary<'a>(&mut self, layout_context: &'a LayoutContext<'a>)
-> bool {
if self.is_float() {
self.place_float();
return true
}
let impacted = self.base.flags.impacted_by_floats();
if impacted {
self.assign_block_size(layout_context);
}
impacted
}
fn assign_block_size<'a>(&mut self, ctx: &'a LayoutContext<'a>) {
if self.is_replaced_content() {
// Assign block-size for fragment if it is an image fragment.
self.fragment.assign_replaced_block_size_if_necessary();
} else if self.is_float() {
debug!("assign_block_size_float: assigning block_size for float");
self.assign_block_size_float(ctx);
} else if self.is_root() {
// Root element margins should never be collapsed according to CSS § 8.3.1.
debug!("assign_block_size: assigning block_size for root flow");
self.assign_block_size_block_base(ctx, MarginsMayNotCollapse);
} else {
debug!("assign_block_size: assigning block_size for block");
self.assign_block_size_block_base(ctx, MarginsMayCollapse);
}
}
fn compute_absolute_position(&mut self) {
// FIXME(#2795): Get the real container size
let container_size = Size2D::zero();
if self.is_absolutely_positioned() {
let position_start = self.base.position.start.to_physical(
self.base.writing_mode, container_size);
self.base
.absolute_position_info
.absolute_containing_block_position = if self.is_fixed() {
// The viewport is initially at (0, 0).
position_start
} else {
// Absolute position of the containing block + position of absolute flow w/r/t the
// containing block.
self.base.absolute_position_info.absolute_containing_block_position
+ position_start
};
// Set the absolute position, which will be passed down later as part
// of containing block details for absolute descendants.
self.base.abs_position =
self.base.absolute_position_info.absolute_containing_block_position;
}
// For relatively-positioned descendants, the containing block formed by a block is just
// the content box. The containing block for absolutely-positioned descendants, on the
// other hand, is only established if we are positioned.
let relative_offset =
self.fragment.relative_position(&self.base
.absolute_position_info
.relative_containing_block_size);
if self.is_positioned() {
self.base.absolute_position_info.absolute_containing_block_position =
self.base.abs_position
+ (self.generated_containing_block_rect().start
+ relative_offset).to_physical(self.base.writing_mode, container_size)
}
let float_offset = if self.is_float() {
self.float.get_ref().rel_pos
} else {
LogicalPoint::zero(self.base.writing_mode)
};
// Compute absolute position info for children.
let mut absolute_position_info = self.base.absolute_position_info;
absolute_position_info.relative_containing_block_size = self.fragment.content_box().size;
absolute_position_info.layers_needed_for_positioned_flows =
self.base.flags.layers_needed_for_descendants();
// Process children.
let this_position = self.base.abs_position;
let writing_mode = self.base.writing_mode;
for kid in self.base.child_iter() {
if !kid.is_absolutely_positioned() {
let kid_base = flow::mut_base(kid);
kid_base.abs_position = this_position + (
kid_base.position.start
.add_point(&float_offset)
+ relative_offset).to_physical(writing_mode, container_size);
kid_base.absolute_position_info = absolute_position_info
}
}
// Process absolute descendant links.
for absolute_descendant in self.base.abs_descendants.iter() {
flow::mut_base(absolute_descendant).absolute_position_info = absolute_position_info
}
}
fn mark_as_root(&mut self) {
self.is_root = true
}
/// Return true if store overflow is delayed for this flow.
///
/// Currently happens only for absolutely positioned flows.
fn is_store_overflow_delayed(&mut self) -> bool {
self.is_absolutely_positioned()
}
fn is_root(&self) -> bool {
self.is_root
}
fn is_float(&self) -> bool {
self.float.is_some()
}
/// The 'position' property of this flow.
fn positioning(&self) -> position::T {
self.fragment.style.get_box().position
}
/// Return true if this is the root of an Absolute flow tree.
///
/// It has to be either relatively positioned or the Root flow.
fn is_root_of_absolute_flow_tree(&self) -> bool {
self.is_relatively_positioned() || self.is_root()
}
/// Return the dimensions of the containing block generated by this flow for absolutely-
/// positioned descendants. For block flows, this is the padding box.
fn generated_containing_block_rect(&self) -> LogicalRect<Au> {
self.fragment.border_box - self.fragment.style().logical_border_width()
}
fn layer_id(&self, fragment_index: uint) -> LayerId {
// FIXME(#2010, pcwalton): This is a hack and is totally bogus in the presence of pseudo-
// elements. But until we have incremental reflow we can't do better--we recreate the flow
// for every DOM node so otherwise we nuke layers on every reflow.
LayerId(self.fragment.node.id(), fragment_index)
}
fn is_absolute_containing_block(&self) -> bool {
self.is_positioned()
}
}
impl fmt::Show for BlockFlow {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.is_float() {
write!(f, "FloatFlow: {}", self.fragment)
} else if self.is_root() {
write!(f, "RootFlow: {}", self.fragment)
} else {
write!(f, "BlockFlow: {}", self.fragment)
}
}
}
/// The inputs for the inline-sizes-and-margins constraint equation.
pub struct ISizeConstraintInput {
pub computed_inline_size: MaybeAuto,
pub inline_start_margin: MaybeAuto,
pub inline_end_margin: MaybeAuto,
pub inline_start: MaybeAuto,
pub inline_end: MaybeAuto,
pub available_inline_size: Au,
pub static_i_offset: Au,
}
impl ISizeConstraintInput {
pub fn new(computed_inline_size: MaybeAuto,
inline_start_margin: MaybeAuto,
inline_end_margin: MaybeAuto,
inline_start: MaybeAuto,
inline_end: MaybeAuto,
available_inline_size: Au,
static_i_offset: Au)
-> ISizeConstraintInput {
ISizeConstraintInput {
computed_inline_size: computed_inline_size,
inline_start_margin: inline_start_margin,
inline_end_margin: inline_end_margin,
inline_start: inline_start,
inline_end: inline_end,
available_inline_size: available_inline_size,
static_i_offset: static_i_offset,
}
}
}
/// The solutions for the inline-size-and-margins constraint equation.
pub struct ISizeConstraintSolution {
pub inline_start: Au,
pub inline_end: Au,
pub inline_size: Au,
pub margin_inline_start: Au,
pub margin_inline_end: Au
}
impl ISizeConstraintSolution {
pub fn new(inline_size: Au, margin_inline_start: Au, margin_inline_end: Au) -> ISizeConstraintSolution {
ISizeConstraintSolution {
inline_start: Au(0),
inline_end: Au(0),
inline_size: inline_size,
margin_inline_start: margin_inline_start,
margin_inline_end: margin_inline_end,
}
}
fn for_absolute_flow(inline_start: Au,
inline_end: Au,
inline_size: Au,
margin_inline_start: Au,
margin_inline_end: Au)
-> ISizeConstraintSolution {
ISizeConstraintSolution {
inline_start: inline_start,
inline_end: inline_end,
inline_size: inline_size,
margin_inline_start: margin_inline_start,
margin_inline_end: margin_inline_end,
}
}
}
// Trait to encapsulate the ISize and Margin calculation.
//
// CSS Section 10.3
pub trait ISizeAndMarginsComputer {
/// Compute the inputs for the ISize constraint equation.
///
/// This is called only once to compute the initial inputs. For
/// calculation involving min-inline-size and max-inline-size, we don't need to
/// recompute these.
fn compute_inline_size_constraint_inputs(&self,
block: &mut BlockFlow,
parent_flow_inline_size: Au,
ctx: &LayoutContext)
-> ISizeConstraintInput {
let containing_block_inline_size = self.containing_block_inline_size(block, parent_flow_inline_size, ctx);
let computed_inline_size = self.initial_computed_inline_size(block, parent_flow_inline_size, ctx);
block.fragment.compute_border_padding_margins(containing_block_inline_size);
let style = block.fragment.style();
// The text alignment of a block flow is the text alignment of its box's style.
block.base.flags.set_text_align(style.get_inheritedtext().text_align);
let margin = style.logical_margin();
let position = style.logical_position();
let available_inline_size = containing_block_inline_size - block.fragment.border_padding.inline_start_end();
return ISizeConstraintInput::new(
computed_inline_size,
MaybeAuto::from_style(margin.inline_start, containing_block_inline_size),
MaybeAuto::from_style(margin.inline_end, containing_block_inline_size),
MaybeAuto::from_style(position.inline_start, containing_block_inline_size),
MaybeAuto::from_style(position.inline_end, containing_block_inline_size),
available_inline_size,
block.static_i_offset());
}
/// Set the used values for inline-size and margins got from the relevant constraint equation.
///
/// This is called only once.
///
/// Set:
/// + used values for content inline-size, inline-start margin, and inline-end margin for this flow's box.
/// + x-coordinate of this flow's box.
/// + x-coordinate of the flow wrt its Containing Block (if this is an absolute flow).
fn set_inline_size_constraint_solutions(&self,
block: &mut BlockFlow,
solution: ISizeConstraintSolution) {
let inline_size;
{
let fragment = block.fragment();
fragment.margin.inline_start = solution.margin_inline_start;
fragment.margin.inline_end = solution.margin_inline_end;
// The associated fragment has the border box of this flow.
// Left border edge.
fragment.border_box.start.i = fragment.margin.inline_start;
// Border box inline-size.
inline_size = solution.inline_size + fragment.border_padding.inline_start_end();
fragment.border_box.size.inline = inline_size;
}
// We also resize the block itself, to ensure that overflow is not calculated
// as the inline-size of our parent. We might be smaller and we might be larger if we
// overflow.
let flow = flow::mut_base(block);
flow.position.size.inline = inline_size;
}
/// Set the x coordinate of the given flow if it is absolutely positioned.
fn set_flow_x_coord_if_necessary(&self, _: &mut BlockFlow, _: ISizeConstraintSolution) {}
/// Solve the inline-size and margins constraints for this block flow.
fn solve_inline_size_constraints(&self,
block: &mut BlockFlow,
input: &ISizeConstraintInput)
-> ISizeConstraintSolution;
fn initial_computed_inline_size(&self,
block: &mut BlockFlow,
parent_flow_inline_size: Au,
ctx: &LayoutContext)
-> MaybeAuto {
MaybeAuto::from_style(block.fragment().style().content_inline_size(),
self.containing_block_inline_size(block, parent_flow_inline_size, ctx))
}
fn containing_block_inline_size(&self,
_: &mut BlockFlow,
parent_flow_inline_size: Au,
_: &LayoutContext)
-> Au {
parent_flow_inline_size
}
/// Compute the used value of inline-size, taking care of min-inline-size and max-inline-size.
///
/// CSS Section 10.4: Minimum and Maximum inline-sizes
fn compute_used_inline_size(&self,
block: &mut BlockFlow,
ctx: &LayoutContext,
parent_flow_inline_size: Au) {
let mut input = self.compute_inline_size_constraint_inputs(block, parent_flow_inline_size, ctx);
let containing_block_inline_size = self.containing_block_inline_size(block, parent_flow_inline_size, ctx);
let mut solution = self.solve_inline_size_constraints(block, &input);
// If the tentative used inline-size is greater than 'max-inline-size', inline-size should be recalculated,
// but this time using the computed value of 'max-inline-size' as the computed value for 'inline-size'.
match specified_or_none(block.fragment().style().max_inline_size(), containing_block_inline_size) {
Some(max_inline_size) if max_inline_size < solution.inline_size => {
input.computed_inline_size = Specified(max_inline_size);
solution = self.solve_inline_size_constraints(block, &input);
}
_ => {}
}
// If the resulting inline-size is smaller than 'min-inline-size', inline-size should be recalculated,
// but this time using the value of 'min-inline-size' as the computed value for 'inline-size'.
let computed_min_inline_size = specified(block.fragment().style().min_inline_size(),
containing_block_inline_size);
if computed_min_inline_size > solution.inline_size {
input.computed_inline_size = Specified(computed_min_inline_size);
solution = self.solve_inline_size_constraints(block, &input);
}
self.set_inline_size_constraint_solutions(block, solution);
self.set_flow_x_coord_if_necessary(block, solution);
}
/// Computes inline-start and inline-end margins and inline-size.
///
/// This is used by both replaced and non-replaced Blocks.
///
/// CSS 2.1 Section 10.3.3.
/// Constraint Equation: margin-inline-start + margin-inline-end + inline-size = available_inline-size
/// where available_inline-size = CB inline-size - (horizontal border + padding)
fn solve_block_inline_size_constraints(&self,
_: &mut BlockFlow,
input: &ISizeConstraintInput)
-> ISizeConstraintSolution {
let (computed_inline_size, inline_start_margin, inline_end_margin, available_inline_size) = (input.computed_inline_size,
input.inline_start_margin,
input.inline_end_margin,
input.available_inline_size);
// If inline-size is not 'auto', and inline-size + margins > available_inline-size, all
// 'auto' margins are treated as 0.
let (inline_start_margin, inline_end_margin) = match computed_inline_size {
Auto => (inline_start_margin, inline_end_margin),
Specified(inline_size) => {
let inline_start = inline_start_margin.specified_or_zero();
let inline_end = inline_end_margin.specified_or_zero();
if (inline_start + inline_end + inline_size) > available_inline_size {
(Specified(inline_start), Specified(inline_end))
} else {
(inline_start_margin, inline_end_margin)
}
}
};
// Invariant: inline-start_margin + inline-size + inline-end_margin == available_inline-size
let (inline_start_margin, inline_size, inline_end_margin) = match (inline_start_margin, computed_inline_size, inline_end_margin) {
// If all have a computed value other than 'auto', the system is
// over-constrained so we discard the end margin.
(Specified(margin_start), Specified(inline_size), Specified(_margin_end)) =>
(margin_start, inline_size, available_inline_size - (margin_start + inline_size)),
// If exactly one value is 'auto', solve for it
(Auto, Specified(inline_size), Specified(margin_end)) =>
(available_inline_size - (inline_size + margin_end), inline_size, margin_end),
(Specified(margin_start), Auto, Specified(margin_end)) =>
(margin_start, available_inline_size - (margin_start + margin_end), margin_end),
(Specified(margin_start), Specified(inline_size), Auto) =>
(margin_start, inline_size, available_inline_size - (margin_start + inline_size)),
// If inline-size is set to 'auto', any other 'auto' value becomes '0',
// and inline-size is solved for
(Auto, Auto, Specified(margin_end)) =>
(Au::new(0), available_inline_size - margin_end, margin_end),
(Specified(margin_start), Auto, Auto) =>
(margin_start, available_inline_size - margin_start, Au::new(0)),
(Auto, Auto, Auto) =>
(Au::new(0), available_inline_size, Au::new(0)),
// If inline-start and inline-end margins are auto, they become equal
(Auto, Specified(inline_size), Auto) => {
let margin = (available_inline_size - inline_size).scale_by(0.5);
(margin, inline_size, margin)
}
};
ISizeConstraintSolution::new(inline_size, inline_start_margin, inline_end_margin)
}
}
/// The different types of Blocks.
///
/// They mainly differ in the way inline-size and block-sizes and margins are calculated
/// for them.
struct AbsoluteNonReplaced;
struct AbsoluteReplaced;
struct BlockNonReplaced;
struct BlockReplaced;
struct FloatNonReplaced;
struct FloatReplaced;
impl ISizeAndMarginsComputer for AbsoluteNonReplaced {
/// Solve the horizontal constraint equation for absolute non-replaced elements.
///
/// CSS Section 10.3.7
/// Constraint equation:
/// inline-start + inline-end + inline-size + margin-inline-start + margin-inline-end
/// = absolute containing block inline-size - (horizontal padding and border)
/// [aka available_inline-size]
///
/// Return the solution for the equation.
fn solve_inline_size_constraints(&self,
block: &mut BlockFlow,
input: &ISizeConstraintInput)
-> ISizeConstraintSolution {
let &ISizeConstraintInput {
computed_inline_size,
inline_start_margin,
inline_end_margin,
inline_start,
inline_end,
available_inline_size,
static_i_offset,
..
} = input;
// TODO: Check for direction of parent flow (NOT Containing Block)
// when right-to-left is implemented.
// Assume direction is 'ltr' for now
// Distance from the inline-start edge of the Absolute Containing Block to the
// inline-start margin edge of a hypothetical box that would have been the
// first box of the element.
let static_position_inline_start = static_i_offset;
let (inline_start, inline_end, inline_size, margin_inline_start, margin_inline_end) = match (inline_start, inline_end, computed_inline_size) {
(Auto, Auto, Auto) => {
let margin_start = inline_start_margin.specified_or_zero();
let margin_end = inline_end_margin.specified_or_zero();
let inline_start = static_position_inline_start;
// Now it is the same situation as inline-start Specified and inline-end
// and inline-size Auto.
// Set inline-end to zero to calculate inline-size
let inline_size = block.get_shrink_to_fit_inline_size(
available_inline_size - (inline_start + margin_start + margin_end));
let sum = inline_start + inline_size + margin_start + margin_end;
(inline_start, available_inline_size - sum, inline_size, margin_start, margin_end)
}
(Specified(inline_start), Specified(inline_end), Specified(inline_size)) => {
match (inline_start_margin, inline_end_margin) {
(Auto, Auto) => {
let total_margin_val = available_inline_size - inline_start - inline_end - inline_size;
if total_margin_val < Au(0) {
// margin-inline-start becomes 0 because direction is 'ltr'.
// TODO: Handle 'rtl' when it is implemented.
(inline_start, inline_end, inline_size, Au(0), total_margin_val)
} else {
// Equal margins
(inline_start, inline_end, inline_size,
total_margin_val.scale_by(0.5),
total_margin_val.scale_by(0.5))
}
}
(Specified(margin_start), Auto) => {
let sum = inline_start + inline_end + inline_size + margin_start;
(inline_start, inline_end, inline_size, margin_start, available_inline_size - sum)
}
(Auto, Specified(margin_end)) => {
let sum = inline_start + inline_end + inline_size + margin_end;
(inline_start, inline_end, inline_size, available_inline_size - sum, margin_end)
}
(Specified(margin_start), Specified(margin_end)) => {
// Values are over-constrained.
// Ignore value for 'inline-end' cos direction is 'ltr'.
// TODO: Handle 'rtl' when it is implemented.
let sum = inline_start + inline_size + margin_start + margin_end;
(inline_start, available_inline_size - sum, inline_size, margin_start, margin_end)
}
}
}
// For the rest of the cases, auto values for margin are set to 0
// If only one is Auto, solve for it
(Auto, Specified(inline_end), Specified(inline_size)) => {
let margin_start = inline_start_margin.specified_or_zero();
let margin_end = inline_end_margin.specified_or_zero();
let sum = inline_end + inline_size + margin_start + margin_end;
(available_inline_size - sum, inline_end, inline_size, margin_start, margin_end)
}
(Specified(inline_start), Auto, Specified(inline_size)) => {
let margin_start = inline_start_margin.specified_or_zero();
let margin_end = inline_end_margin.specified_or_zero();
let sum = inline_start + inline_size + margin_start + margin_end;
(inline_start, available_inline_size - sum, inline_size, margin_start, margin_end)
}
(Specified(inline_start), Specified(inline_end), Auto) => {
let margin_start = inline_start_margin.specified_or_zero();
let margin_end = inline_end_margin.specified_or_zero();
let sum = inline_start + inline_end + margin_start + margin_end;
(inline_start, inline_end, available_inline_size - sum, margin_start, margin_end)
}
// If inline-size is auto, then inline-size is shrink-to-fit. Solve for the
// non-auto value.
(Specified(inline_start), Auto, Auto) => {
let margin_start = inline_start_margin.specified_or_zero();
let margin_end = inline_end_margin.specified_or_zero();
// Set inline-end to zero to calculate inline-size
let inline_size = block.get_shrink_to_fit_inline_size(
available_inline_size - (inline_start + margin_start + margin_end));
let sum = inline_start + inline_size + margin_start + margin_end;
(inline_start, available_inline_size - sum, inline_size, margin_start, margin_end)
}
(Auto, Specified(inline_end), Auto) => {
let margin_start = inline_start_margin.specified_or_zero();
let margin_end = inline_end_margin.specified_or_zero();
// Set inline-start to zero to calculate inline-size
let inline_size = block.get_shrink_to_fit_inline_size(
available_inline_size - (inline_end + margin_start + margin_end));
let sum = inline_end + inline_size + margin_start + margin_end;
(available_inline_size - sum, inline_end, inline_size, margin_start, margin_end)
}
(Auto, Auto, Specified(inline_size)) => {
let margin_start = inline_start_margin.specified_or_zero();
let margin_end = inline_end_margin.specified_or_zero();
// Setting 'inline-start' to static position because direction is 'ltr'.
// TODO: Handle 'rtl' when it is implemented.
let inline_start = static_position_inline_start;
let sum = inline_start + inline_size + margin_start + margin_end;
(inline_start, available_inline_size - sum, inline_size, margin_start, margin_end)
}
};
ISizeConstraintSolution::for_absolute_flow(inline_start, inline_end, inline_size, margin_inline_start, margin_inline_end)
}
fn containing_block_inline_size(&self, block: &mut BlockFlow, _: Au, ctx: &LayoutContext) -> Au {
block.containing_block_size(ctx.shared.screen_size).inline
}
fn set_flow_x_coord_if_necessary(&self,
block: &mut BlockFlow,
solution: ISizeConstraintSolution) {
// Set the x-coordinate of the absolute flow wrt to its containing block.
block.base.position.start.i = solution.inline_start;
}
}
impl ISizeAndMarginsComputer for AbsoluteReplaced {
/// Solve the horizontal constraint equation for absolute replaced elements.
///
/// `static_i_offset`: total offset of current flow's hypothetical
/// position (static position) from its actual Containing Block.
///
/// CSS Section 10.3.8
/// Constraint equation:
/// inline-start + inline-end + inline-size + margin-inline-start + margin-inline-end
/// = absolute containing block inline-size - (horizontal padding and border)
/// [aka available_inline-size]
///
/// Return the solution for the equation.
fn solve_inline_size_constraints(&self, _: &mut BlockFlow, input: &ISizeConstraintInput)
-> ISizeConstraintSolution {
let &ISizeConstraintInput {
computed_inline_size,
inline_start_margin,
inline_end_margin,
inline_start,
inline_end,
available_inline_size,
static_i_offset,
..
} = input;
// TODO: Check for direction of static-position Containing Block (aka
// parent flow, _not_ the actual Containing Block) when right-to-left
// is implemented
// Assume direction is 'ltr' for now
// TODO: Handle all the cases for 'rtl' direction.
let inline_size = match computed_inline_size {
Specified(w) => w,
_ => fail!("{} {}",
"The used value for inline_size for absolute replaced flow",
"should have already been calculated by now.")
};
// Distance from the inline-start edge of the Absolute Containing Block to the
// inline-start margin edge of a hypothetical box that would have been the
// first box of the element.
let static_position_inline_start = static_i_offset;
let (inline_start, inline_end, inline_size, margin_inline_start, margin_inline_end) = match (inline_start, inline_end) {
(Auto, Auto) => {
let inline_start = static_position_inline_start;
let margin_start = inline_start_margin.specified_or_zero();
let margin_end = inline_end_margin.specified_or_zero();
let sum = inline_start + inline_size + margin_start + margin_end;
(inline_start, available_inline_size - sum, inline_size, margin_start, margin_end)
}
// If only one is Auto, solve for it
(Auto, Specified(inline_end)) => {
let margin_start = inline_start_margin.specified_or_zero();
let margin_end = inline_end_margin.specified_or_zero();
let sum = inline_end + inline_size + margin_start + margin_end;
(available_inline_size - sum, inline_end, inline_size, margin_start, margin_end)
}
(Specified(inline_start), Auto) => {
let margin_start = inline_start_margin.specified_or_zero();
let margin_end = inline_end_margin.specified_or_zero();
let sum = inline_start + inline_size + margin_start + margin_end;
(inline_start, available_inline_size - sum, inline_size, margin_start, margin_end)
}
(Specified(inline_start), Specified(inline_end)) => {
match (inline_start_margin, inline_end_margin) {
(Auto, Auto) => {
let total_margin_val = available_inline_size - inline_start - inline_end - inline_size;
if total_margin_val < Au(0) {
// margin-inline-start becomes 0 because direction is 'ltr'.
(inline_start, inline_end, inline_size, Au(0), total_margin_val)
} else {
// Equal margins
(inline_start, inline_end, inline_size,
total_margin_val.scale_by(0.5),
total_margin_val.scale_by(0.5))
}
}
(Specified(margin_start), Auto) => {
let sum = inline_start + inline_end + inline_size + margin_start;
(inline_start, inline_end, inline_size, margin_start, available_inline_size - sum)
}
(Auto, Specified(margin_end)) => {
let sum = inline_start + inline_end + inline_size + margin_end;
(inline_start, inline_end, inline_size, available_inline_size - sum, margin_end)
}
(Specified(margin_start), Specified(margin_end)) => {
// Values are over-constrained.
// Ignore value for 'inline-end' cos direction is 'ltr'.
let sum = inline_start + inline_size + margin_start + margin_end;
(inline_start, available_inline_size - sum, inline_size, margin_start, margin_end)
}
}
}
};
ISizeConstraintSolution::for_absolute_flow(inline_start, inline_end, inline_size, margin_inline_start, margin_inline_end)
}
/// Calculate used value of inline-size just like we do for inline replaced elements.
fn initial_computed_inline_size(&self,
block: &mut BlockFlow,
_: Au,
ctx: &LayoutContext)
-> MaybeAuto {
let containing_block_inline_size = block.containing_block_size(ctx.shared.screen_size).inline;
let fragment = block.fragment();
fragment.assign_replaced_inline_size_if_necessary(containing_block_inline_size);
// For replaced absolute flow, the rest of the constraint solving will
// take inline-size to be specified as the value computed here.
Specified(fragment.content_inline_size())
}
fn containing_block_inline_size(&self, block: &mut BlockFlow, _: Au, ctx: &LayoutContext) -> Au {
block.containing_block_size(ctx.shared.screen_size).inline
}
fn set_flow_x_coord_if_necessary(&self, block: &mut BlockFlow, solution: ISizeConstraintSolution) {
// Set the x-coordinate of the absolute flow wrt to its containing block.
block.base.position.start.i = solution.inline_start;
}
}
impl ISizeAndMarginsComputer for BlockNonReplaced {
/// Compute inline-start and inline-end margins and inline-size.
fn solve_inline_size_constraints(&self,
block: &mut BlockFlow,
input: &ISizeConstraintInput)
-> ISizeConstraintSolution {
self.solve_block_inline_size_constraints(block, input)
}
}
impl ISizeAndMarginsComputer for BlockReplaced {
/// Compute inline-start and inline-end margins and inline-size.
///
/// ISize has already been calculated. We now calculate the margins just
/// like for non-replaced blocks.
fn solve_inline_size_constraints(&self,
block: &mut BlockFlow,
input: &ISizeConstraintInput)
-> ISizeConstraintSolution {
match input.computed_inline_size {
Specified(_) => {},
Auto => fail!("BlockReplaced: inline_size should have been computed by now")
};
self.solve_block_inline_size_constraints(block, input)
}
/// Calculate used value of inline-size just like we do for inline replaced elements.
fn initial_computed_inline_size(&self,
block: &mut BlockFlow,
parent_flow_inline_size: Au,
_: &LayoutContext)
-> MaybeAuto {
let fragment = block.fragment();
fragment.assign_replaced_inline_size_if_necessary(parent_flow_inline_size);
// For replaced block flow, the rest of the constraint solving will
// take inline-size to be specified as the value computed here.
Specified(fragment.content_inline_size())
}
}
impl ISizeAndMarginsComputer for FloatNonReplaced {
/// CSS Section 10.3.5
///
/// If inline-size is computed as 'auto', the used value is the 'shrink-to-fit' inline-size.
fn solve_inline_size_constraints(&self,
block: &mut BlockFlow,
input: &ISizeConstraintInput)
-> ISizeConstraintSolution {
let (computed_inline_size, inline_start_margin, inline_end_margin, available_inline_size) = (input.computed_inline_size,
input.inline_start_margin,
input.inline_end_margin,
input.available_inline_size);
let margin_inline_start = inline_start_margin.specified_or_zero();
let margin_inline_end = inline_end_margin.specified_or_zero();
let available_inline_size_float = available_inline_size - margin_inline_start - margin_inline_end;
let shrink_to_fit = block.get_shrink_to_fit_inline_size(available_inline_size_float);
let inline_size = computed_inline_size.specified_or_default(shrink_to_fit);
debug!("assign_inline_sizes_float -- inline_size: {}", inline_size);
ISizeConstraintSolution::new(inline_size, margin_inline_start, margin_inline_end)
}
}
impl ISizeAndMarginsComputer for FloatReplaced {
/// CSS Section 10.3.5
///
/// If inline-size is computed as 'auto', the used value is the 'shrink-to-fit' inline-size.
fn solve_inline_size_constraints(&self, _: &mut BlockFlow, input: &ISizeConstraintInput)
-> ISizeConstraintSolution {
let (computed_inline_size, inline_start_margin, inline_end_margin) = (input.computed_inline_size,
input.inline_start_margin,
input.inline_end_margin);
let margin_inline_start = inline_start_margin.specified_or_zero();
let margin_inline_end = inline_end_margin.specified_or_zero();
let inline_size = match computed_inline_size {
Specified(w) => w,
Auto => fail!("FloatReplaced: inline_size should have been computed by now")
};
debug!("assign_inline_sizes_float -- inline_size: {}", inline_size);
ISizeConstraintSolution::new(inline_size, margin_inline_start, margin_inline_end)
}
/// Calculate used value of inline-size just like we do for inline replaced elements.
fn initial_computed_inline_size(&self,
block: &mut BlockFlow,
parent_flow_inline_size: Au,
_: &LayoutContext)
-> MaybeAuto {
let fragment = block.fragment();
fragment.assign_replaced_inline_size_if_necessary(parent_flow_inline_size);
// For replaced block flow, the rest of the constraint solving will
// take inline-size to be specified as the value computed here.
Specified(fragment.content_inline_size())
}
}
fn propagate_column_inline_sizes_to_child(kid: &mut Flow,
child_index: uint,
content_inline_size: Au,
column_inline_sizes: &[Au],
inline_start_margin_edge: &mut Au) {
// If kid is table_rowgroup or table_row, the column inline-sizes info should be copied from its
// parent.
//
// FIXME(pcwalton): This seems inefficient. Reference count it instead?
let inline_size = if kid.is_table() || kid.is_table_rowgroup() || kid.is_table_row() {
*kid.col_inline_sizes() = column_inline_sizes.iter().map(|&x| x).collect();
// ISize of kid flow is our content inline-size.
content_inline_size
} else if kid.is_table_cell() {
// If kid is table_cell, the x offset and inline-size for each cell should be
// calculated from parent's column inline-sizes info.
*inline_start_margin_edge = if child_index == 0 {
Au(0)
} else {
*inline_start_margin_edge + column_inline_sizes[child_index - 1]
};
column_inline_sizes[child_index]
} else {
// ISize of kid flow is our content inline-size.
content_inline_size
};
let kid_base = flow::mut_base(kid);
kid_base.position.start.i = *inline_start_margin_edge;
kid_base.position.size.inline = inline_size;
}