servo/components/util/mem.rs
Ms2ger 6b75078503 Make DOMString a newtype around String, rather than a typedef.
This should make it somewhat easier to experiment with alternative
representations in the future. To reduce churn, this commit leaves the String
field public, though.

Also, this will allow us to use the default String type to represent the IDL
USVString type, which explicitly forbids unpaired surrogates, ans as such is
a better match to the Rust String type.
2015-11-04 12:09:11 +01:00

427 lines
14 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Data structure measurement.
use app_units::Au;
use azure::azure_hl::Color;
use cssparser::Color as CSSParserColor;
use cssparser::{RGBA, TokenSerializationType};
use cursor::Cursor;
use euclid::length::Length;
use euclid::scale_factor::ScaleFactor;
use euclid::{Matrix2D, Matrix4, Point2D, Rect, SideOffsets2D, Size2D};
use geometry::{PagePx, ViewportPx};
use html5ever::tree_builder::QuirksMode;
use hyper::header::ContentType;
use hyper::http::RawStatus;
use hyper::method::Method;
use hyper::mime::{Attr, Mime, SubLevel, TopLevel, Value};
use js::jsapi::Heap;
use js::jsval::JSVal;
use js::rust::GCMethods;
use layers::geometry::DevicePixel;
use libc::{c_void, size_t};
use logical_geometry::WritingMode;
use rand::OsRng;
use range::Range;
use selectors::parser::{Combinator, CompoundSelector, PseudoElement, Selector, SimpleSelector};
use selectors::states::ElementState;
use std::cell::{Cell, RefCell};
use std::collections::{HashMap, LinkedList, hash_state};
use std::hash::Hash;
use std::mem::{size_of, transmute};
use std::rc::Rc;
use std::result::Result;
use std::sync::Arc;
use str::{DOMString, LengthOrPercentageOrAuto};
use string_cache::atom::Atom;
use string_cache::namespace::Namespace;
use url;
extern {
// Get the size of a heap block.
//
// Ideally Rust would expose a function like this in std::rt::heap, which would avoid the
// jemalloc dependence.
//
// The C prototype is `je_malloc_usable_size(JEMALLOC_USABLE_SIZE_CONST void *ptr)`. On some
// platforms `JEMALLOC_USABLE_SIZE_CONST` is `const` and on some it is empty. But in practice
// this function doesn't modify the contents of the block that `ptr` points to, so we use
// `*const c_void` here.
fn je_malloc_usable_size(ptr: *const c_void) -> size_t;
}
// A wrapper for je_malloc_usable_size that handles `EMPTY` and returns `usize`.
pub fn heap_size_of(ptr: *const c_void) -> usize {
if ptr == ::alloc::heap::EMPTY as *const c_void {
0
} else {
unsafe { je_malloc_usable_size(ptr) as usize }
}
}
// The simplest trait for measuring the size of heap data structures. More complex traits that
// return multiple measurements -- e.g. measure text separately from images -- are also possible,
// and should be used when appropriate.
//
pub trait HeapSizeOf {
/// Measure the size of any heap-allocated structures that hang off this value, but not the
/// space taken up by the value itself (i.e. what size_of::<T> measures, more or less); that
/// space is handled by the implementation of HeapSizeOf for Box<T> below.
fn heap_size_of_children(&self) -> usize;
}
// There are two possible ways to measure the size of `self` when it's on the heap: compute it
// (with `::std::rt::heap::usable_size(::std::mem::size_of::<T>(), 0)`) or measure it directly
// using the heap allocator (with `heap_size_of`). We do the latter, for the following reasons.
//
// * The heap allocator is the true authority for the sizes of heap blocks; its measurement is
// guaranteed to be correct. In comparison, size computations are error-prone. (For example, the
// `rt::heap::usable_size` function used in some of Rust's non-default allocator implementations
// underestimate the true usable size of heap blocks, which is safe in general but would cause
// under-measurement here.)
//
// * If we measure something that isn't a heap block, we'll get a crash. This keeps us honest,
// which is important because unsafe code is involved and this can be gotten wrong.
//
// However, in the best case, the two approaches should give the same results.
//
impl<T: HeapSizeOf> HeapSizeOf for Box<T> {
fn heap_size_of_children(&self) -> usize {
// Measure size of `self`.
heap_size_of(&**self as *const T as *const c_void) + (**self).heap_size_of_children()
}
}
impl HeapSizeOf for String {
fn heap_size_of_children(&self) -> usize {
heap_size_of(self.as_ptr() as *const c_void)
}
}
impl HeapSizeOf for DOMString {
fn heap_size_of_children(&self) -> usize {
self.0.heap_size_of_children()
}
}
impl<T: HeapSizeOf> HeapSizeOf for Option<T> {
fn heap_size_of_children(&self) -> usize {
match *self {
None => 0,
Some(ref x) => x.heap_size_of_children()
}
}
}
impl HeapSizeOf for url::Url {
fn heap_size_of_children(&self) -> usize {
// Using a struct pattern without `..` rather than `foo.bar` field access
// makes sure this will be updated if a field is added.
let &url::Url { ref scheme, ref scheme_data, ref query, ref fragment } = self;
scheme.heap_size_of_children() +
scheme_data.heap_size_of_children() +
query.heap_size_of_children() +
fragment.heap_size_of_children()
}
}
impl HeapSizeOf for url::SchemeData {
fn heap_size_of_children(&self) -> usize {
match *self {
url::SchemeData::Relative(ref data) => data.heap_size_of_children(),
url::SchemeData::NonRelative(ref str) => str.heap_size_of_children()
}
}
}
impl HeapSizeOf for url::RelativeSchemeData {
fn heap_size_of_children(&self) -> usize {
// Using a struct pattern without `..` rather than `foo.bar` field access
// makes sure this will be updated if a field is added.
let &url::RelativeSchemeData { ref username, ref password, ref host,
ref port, ref default_port, ref path } = self;
username.heap_size_of_children() +
password.heap_size_of_children() +
host.heap_size_of_children() +
port.heap_size_of_children() +
default_port.heap_size_of_children() +
path.heap_size_of_children()
}
}
impl HeapSizeOf for url::Host {
fn heap_size_of_children(&self) -> usize {
match *self {
url::Host::Domain(ref str) => str.heap_size_of_children(),
url::Host::Ipv6(_) => 0
}
}
}
impl<T: HeapSizeOf, U: HeapSizeOf> HeapSizeOf for (T, U) {
fn heap_size_of_children(&self) -> usize {
self.0.heap_size_of_children() + self.1.heap_size_of_children()
}
}
impl<T: HeapSizeOf> HeapSizeOf for Arc<T> {
fn heap_size_of_children(&self) -> usize {
(**self).heap_size_of_children()
}
}
impl<T: HeapSizeOf> HeapSizeOf for RefCell<T> {
fn heap_size_of_children(&self) -> usize {
self.borrow().heap_size_of_children()
}
}
impl<T: HeapSizeOf + Copy> HeapSizeOf for Cell<T> {
fn heap_size_of_children(&self) -> usize {
self.get().heap_size_of_children()
}
}
impl<T: HeapSizeOf> HeapSizeOf for Vec<T> {
fn heap_size_of_children(&self) -> usize {
heap_size_of(self.as_ptr() as *const c_void) +
self.iter().fold(0, |n, elem| n + elem.heap_size_of_children())
}
}
impl<T> HeapSizeOf for Vec<Rc<T>> {
fn heap_size_of_children(&self) -> usize {
// The fate of measuring Rc<T> is still undecided, but we still want to measure
// the space used for storing them.
heap_size_of(self.as_ptr() as *const c_void)
}
}
impl<K: HeapSizeOf, V: HeapSizeOf, S> HeapSizeOf for HashMap<K, V, S>
where K: Eq + Hash, S: hash_state::HashState {
fn heap_size_of_children(&self) -> usize {
//TODO(#6908) measure actual bucket memory usage instead of approximating
let size = self.capacity() * (size_of::<V>() + size_of::<K>());
self.iter().fold(size, |n, (key, value)| {
n + key.heap_size_of_children() + value.heap_size_of_children()
})
}
}
// FIXME(njn): We can't implement HeapSizeOf accurately for LinkedList because it requires access
// to the private Node type. Eventually we'll want to add HeapSizeOf (or equivalent) to Rust
// itself. In the meantime, we use the dirty hack of transmuting LinkedList into an identical type
// (LinkedList2) and measuring that.
impl<T: HeapSizeOf> HeapSizeOf for LinkedList<T> {
fn heap_size_of_children(&self) -> usize {
let list2: &LinkedList2<T> = unsafe { transmute(self) };
list2.heap_size_of_children()
}
}
struct LinkedList2<T> {
_length: usize,
list_head: Link<T>,
_list_tail: Rawlink<Node<T>>,
}
type Link<T> = Option<Box<Node<T>>>;
struct Rawlink<T> {
_p: *mut T,
}
struct Node<T> {
next: Link<T>,
_prev: Rawlink<Node<T>>,
value: T,
}
impl<T: HeapSizeOf> HeapSizeOf for Node<T> {
// Unlike most heap_size_of_children() functions, this one does *not* measure descendents.
// Instead, LinkedList2<T>::heap_size_of_children() handles that, so that it can use iteration
// instead of recursion, which avoids potentially blowing the stack.
fn heap_size_of_children(&self) -> usize {
self.value.heap_size_of_children()
}
}
impl<T: HeapSizeOf> HeapSizeOf for LinkedList2<T> {
fn heap_size_of_children(&self) -> usize {
let mut size = 0;
let mut curr: &Link<T> = &self.list_head;
while curr.is_some() {
size += (*curr).heap_size_of_children();
curr = &curr.as_ref().unwrap().next;
}
size
}
}
// This is a basic sanity check. If the representation of LinkedList changes such that it becomes a
// different size to LinkedList2, this will fail at compile-time.
#[allow(dead_code)]
unsafe fn linked_list2_check() {
transmute::<LinkedList<i32>, LinkedList2<i32>>(panic!());
}
// Currently, types that implement the Drop type are larger than those that don't. Because
// LinkedList implements Drop, LinkedList2 must also so that linked_list2_check() doesn't fail.
impl<T> Drop for LinkedList2<T> {
fn drop(&mut self) {}
}
/// For use on types defined in external crates
/// with known heap sizes.
#[macro_export]
macro_rules! known_heap_size(
($size:expr, $($ty:ident),+) => (
$(
impl $crate::mem::HeapSizeOf for $ty {
#[inline(always)]
fn heap_size_of_children(&self) -> usize {
$size
}
}
)+
);
($size: expr, $($ty:ident<$($gen:ident),+>),+) => (
$(
impl<$($gen: $crate::mem::HeapSizeOf),+> $crate::mem::HeapSizeOf for $ty<$($gen),+> {
#[inline(always)]
fn heap_size_of_children(&self) -> usize {
$size
}
}
)+
);
);
// This is measured properly by the heap measurement implemented in SpiderMonkey.
impl<T: Copy + GCMethods<T>> HeapSizeOf for Heap<T> {
fn heap_size_of_children(&self) -> usize {
0
}
}
impl HeapSizeOf for Method {
fn heap_size_of_children(&self) -> usize {
match *self {
Method::Extension(ref str) => str.heap_size_of_children(),
_ => 0
}
}
}
impl<T: HeapSizeOf, U: HeapSizeOf> HeapSizeOf for Result<T, U> {
fn heap_size_of_children(&self) -> usize {
match *self {
Result::Ok(ref ok) => ok.heap_size_of_children(),
Result::Err(ref err) => err.heap_size_of_children()
}
}
}
impl HeapSizeOf for () {
fn heap_size_of_children(&self) -> usize {
0
}
}
impl HeapSizeOf for Selector {
fn heap_size_of_children(&self) -> usize {
let &Selector { ref compound_selectors, ref pseudo_element, ref specificity } = self;
compound_selectors.heap_size_of_children() + pseudo_element.heap_size_of_children() +
specificity.heap_size_of_children()
}
}
impl HeapSizeOf for CompoundSelector {
fn heap_size_of_children(&self) -> usize {
let &CompoundSelector { ref simple_selectors, ref next } = self;
simple_selectors.heap_size_of_children() + next.heap_size_of_children()
}
}
impl HeapSizeOf for SimpleSelector {
fn heap_size_of_children(&self) -> usize {
match *self {
SimpleSelector::Negation(ref vec) => vec.heap_size_of_children(),
SimpleSelector::AttrIncludes(_, ref str) | SimpleSelector::AttrPrefixMatch(_, ref str) |
SimpleSelector::AttrSubstringMatch(_, ref str) | SimpleSelector::AttrSuffixMatch(_, ref str)
=> str.heap_size_of_children(),
SimpleSelector::AttrEqual(_, ref str, _) => str.heap_size_of_children(),
SimpleSelector::AttrDashMatch(_, ref first, ref second) => first.heap_size_of_children()
+ second.heap_size_of_children(),
// All other types come down to Atom, enum or i32, all 0
_ => 0
}
}
}
impl HeapSizeOf for ContentType {
fn heap_size_of_children(&self) -> usize {
let &ContentType(ref mime) = self;
mime.heap_size_of_children()
}
}
impl HeapSizeOf for Mime {
fn heap_size_of_children(&self) -> usize {
let &Mime(ref top_level, ref sub_level, ref vec) = self;
top_level.heap_size_of_children() + sub_level.heap_size_of_children() +
vec.heap_size_of_children()
}
}
impl HeapSizeOf for TopLevel {
fn heap_size_of_children(&self) -> usize {
match *self {
TopLevel::Ext(ref str) => str.heap_size_of_children(),
_ => 0
}
}
}
impl HeapSizeOf for SubLevel {
fn heap_size_of_children(&self) -> usize {
match *self {
SubLevel::Ext(ref str) => str.heap_size_of_children(),
_ => 0
}
}
}
impl HeapSizeOf for Attr {
fn heap_size_of_children(&self) -> usize {
match *self {
Attr::Ext(ref str) => str.heap_size_of_children(),
_ => 0
}
}
}
impl HeapSizeOf for Value {
fn heap_size_of_children(&self) -> usize {
match *self {
Value::Ext(ref str) => str.heap_size_of_children(),
_ => 0
}
}
}
known_heap_size!(0, u8, u16, u32, u64, usize);
known_heap_size!(0, i8, i16, i32, i64, isize);
known_heap_size!(0, bool, f32, f64);
known_heap_size!(0, Rect<T>, Point2D<T>, Size2D<T>, Matrix2D<T>, SideOffsets2D<T>, Range<T>);
known_heap_size!(0, Length<T, U>, ScaleFactor<T, U, V>);
known_heap_size!(0, Au, WritingMode, CSSParserColor, Color, RGBA, Cursor, Matrix4, Atom, Namespace);
known_heap_size!(0, JSVal, PagePx, ViewportPx, DevicePixel, QuirksMode, OsRng, RawStatus);
known_heap_size!(0, TokenSerializationType, LengthOrPercentageOrAuto);
known_heap_size!(0, ElementState, Combinator, PseudoElement, str);