servo/components/style/sharing/mod.rs
Martin Robinson 364235ac0c Include animations and transitions in the cascade
Instead of applying animations and transitions to styled elements,
include them in the cascade. This allows them to interact properly with
things like font-size and !important rules.
2020-06-09 11:41:07 +02:00

899 lines
32 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Code related to the style sharing cache, an optimization that allows similar
//! nodes to share style without having to run selector matching twice.
//!
//! The basic setup is as follows. We have an LRU cache of style sharing
//! candidates. When we try to style a target element, we first check whether
//! we can quickly determine that styles match something in this cache, and if
//! so we just use the cached style information. This check is done with a
//! StyleBloom filter set up for the target element, which may not be a correct
//! state for the cached candidate element if they're cousins instead of
//! siblings.
//!
//! The complicated part is determining that styles match. This is subject to
//! the following constraints:
//!
//! 1) The target and candidate must be inheriting the same styles.
//! 2) The target and candidate must have exactly the same rules matching them.
//! 3) The target and candidate must have exactly the same non-selector-based
//! style information (inline styles, presentation hints).
//! 4) The target and candidate must have exactly the same rules matching their
//! pseudo-elements, because an element's style data points to the style
//! data for its pseudo-elements.
//!
//! These constraints are satisfied in the following ways:
//!
//! * We check that the parents of the target and the candidate have the same
//! computed style. This addresses constraint 1.
//!
//! * We check that the target and candidate have the same inline style and
//! presentation hint declarations. This addresses constraint 3.
//!
//! * We ensure that a target matches a candidate only if they have the same
//! matching result for all selectors that target either elements or the
//! originating elements of pseudo-elements. This addresses constraint 4
//! (because it prevents a target that has pseudo-element styles from matching
//! a candidate that has different pseudo-element styles) as well as
//! constraint 2.
//!
//! The actual checks that ensure that elements match the same rules are
//! conceptually split up into two pieces. First, we do various checks on
//! elements that make sure that the set of possible rules in all selector maps
//! in the stylist (for normal styling and for pseudo-elements) that might match
//! the two elements is the same. For example, we enforce that the target and
//! candidate must have the same localname and namespace. Second, we have a
//! selector map of "revalidation selectors" that the stylist maintains that we
//! actually match against the target and candidate and then check whether the
//! two sets of results were the same. Due to the up-front selector map checks,
//! we know that the target and candidate will be matched against the same exact
//! set of revalidation selectors, so the match result arrays can be compared
//! directly.
//!
//! It's very important that a selector be added to the set of revalidation
//! selectors any time there are two elements that could pass all the up-front
//! checks but match differently against some ComplexSelector in the selector.
//! If that happens, then they can have descendants that might themselves pass
//! the up-front checks but would have different matching results for the
//! selector in question. In this case, "descendants" includes pseudo-elements,
//! so there is a single selector map of revalidation selectors that includes
//! both selectors targeting elements and selectors targeting pseudo-element
//! originating elements. We ensure that the pseudo-element parts of all these
//! selectors are effectively stripped off, so that matching them all against
//! elements makes sense.
use crate::applicable_declarations::ApplicableDeclarationBlock;
use crate::bloom::StyleBloom;
use crate::context::{SelectorFlagsMap, SharedStyleContext, StyleContext};
use crate::dom::{SendElement, TElement};
use crate::matching::MatchMethods;
use crate::properties::ComputedValues;
use crate::rule_tree::StrongRuleNode;
use crate::style_resolver::{PrimaryStyle, ResolvedElementStyles};
use crate::stylist::Stylist;
use crate::Atom;
use atomic_refcell::{AtomicRefCell, AtomicRefMut};
use owning_ref::OwningHandle;
use selectors::matching::{ElementSelectorFlags, VisitedHandlingMode};
use selectors::NthIndexCache;
use servo_arc::Arc;
use smallbitvec::SmallBitVec;
use smallvec::SmallVec;
use std::marker::PhantomData;
use std::mem::{self, ManuallyDrop};
use std::ops::Deref;
use std::ptr::NonNull;
use uluru::{Entry, LRUCache};
mod checks;
/// The amount of nodes that the style sharing candidate cache should hold at
/// most.
///
/// The cache size was chosen by measuring style sharing and resulting
/// performance on a few pages; sizes up to about 32 were giving good sharing
/// improvements (e.g. 3x fewer styles having to be resolved than at size 8) and
/// slight performance improvements. Sizes larger than 32 haven't really been
/// tested.
pub const SHARING_CACHE_SIZE: usize = 32;
/// Opaque pointer type to compare ComputedValues identities.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct OpaqueComputedValues(NonNull<()>);
unsafe impl Send for OpaqueComputedValues {}
unsafe impl Sync for OpaqueComputedValues {}
impl OpaqueComputedValues {
fn from(cv: &ComputedValues) -> Self {
let p =
unsafe { NonNull::new_unchecked(cv as *const ComputedValues as *const () as *mut ()) };
OpaqueComputedValues(p)
}
fn eq(&self, cv: &ComputedValues) -> bool {
Self::from(cv) == *self
}
}
/// Some data we want to avoid recomputing all the time while trying to share
/// style.
#[derive(Debug, Default)]
pub struct ValidationData {
/// The class list of this element.
///
/// TODO(emilio): Maybe check whether rules for these classes apply to the
/// element?
class_list: Option<SmallVec<[Atom; 5]>>,
/// The part list of this element.
///
/// TODO(emilio): Maybe check whether rules with these part names apply to
/// the element?
part_list: Option<SmallVec<[Atom; 5]>>,
/// The list of presentational attributes of the element.
pres_hints: Option<SmallVec<[ApplicableDeclarationBlock; 5]>>,
/// The pointer identity of the parent ComputedValues.
parent_style_identity: Option<OpaqueComputedValues>,
/// The cached result of matching this entry against the revalidation
/// selectors.
revalidation_match_results: Option<SmallBitVec>,
}
impl ValidationData {
/// Move the cached data to a new instance, and return it.
pub fn take(&mut self) -> Self {
mem::replace(self, Self::default())
}
/// Get or compute the list of presentational attributes associated with
/// this element.
pub fn pres_hints<E>(&mut self, element: E) -> &[ApplicableDeclarationBlock]
where
E: TElement,
{
self.pres_hints.get_or_insert_with(|| {
let mut pres_hints = SmallVec::new();
element.synthesize_presentational_hints_for_legacy_attributes(
VisitedHandlingMode::AllLinksUnvisited,
&mut pres_hints,
);
pres_hints
})
}
/// Get or compute the part-list associated with this element.
pub fn part_list<E>(&mut self, element: E) -> &[Atom]
where
E: TElement,
{
if !element.has_part_attr() {
return &[];
}
self.part_list.get_or_insert_with(|| {
let mut list = SmallVec::<[Atom; 5]>::new();
element.each_part(|p| list.push(p.clone()));
// See below for the reasoning.
if !list.spilled() {
list.sort_unstable_by_key(|a| a.get_hash());
}
list
})
}
/// Get or compute the class-list associated with this element.
pub fn class_list<E>(&mut self, element: E) -> &[Atom]
where
E: TElement,
{
self.class_list.get_or_insert_with(|| {
let mut list = SmallVec::<[Atom; 5]>::new();
element.each_class(|c| list.push(c.clone()));
// Assuming there are a reasonable number of classes (we use the
// inline capacity as "reasonable number"), sort them to so that
// we don't mistakenly reject sharing candidates when one element
// has "foo bar" and the other has "bar foo".
if !list.spilled() {
list.sort_unstable_by_key(|a| a.get_hash());
}
list
})
}
/// Get or compute the parent style identity.
pub fn parent_style_identity<E>(&mut self, el: E) -> OpaqueComputedValues
where
E: TElement,
{
self.parent_style_identity
.get_or_insert_with(|| {
let parent = el.inheritance_parent().unwrap();
let values =
OpaqueComputedValues::from(parent.borrow_data().unwrap().styles.primary());
values
})
.clone()
}
/// Computes the revalidation results if needed, and returns it.
/// Inline so we know at compile time what bloom_known_valid is.
#[inline]
fn revalidation_match_results<E, F>(
&mut self,
element: E,
stylist: &Stylist,
bloom: &StyleBloom<E>,
nth_index_cache: &mut NthIndexCache,
bloom_known_valid: bool,
flags_setter: &mut F,
) -> &SmallBitVec
where
E: TElement,
F: FnMut(&E, ElementSelectorFlags),
{
self.revalidation_match_results.get_or_insert_with(|| {
// The bloom filter may already be set up for our element.
// If it is, use it. If not, we must be in a candidate
// (i.e. something in the cache), and the element is one
// of our cousins, not a sibling. In that case, we'll
// just do revalidation selector matching without a bloom
// filter, to avoid thrashing the filter.
let bloom_to_use = if bloom_known_valid {
debug_assert_eq!(bloom.current_parent(), element.traversal_parent());
Some(bloom.filter())
} else {
if bloom.current_parent() == element.traversal_parent() {
Some(bloom.filter())
} else {
None
}
};
stylist.match_revalidation_selectors(
element,
bloom_to_use,
nth_index_cache,
flags_setter,
)
})
}
}
/// Information regarding a style sharing candidate, that is, an entry in the
/// style sharing cache.
///
/// Note that this information is stored in TLS and cleared after the traversal,
/// and once here, the style information of the element is immutable, so it's
/// safe to access.
///
/// Important: If you change the members/layout here, You need to do the same for
/// FakeCandidate below.
#[derive(Debug)]
pub struct StyleSharingCandidate<E: TElement> {
/// The element.
element: E,
validation_data: ValidationData,
}
struct FakeCandidate {
_element: usize,
_validation_data: ValidationData,
}
impl<E: TElement> Deref for StyleSharingCandidate<E> {
type Target = E;
fn deref(&self) -> &Self::Target {
&self.element
}
}
impl<E: TElement> StyleSharingCandidate<E> {
/// Get the classlist of this candidate.
fn class_list(&mut self) -> &[Atom] {
self.validation_data.class_list(self.element)
}
/// Get the part list of this candidate.
fn part_list(&mut self) -> &[Atom] {
self.validation_data.part_list(self.element)
}
/// Get the pres hints of this candidate.
fn pres_hints(&mut self) -> &[ApplicableDeclarationBlock] {
self.validation_data.pres_hints(self.element)
}
/// Get the parent style identity.
fn parent_style_identity(&mut self) -> OpaqueComputedValues {
self.validation_data.parent_style_identity(self.element)
}
/// Compute the bit vector of revalidation selector match results
/// for this candidate.
fn revalidation_match_results(
&mut self,
stylist: &Stylist,
bloom: &StyleBloom<E>,
nth_index_cache: &mut NthIndexCache,
) -> &SmallBitVec {
self.validation_data.revalidation_match_results(
self.element,
stylist,
bloom,
nth_index_cache,
/* bloom_known_valid = */ false,
&mut |_, _| {},
)
}
}
impl<E: TElement> PartialEq<StyleSharingCandidate<E>> for StyleSharingCandidate<E> {
fn eq(&self, other: &Self) -> bool {
self.element == other.element
}
}
/// An element we want to test against the style sharing cache.
pub struct StyleSharingTarget<E: TElement> {
element: E,
validation_data: ValidationData,
}
impl<E: TElement> Deref for StyleSharingTarget<E> {
type Target = E;
fn deref(&self) -> &Self::Target {
&self.element
}
}
impl<E: TElement> StyleSharingTarget<E> {
/// Trivially construct a new StyleSharingTarget to test against the cache.
pub fn new(element: E) -> Self {
Self {
element: element,
validation_data: ValidationData::default(),
}
}
fn class_list(&mut self) -> &[Atom] {
self.validation_data.class_list(self.element)
}
fn part_list(&mut self) -> &[Atom] {
self.validation_data.part_list(self.element)
}
/// Get the pres hints of this candidate.
fn pres_hints(&mut self) -> &[ApplicableDeclarationBlock] {
self.validation_data.pres_hints(self.element)
}
/// Get the parent style identity.
fn parent_style_identity(&mut self) -> OpaqueComputedValues {
self.validation_data.parent_style_identity(self.element)
}
fn revalidation_match_results(
&mut self,
stylist: &Stylist,
bloom: &StyleBloom<E>,
nth_index_cache: &mut NthIndexCache,
selector_flags_map: &mut SelectorFlagsMap<E>,
) -> &SmallBitVec {
// It's important to set the selector flags. Otherwise, if we succeed in
// sharing the style, we may not set the slow selector flags for the
// right elements (which may not necessarily be |element|), causing
// missed restyles after future DOM mutations.
//
// Gecko's test_bug534804.html exercises this. A minimal testcase is:
// <style> #e:empty + span { ... } </style>
// <span id="e">
// <span></span>
// </span>
// <span></span>
//
// The style sharing cache will get a hit for the second span. When the
// child span is subsequently removed from the DOM, missing selector
// flags would cause us to miss the restyle on the second span.
let element = self.element;
let mut set_selector_flags = |el: &E, flags: ElementSelectorFlags| {
element.apply_selector_flags(selector_flags_map, el, flags);
};
self.validation_data.revalidation_match_results(
self.element,
stylist,
bloom,
nth_index_cache,
/* bloom_known_valid = */ true,
&mut set_selector_flags,
)
}
/// Attempts to share a style with another node.
pub fn share_style_if_possible(
&mut self,
context: &mut StyleContext<E>,
) -> Option<ResolvedElementStyles> {
let cache = &mut context.thread_local.sharing_cache;
let shared_context = &context.shared;
let selector_flags_map = &mut context.thread_local.selector_flags;
let bloom_filter = &context.thread_local.bloom_filter;
let nth_index_cache = &mut context.thread_local.nth_index_cache;
if cache.dom_depth != bloom_filter.matching_depth() {
debug!(
"Can't share style, because DOM depth changed from {:?} to {:?}, element: {:?}",
cache.dom_depth,
bloom_filter.matching_depth(),
self.element
);
return None;
}
debug_assert_eq!(
bloom_filter.current_parent(),
self.element.traversal_parent()
);
cache.share_style_if_possible(
shared_context,
selector_flags_map,
bloom_filter,
nth_index_cache,
self,
)
}
/// Gets the validation data used to match against this target, if any.
pub fn take_validation_data(&mut self) -> ValidationData {
self.validation_data.take()
}
}
struct SharingCacheBase<Candidate> {
entries: LRUCache<[Entry<Candidate>; SHARING_CACHE_SIZE]>,
}
impl<Candidate> Default for SharingCacheBase<Candidate> {
fn default() -> Self {
Self {
entries: LRUCache::default(),
}
}
}
impl<Candidate> SharingCacheBase<Candidate> {
fn clear(&mut self) {
self.entries.evict_all();
}
fn is_empty(&self) -> bool {
self.entries.num_entries() == 0
}
}
impl<E: TElement> SharingCache<E> {
fn insert(&mut self, element: E, validation_data_holder: Option<&mut StyleSharingTarget<E>>) {
let validation_data = match validation_data_holder {
Some(v) => v.take_validation_data(),
None => ValidationData::default(),
};
self.entries.insert(StyleSharingCandidate {
element,
validation_data,
});
}
}
/// Style sharing caches are are large allocations, so we store them in thread-local
/// storage such that they can be reused across style traversals. Ideally, we'd just
/// stack-allocate these buffers with uninitialized memory, but right now rustc can't
/// avoid memmoving the entire cache during setup, which gets very expensive. See
/// issues like [1] and [2].
///
/// Given that the cache stores entries of type TElement, we transmute to usize
/// before storing in TLS. This is safe as long as we make sure to empty the cache
/// before we let it go.
///
/// [1] https://github.com/rust-lang/rust/issues/42763
/// [2] https://github.com/rust-lang/rust/issues/13707
type SharingCache<E> = SharingCacheBase<StyleSharingCandidate<E>>;
type TypelessSharingCache = SharingCacheBase<FakeCandidate>;
type StoredSharingCache = Arc<AtomicRefCell<TypelessSharingCache>>;
thread_local! {
// See the comment on bloom.rs about why do we leak this.
static SHARING_CACHE_KEY: ManuallyDrop<StoredSharingCache> =
ManuallyDrop::new(Arc::new_leaked(Default::default()));
}
/// An LRU cache of the last few nodes seen, so that we can aggressively try to
/// reuse their styles.
///
/// Note that this cache is flushed every time we steal work from the queue, so
/// storing nodes here temporarily is safe.
pub struct StyleSharingCache<E: TElement> {
/// The LRU cache, with the type cast away to allow persisting the allocation.
cache_typeless: OwningHandle<StoredSharingCache, AtomicRefMut<'static, TypelessSharingCache>>,
/// Bind this structure to the lifetime of E, since that's what we effectively store.
marker: PhantomData<SendElement<E>>,
/// The DOM depth we're currently at. This is used as an optimization to
/// clear the cache when we change depths, since we know at that point
/// nothing in the cache will match.
dom_depth: usize,
}
impl<E: TElement> Drop for StyleSharingCache<E> {
fn drop(&mut self) {
self.clear();
}
}
impl<E: TElement> StyleSharingCache<E> {
#[allow(dead_code)]
fn cache(&self) -> &SharingCache<E> {
let base: &TypelessSharingCache = &*self.cache_typeless;
unsafe { mem::transmute(base) }
}
fn cache_mut(&mut self) -> &mut SharingCache<E> {
let base: &mut TypelessSharingCache = &mut *self.cache_typeless;
unsafe { mem::transmute(base) }
}
/// Create a new style sharing candidate cache.
// Forced out of line to limit stack frame sizes after extra inlining from
// https://github.com/rust-lang/rust/pull/43931
//
// See https://github.com/servo/servo/pull/18420#issuecomment-328769322
#[inline(never)]
pub fn new() -> Self {
assert_eq!(
mem::size_of::<SharingCache<E>>(),
mem::size_of::<TypelessSharingCache>()
);
assert_eq!(
mem::align_of::<SharingCache<E>>(),
mem::align_of::<TypelessSharingCache>()
);
let cache_arc = SHARING_CACHE_KEY.with(|c| Arc::clone(&*c));
let cache =
OwningHandle::new_with_fn(cache_arc, |x| unsafe { x.as_ref() }.unwrap().borrow_mut());
debug_assert!(cache.is_empty());
StyleSharingCache {
cache_typeless: cache,
marker: PhantomData,
dom_depth: 0,
}
}
/// Tries to insert an element in the style sharing cache.
///
/// Fails if we know it should never be in the cache.
///
/// NB: We pass a source for the validation data, rather than the data itself,
/// to avoid memmoving at each function call. See rust issue #42763.
pub fn insert_if_possible(
&mut self,
element: &E,
style: &PrimaryStyle,
validation_data_holder: Option<&mut StyleSharingTarget<E>>,
dom_depth: usize,
shared_context: &SharedStyleContext,
) {
let parent = match element.traversal_parent() {
Some(element) => element,
None => {
debug!("Failing to insert to the cache: no parent element");
return;
},
};
if element.is_in_native_anonymous_subtree() {
debug!("Failing to insert into the cache: NAC");
return;
}
// We can't share style across shadow hosts right now, because they may
// match different :host rules.
//
// TODO(emilio): We could share across the ones that don't have :host
// rules or have the same.
if element.shadow_root().is_some() {
debug!("Failing to insert into the cache: Shadow Host");
return;
}
// If the element has running animations, we can't share style.
//
// This is distinct from the specifies_{animations,transitions} check below,
// because:
// * Animations can be triggered directly via the Web Animations API.
// * Our computed style can still be affected by animations after we no
// longer match any animation rules, since removing animations involves
// a sequential task and an additional traversal.
if element.has_animations(shared_context) {
debug!("Failing to insert to the cache: running animations");
return;
}
// In addition to the above running animations check, we also need to
// check CSS animation and transition styles since it's possible that
// we are about to create CSS animations/transitions.
//
// These are things we don't check in the candidate match because they
// are either uncommon or expensive.
let box_style = style.style().get_box();
if box_style.specifies_transitions() {
debug!("Failing to insert to the cache: transitions");
return;
}
if box_style.specifies_animations() {
debug!("Failing to insert to the cache: animations");
return;
}
debug!(
"Inserting into cache: {:?} with parent {:?}",
element, parent
);
if self.dom_depth != dom_depth {
debug!(
"Clearing cache because depth changed from {:?} to {:?}, element: {:?}",
self.dom_depth, dom_depth, element
);
self.clear();
self.dom_depth = dom_depth;
}
self.cache_mut().insert(*element, validation_data_holder);
}
/// Clear the style sharing candidate cache.
pub fn clear(&mut self) {
self.cache_mut().clear();
}
/// Attempts to share a style with another node.
fn share_style_if_possible(
&mut self,
shared_context: &SharedStyleContext,
selector_flags_map: &mut SelectorFlagsMap<E>,
bloom_filter: &StyleBloom<E>,
nth_index_cache: &mut NthIndexCache,
target: &mut StyleSharingTarget<E>,
) -> Option<ResolvedElementStyles> {
if shared_context.options.disable_style_sharing_cache {
debug!(
"{:?} Cannot share style: style sharing cache disabled",
target.element
);
return None;
}
if target.inheritance_parent().is_none() {
debug!(
"{:?} Cannot share style: element has no parent",
target.element
);
return None;
}
if target.is_in_native_anonymous_subtree() {
debug!("{:?} Cannot share style: NAC", target.element);
return None;
}
self.cache_mut().entries.lookup(|candidate| {
Self::test_candidate(
target,
candidate,
&shared_context,
bloom_filter,
nth_index_cache,
selector_flags_map,
shared_context,
)
})
}
fn test_candidate(
target: &mut StyleSharingTarget<E>,
candidate: &mut StyleSharingCandidate<E>,
shared: &SharedStyleContext,
bloom: &StyleBloom<E>,
nth_index_cache: &mut NthIndexCache,
selector_flags_map: &mut SelectorFlagsMap<E>,
shared_context: &SharedStyleContext,
) -> Option<ResolvedElementStyles> {
debug_assert!(!target.is_in_native_anonymous_subtree());
// Check that we have the same parent, or at least that the parents
// share styles and permit sharing across their children. The latter
// check allows us to share style between cousins if the parents
// shared style.
if !checks::parents_allow_sharing(target, candidate) {
trace!("Miss: Parent");
return None;
}
if target.local_name() != candidate.element.local_name() {
trace!("Miss: Local Name");
return None;
}
if target.namespace() != candidate.element.namespace() {
trace!("Miss: Namespace");
return None;
}
// We do not ignore visited state here, because Gecko needs to store
// extra bits on visited styles, so these contexts cannot be shared.
if target.element.state() != candidate.state() {
trace!("Miss: User and Author State");
return None;
}
if target.is_link() != candidate.element.is_link() {
trace!("Miss: Link");
return None;
}
// If two elements belong to different shadow trees, different rules may
// apply to them, from the respective trees.
if target.element.containing_shadow() != candidate.element.containing_shadow() {
trace!("Miss: Different containing shadow roots");
return None;
}
// If the elements are not assigned to the same slot they could match
// different ::slotted() rules in the slot scope.
//
// If two elements are assigned to different slots, even within the same
// shadow root, they could match different rules, due to the slot being
// assigned to yet another slot in another shadow root.
if target.element.assigned_slot() != candidate.element.assigned_slot() {
// TODO(emilio): We could have a look at whether the shadow roots
// actually have slotted rules and such.
trace!("Miss: Different assigned slots");
return None;
}
if target.element.shadow_root().is_some() {
trace!("Miss: Shadow host");
return None;
}
if target.element.has_animations(shared_context) {
trace!("Miss: Has Animations");
return None;
}
if target.matches_user_and_author_rules() !=
candidate.element.matches_user_and_author_rules()
{
trace!("Miss: User and Author Rules");
return None;
}
// It's possible that there are no styles for either id.
let may_match_different_id_rules =
checks::may_match_different_id_rules(shared, target.element, candidate.element);
if may_match_different_id_rules {
trace!("Miss: ID Attr");
return None;
}
if !checks::have_same_style_attribute(target, candidate) {
trace!("Miss: Style Attr");
return None;
}
if !checks::have_same_class(target, candidate) {
trace!("Miss: Class");
return None;
}
if !checks::have_same_presentational_hints(target, candidate) {
trace!("Miss: Pres Hints");
return None;
}
if !checks::have_same_parts(target, candidate) {
trace!("Miss: Shadow parts");
return None;
}
if !checks::revalidate(
target,
candidate,
shared,
bloom,
nth_index_cache,
selector_flags_map,
) {
trace!("Miss: Revalidation");
return None;
}
debug_assert!(target.has_current_styles_for_traversal(
&candidate.element.borrow_data().unwrap(),
shared.traversal_flags,
));
debug!(
"Sharing allowed between {:?} and {:?}",
target.element, candidate.element
);
Some(candidate.element.borrow_data().unwrap().share_styles())
}
/// Attempts to find an element in the cache with the given primary rule
/// node and parent.
///
/// FIXME(emilio): re-measure this optimization, and remove if it's not very
/// useful... It's probably not worth the complexity / obscure bugs.
pub fn lookup_by_rules(
&mut self,
shared_context: &SharedStyleContext,
inherited: &ComputedValues,
rules: &StrongRuleNode,
visited_rules: Option<&StrongRuleNode>,
target: E,
) -> Option<PrimaryStyle> {
if shared_context.options.disable_style_sharing_cache {
return None;
}
self.cache_mut().entries.lookup(|candidate| {
debug_assert_ne!(candidate.element, target);
if !candidate.parent_style_identity().eq(inherited) {
return None;
}
let data = candidate.element.borrow_data().unwrap();
let style = data.styles.primary();
if style.rules.as_ref() != Some(&rules) {
return None;
}
if style.visited_rules() != visited_rules {
return None;
}
// NOTE(emilio): We only need to check name / namespace because we
// do name-dependent style adjustments, like the display: contents
// to display: none adjustment.
if target.namespace() != candidate.element.namespace() {
return None;
}
if target.local_name() != candidate.element.local_name() {
return None;
}
// Rule nodes and styles are computed independent of the element's
// actual visitedness, but at the end of the cascade (in
// `adjust_for_visited`) we do store the visitedness as a flag in
// style. (This is a subtle change from initial visited work that
// landed when computed values were fused, see
// https://bugzilla.mozilla.org/show_bug.cgi?id=1381635.)
// So at the moment, we need to additionally compare visitedness,
// since that is not accounted for by rule nodes alone.
// FIXME(jryans): This seems like it breaks the constant time
// requirements of visited, assuming we get a cache hit on only one
// of unvisited vs. visited.
// TODO(emilio): We no longer have such a flag, remove this check.
if target.is_visited_link() != candidate.element.is_visited_link() {
return None;
}
Some(data.share_primary_style())
})
}
}