mirror of
https://github.com/servo/servo.git
synced 2025-06-25 01:24:37 +01:00
645 lines
22 KiB
Rust
645 lines
22 KiB
Rust
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
//! Memory profiling functions.
|
|
|
|
use libc::{c_char,c_int,c_void,size_t};
|
|
use std::borrow::ToOwned;
|
|
use std::collections::HashMap;
|
|
use std::collections::LinkedList;
|
|
use std::ffi::CString;
|
|
#[cfg(target_os = "linux")]
|
|
use std::iter::AdditiveIterator;
|
|
use std::old_io::timer::sleep;
|
|
use std::mem::{size_of, transmute};
|
|
use std::ptr::null_mut;
|
|
use std::sync::Arc;
|
|
use std::sync::mpsc::{Sender, channel, Receiver};
|
|
use std::time::duration::Duration;
|
|
use task::spawn_named;
|
|
#[cfg(target_os="macos")]
|
|
use task_info::task_basic_info::{virtual_size,resident_size};
|
|
|
|
extern {
|
|
// Get the size of a heap block.
|
|
//
|
|
// Ideally Rust would expose a function like this in std::rt::heap, which would avoid the
|
|
// jemalloc dependence.
|
|
//
|
|
// The C prototype is `je_malloc_usable_size(JEMALLOC_USABLE_SIZE_CONST void *ptr)`. On some
|
|
// platforms `JEMALLOC_USABLE_SIZE_CONST` is `const` and on some it is empty. But in practice
|
|
// this function doesn't modify the contents of the block that `ptr` points to, so we use
|
|
// `*const c_void` here.
|
|
fn je_malloc_usable_size(ptr: *const c_void) -> size_t;
|
|
}
|
|
|
|
// A wrapper for je_malloc_usable_size that handles `EMPTY` and returns `usize`.
|
|
pub fn heap_size_of(ptr: *const c_void) -> usize {
|
|
if ptr == ::std::rt::heap::EMPTY as *const c_void {
|
|
0
|
|
} else {
|
|
unsafe { je_malloc_usable_size(ptr) as usize }
|
|
}
|
|
}
|
|
|
|
// The simplest trait for measuring the size of heap data structures. More complex traits that
|
|
// return multiple measurements -- e.g. measure text separately from images -- are also possible,
|
|
// and should be used when appropriate.
|
|
//
|
|
// FIXME(njn): it would be nice to be able to derive this trait automatically, given that
|
|
// implementations are mostly repetitive and mechanical.
|
|
//
|
|
pub trait SizeOf {
|
|
/// Measure the size of any heap-allocated structures that hang off this value, but not the
|
|
/// space taken up by the value itself (i.e. what size_of::<T> measures, more or less); that
|
|
/// space is handled by the implementation of SizeOf for Box<T> below.
|
|
fn size_of_excluding_self(&self) -> usize;
|
|
}
|
|
|
|
// There are two possible ways to measure the size of `self` when it's on the heap: compute it
|
|
// (with `::std::rt::heap::usable_size(::std::mem::size_of::<T>(), 0)`) or measure it directly
|
|
// using the heap allocator (with `heap_size_of`). We do the latter, for the following reasons.
|
|
//
|
|
// * The heap allocator is the true authority for the sizes of heap blocks; its measurement is
|
|
// guaranteed to be correct. In comparison, size computations are error-prone. (For example, the
|
|
// `rt::heap::usable_size` function used in some of Rust's non-default allocator implementations
|
|
// underestimate the true usable size of heap blocks, which is safe in general but would cause
|
|
// under-measurement here.)
|
|
//
|
|
// * If we measure something that isn't a heap block, we'll get a crash. This keeps us honest,
|
|
// which is important because unsafe code is involved and this can be gotten wrong.
|
|
//
|
|
// However, in the best case, the two approaches should give the same results.
|
|
//
|
|
impl<T: SizeOf> SizeOf for Box<T> {
|
|
fn size_of_excluding_self(&self) -> usize {
|
|
// Measure size of `self`.
|
|
heap_size_of(&**self as *const T as *const c_void) + (**self).size_of_excluding_self()
|
|
}
|
|
}
|
|
|
|
impl SizeOf for String {
|
|
fn size_of_excluding_self(&self) -> usize {
|
|
heap_size_of(self.as_ptr() as *const c_void)
|
|
}
|
|
}
|
|
|
|
impl<T: SizeOf> SizeOf for Option<T> {
|
|
fn size_of_excluding_self(&self) -> usize {
|
|
match *self {
|
|
None => 0,
|
|
Some(ref x) => x.size_of_excluding_self()
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: SizeOf> SizeOf for Arc<T> {
|
|
fn size_of_excluding_self(&self) -> usize {
|
|
(**self).size_of_excluding_self()
|
|
}
|
|
}
|
|
|
|
impl<T: SizeOf> SizeOf for Vec<T> {
|
|
fn size_of_excluding_self(&self) -> usize {
|
|
heap_size_of(self.as_ptr() as *const c_void) +
|
|
self.iter().fold(0, |n, elem| n + elem.size_of_excluding_self())
|
|
}
|
|
}
|
|
|
|
// FIXME(njn): We can't implement SizeOf accurately for LinkedList because it requires access to the
|
|
// private Node type. Eventually we'll want to add SizeOf (or equivalent) to Rust itself. In the
|
|
// meantime, we use the dirty hack of transmuting LinkedList into an identical type (LinkedList2) and
|
|
// measuring that.
|
|
impl<T: SizeOf> SizeOf for LinkedList<T> {
|
|
fn size_of_excluding_self(&self) -> usize {
|
|
let list2: &LinkedList2<T> = unsafe { transmute(self) };
|
|
list2.size_of_excluding_self()
|
|
}
|
|
}
|
|
|
|
struct LinkedList2<T> {
|
|
_length: usize,
|
|
list_head: Link<T>,
|
|
_list_tail: Rawlink<Node<T>>,
|
|
}
|
|
|
|
type Link<T> = Option<Box<Node<T>>>;
|
|
|
|
struct Rawlink<T> {
|
|
_p: *mut T,
|
|
}
|
|
|
|
struct Node<T> {
|
|
next: Link<T>,
|
|
_prev: Rawlink<Node<T>>,
|
|
value: T,
|
|
}
|
|
|
|
impl<T: SizeOf> SizeOf for Node<T> {
|
|
// Unlike most size_of_excluding_self() functions, this one does *not* measure descendents.
|
|
// Instead, LinkedList2<T>::size_of_excluding_self() handles that, so that it can use iteration
|
|
// instead of recursion, which avoids potentially blowing the stack.
|
|
fn size_of_excluding_self(&self) -> usize {
|
|
self.value.size_of_excluding_self()
|
|
}
|
|
}
|
|
|
|
impl<T: SizeOf> SizeOf for LinkedList2<T> {
|
|
fn size_of_excluding_self(&self) -> usize {
|
|
let mut size = 0;
|
|
let mut curr: &Link<T> = &self.list_head;
|
|
while curr.is_some() {
|
|
size += (*curr).size_of_excluding_self();
|
|
curr = &curr.as_ref().unwrap().next;
|
|
}
|
|
size
|
|
}
|
|
}
|
|
|
|
// This is a basic sanity check. If the representation of LinkedList changes such that it becomes a
|
|
// different size to LinkedList2, this will fail at compile-time.
|
|
#[allow(dead_code)]
|
|
unsafe fn linked_list2_check() {
|
|
transmute::<LinkedList<i32>, LinkedList2<i32>>(panic!());
|
|
}
|
|
|
|
// Currently, types that implement the Drop type are larger than those that don't. Because
|
|
// LinkedList implements Drop, LinkedList2 must also so that linked_list2_check() doesn't fail.
|
|
#[unsafe_destructor]
|
|
impl<T> Drop for LinkedList2<T> {
|
|
fn drop(&mut self) {}
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
#[derive(Clone)]
|
|
pub struct MemoryProfilerChan(pub Sender<MemoryProfilerMsg>);
|
|
|
|
impl MemoryProfilerChan {
|
|
pub fn send(&self, msg: MemoryProfilerMsg) {
|
|
let MemoryProfilerChan(ref c) = *self;
|
|
c.send(msg).unwrap();
|
|
}
|
|
}
|
|
|
|
pub struct MemoryReport {
|
|
/// The identifying name for this report.
|
|
pub name: String,
|
|
|
|
/// The size, in bytes.
|
|
pub size: u64,
|
|
}
|
|
|
|
/// A channel through which memory reports can be sent.
|
|
#[derive(Clone)]
|
|
pub struct MemoryReportsChan(pub Sender<Vec<MemoryReport>>);
|
|
|
|
impl MemoryReportsChan {
|
|
pub fn send(&self, report: Vec<MemoryReport>) {
|
|
let MemoryReportsChan(ref c) = *self;
|
|
c.send(report).unwrap();
|
|
}
|
|
}
|
|
|
|
/// A memory reporter is capable of measuring some data structure of interest. Because it needs
|
|
/// to be passed to and registered with the MemoryProfiler, it's typically a "small" (i.e. easily
|
|
/// cloneable) value that provides access to a "large" data structure, e.g. a channel that can
|
|
/// inject a request for measurements into the event queue associated with the "large" data
|
|
/// structure.
|
|
pub trait MemoryReporter {
|
|
/// Collect one or more memory reports. Returns true on success, and false on failure.
|
|
fn collect_reports(&self, reports_chan: MemoryReportsChan) -> bool;
|
|
}
|
|
|
|
/// Messages that can be sent to the memory profiler thread.
|
|
pub enum MemoryProfilerMsg {
|
|
/// Register a MemoryReporter with the memory profiler. The String is only used to identify the
|
|
/// reporter so it can be unregistered later. The String must be distinct from that used by any
|
|
/// other registered reporter otherwise a panic will occur.
|
|
RegisterMemoryReporter(String, Box<MemoryReporter + Send>),
|
|
|
|
/// Unregister a MemoryReporter with the memory profiler. The String must match the name given
|
|
/// when the reporter was registered. If the String does not match the name of a registered
|
|
/// reporter a panic will occur.
|
|
UnregisterMemoryReporter(String),
|
|
|
|
/// Triggers printing of the memory profiling metrics.
|
|
Print,
|
|
|
|
/// Tells the memory profiler to shut down.
|
|
Exit,
|
|
}
|
|
|
|
pub struct MemoryProfiler {
|
|
/// The port through which messages are received.
|
|
pub port: Receiver<MemoryProfilerMsg>,
|
|
|
|
/// Registered memory reporters.
|
|
reporters: HashMap<String, Box<MemoryReporter + Send>>,
|
|
}
|
|
|
|
impl MemoryProfiler {
|
|
pub fn create(period: Option<f64>) -> MemoryProfilerChan {
|
|
let (chan, port) = channel();
|
|
|
|
// Create the timer thread if a period was provided.
|
|
if let Some(period) = period {
|
|
let period_ms = Duration::milliseconds((period * 1000f64) as i64);
|
|
let chan = chan.clone();
|
|
spawn_named("Memory profiler timer".to_owned(), move || {
|
|
loop {
|
|
sleep(period_ms);
|
|
if chan.send(MemoryProfilerMsg::Print).is_err() {
|
|
break;
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
// Always spawn the memory profiler. If there is no timer thread it won't receive regular
|
|
// `Print` events, but it will still receive the other events.
|
|
spawn_named("Memory profiler".to_owned(), move || {
|
|
let mut memory_profiler = MemoryProfiler::new(port);
|
|
memory_profiler.start();
|
|
});
|
|
|
|
let memory_profiler_chan = MemoryProfilerChan(chan);
|
|
|
|
// Register the system memory reporter, which will run on the memory profiler's own thread.
|
|
// It never needs to be unregistered, because as long as the memory profiler is running the
|
|
// system memory reporter can make measurements.
|
|
let system_reporter = Box::new(SystemMemoryReporter);
|
|
memory_profiler_chan.send(MemoryProfilerMsg::RegisterMemoryReporter("system".to_owned(),
|
|
system_reporter));
|
|
|
|
memory_profiler_chan
|
|
}
|
|
|
|
pub fn new(port: Receiver<MemoryProfilerMsg>) -> MemoryProfiler {
|
|
MemoryProfiler {
|
|
port: port,
|
|
reporters: HashMap::new(),
|
|
}
|
|
}
|
|
|
|
pub fn start(&mut self) {
|
|
loop {
|
|
match self.port.recv() {
|
|
Ok(msg) => {
|
|
if !self.handle_msg(msg) {
|
|
break
|
|
}
|
|
}
|
|
_ => break
|
|
}
|
|
}
|
|
}
|
|
|
|
fn handle_msg(&mut self, msg: MemoryProfilerMsg) -> bool {
|
|
match msg {
|
|
MemoryProfilerMsg::RegisterMemoryReporter(name, reporter) => {
|
|
// Panic if it has already been registered.
|
|
let name_clone = name.clone();
|
|
match self.reporters.insert(name, reporter) {
|
|
None => true,
|
|
Some(_) =>
|
|
panic!(format!("RegisterMemoryReporter: '{}' name is already in use",
|
|
name_clone)),
|
|
}
|
|
},
|
|
|
|
MemoryProfilerMsg::UnregisterMemoryReporter(name) => {
|
|
// Panic if it hasn't previously been registered.
|
|
match self.reporters.remove(&name) {
|
|
Some(_) => true,
|
|
None =>
|
|
panic!(format!("UnregisterMemoryReporter: '{}' name is unknown", &name)),
|
|
}
|
|
},
|
|
|
|
MemoryProfilerMsg::Print => {
|
|
self.handle_print_msg();
|
|
true
|
|
},
|
|
|
|
MemoryProfilerMsg::Exit => false
|
|
}
|
|
}
|
|
|
|
fn handle_print_msg(&self) {
|
|
println!("{:12}: {}", "_size (MiB)_", "_category_");
|
|
|
|
// Collect reports from memory reporters.
|
|
//
|
|
// This serializes the report-gathering. It might be worth creating a new scoped thread for
|
|
// each reporter once we have enough of them.
|
|
//
|
|
// If anything goes wrong with a reporter, we just skip it.
|
|
for reporter in self.reporters.values() {
|
|
let (chan, port) = channel();
|
|
if reporter.collect_reports(MemoryReportsChan(chan)) {
|
|
if let Ok(reports) = port.recv() {
|
|
for report in reports {
|
|
let mebi = 1024f64 * 1024f64;
|
|
println!("{:12.2}: {}", (report.size as f64) / mebi, report.name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
println!("");
|
|
}
|
|
}
|
|
|
|
/// Collects global measurements from the OS and heap allocators.
|
|
struct SystemMemoryReporter;
|
|
|
|
impl MemoryReporter for SystemMemoryReporter {
|
|
fn collect_reports(&self, reports_chan: MemoryReportsChan) -> bool {
|
|
let mut reports = vec![];
|
|
{
|
|
let mut report = |name: &str, size| {
|
|
if let Some(size) = size {
|
|
reports.push(MemoryReport { name: name.to_owned(), size: size });
|
|
}
|
|
};
|
|
|
|
// Virtual and physical memory usage, as reported by the OS.
|
|
report("vsize", get_vsize());
|
|
report("resident", get_resident());
|
|
|
|
// Memory segments, as reported by the OS.
|
|
for seg in get_resident_segments().iter() {
|
|
report(seg.0.as_slice(), Some(seg.1));
|
|
}
|
|
|
|
// Total number of bytes allocated by the application on the system
|
|
// heap.
|
|
report("system-heap-allocated", get_system_heap_allocated());
|
|
|
|
// The descriptions of the following jemalloc measurements are taken
|
|
// directly from the jemalloc documentation.
|
|
|
|
// "Total number of bytes allocated by the application."
|
|
report("jemalloc-heap-allocated", get_jemalloc_stat("stats.allocated"));
|
|
|
|
// "Total number of bytes in active pages allocated by the application.
|
|
// This is a multiple of the page size, and greater than or equal to
|
|
// |stats.allocated|."
|
|
report("jemalloc-heap-active", get_jemalloc_stat("stats.active"));
|
|
|
|
// "Total number of bytes in chunks mapped on behalf of the application.
|
|
// This is a multiple of the chunk size, and is at least as large as
|
|
// |stats.active|. This does not include inactive chunks."
|
|
report("jemalloc-heap-mapped", get_jemalloc_stat("stats.mapped"));
|
|
}
|
|
reports_chan.send(reports);
|
|
|
|
true
|
|
}
|
|
}
|
|
|
|
|
|
#[cfg(target_os="linux")]
|
|
extern {
|
|
fn mallinfo() -> struct_mallinfo;
|
|
}
|
|
|
|
#[cfg(target_os="linux")]
|
|
#[repr(C)]
|
|
pub struct struct_mallinfo {
|
|
arena: c_int,
|
|
ordblks: c_int,
|
|
smblks: c_int,
|
|
hblks: c_int,
|
|
hblkhd: c_int,
|
|
usmblks: c_int,
|
|
fsmblks: c_int,
|
|
uordblks: c_int,
|
|
fordblks: c_int,
|
|
keepcost: c_int,
|
|
}
|
|
|
|
#[cfg(target_os="linux")]
|
|
fn get_system_heap_allocated() -> Option<u64> {
|
|
let mut info: struct_mallinfo;
|
|
unsafe {
|
|
info = mallinfo();
|
|
}
|
|
// The documentation in the glibc man page makes it sound like |uordblks|
|
|
// would suffice, but that only gets the small allocations that are put in
|
|
// the brk heap. We need |hblkhd| as well to get the larger allocations
|
|
// that are mmapped.
|
|
Some((info.hblkhd + info.uordblks) as u64)
|
|
}
|
|
|
|
#[cfg(not(target_os="linux"))]
|
|
fn get_system_heap_allocated() -> Option<u64> {
|
|
None
|
|
}
|
|
|
|
extern {
|
|
fn je_mallctl(name: *const c_char, oldp: *mut c_void, oldlenp: *mut size_t,
|
|
newp: *mut c_void, newlen: size_t) -> c_int;
|
|
}
|
|
|
|
fn get_jemalloc_stat(value_name: &str) -> Option<u64> {
|
|
// Before we request the measurement of interest, we first send an "epoch"
|
|
// request. Without that jemalloc gives cached statistics(!) which can be
|
|
// highly inaccurate.
|
|
let epoch_name = "epoch";
|
|
let epoch_c_name = CString::new(epoch_name).unwrap();
|
|
let mut epoch: u64 = 0;
|
|
let epoch_ptr = &mut epoch as *mut _ as *mut c_void;
|
|
let mut epoch_len = size_of::<u64>() as size_t;
|
|
|
|
let value_c_name = CString::new(value_name).unwrap();
|
|
let mut value: size_t = 0;
|
|
let value_ptr = &mut value as *mut _ as *mut c_void;
|
|
let mut value_len = size_of::<size_t>() as size_t;
|
|
|
|
// Using the same values for the `old` and `new` parameters is enough
|
|
// to get the statistics updated.
|
|
let rv = unsafe {
|
|
je_mallctl(epoch_c_name.as_ptr(), epoch_ptr, &mut epoch_len, epoch_ptr,
|
|
epoch_len)
|
|
};
|
|
if rv != 0 {
|
|
return None;
|
|
}
|
|
|
|
let rv = unsafe {
|
|
je_mallctl(value_c_name.as_ptr(), value_ptr, &mut value_len,
|
|
null_mut(), 0)
|
|
};
|
|
if rv != 0 {
|
|
return None;
|
|
}
|
|
|
|
Some(value as u64)
|
|
}
|
|
|
|
// Like std::macros::try!, but for Option<>.
|
|
macro_rules! option_try(
|
|
($e:expr) => (match $e { Some(e) => e, None => return None })
|
|
);
|
|
|
|
#[cfg(target_os="linux")]
|
|
fn get_proc_self_statm_field(field: usize) -> Option<u64> {
|
|
use std::fs::File;
|
|
use std::io::Read;
|
|
|
|
let mut f = option_try!(File::open("/proc/self/statm").ok());
|
|
let mut contents = String::new();
|
|
option_try!(f.read_to_string(&mut contents).ok());
|
|
let s = option_try!(contents.words().nth(field));
|
|
let npages = option_try!(s.parse::<u64>().ok());
|
|
Some(npages * (::std::env::page_size() as u64))
|
|
}
|
|
|
|
#[cfg(target_os="linux")]
|
|
fn get_vsize() -> Option<u64> {
|
|
get_proc_self_statm_field(0)
|
|
}
|
|
|
|
#[cfg(target_os="linux")]
|
|
fn get_resident() -> Option<u64> {
|
|
get_proc_self_statm_field(1)
|
|
}
|
|
|
|
#[cfg(target_os="macos")]
|
|
fn get_vsize() -> Option<u64> {
|
|
virtual_size()
|
|
}
|
|
|
|
#[cfg(target_os="macos")]
|
|
fn get_resident() -> Option<u64> {
|
|
resident_size()
|
|
}
|
|
|
|
#[cfg(not(any(target_os="linux", target_os = "macos")))]
|
|
fn get_vsize() -> Option<u64> {
|
|
None
|
|
}
|
|
|
|
#[cfg(not(any(target_os="linux", target_os = "macos")))]
|
|
fn get_resident() -> Option<u64> {
|
|
None
|
|
}
|
|
|
|
#[cfg(target_os="linux")]
|
|
fn get_resident_segments() -> Vec<(String, u64)> {
|
|
use regex::Regex;
|
|
use std::collections::HashMap;
|
|
use std::collections::hash_map::Entry;
|
|
use std::fs::File;
|
|
use std::io::{BufReader, BufReadExt};
|
|
|
|
// The first line of an entry in /proc/<pid>/smaps looks just like an entry
|
|
// in /proc/<pid>/maps:
|
|
//
|
|
// address perms offset dev inode pathname
|
|
// 02366000-025d8000 rw-p 00000000 00:00 0 [heap]
|
|
//
|
|
// Each of the following lines contains a key and a value, separated
|
|
// by ": ", where the key does not contain either of those characters.
|
|
// For example:
|
|
//
|
|
// Rss: 132 kB
|
|
|
|
let f = match File::open("/proc/self/smaps") {
|
|
Ok(f) => BufReader::new(f),
|
|
Err(_) => return vec![],
|
|
};
|
|
|
|
let seg_re = Regex::new(
|
|
r"^[:xdigit:]+-[:xdigit:]+ (....) [:xdigit:]+ [:xdigit:]+:[:xdigit:]+ \d+ +(.*)").unwrap();
|
|
let rss_re = Regex::new(r"^Rss: +(\d+) kB").unwrap();
|
|
|
|
// We record each segment's resident size.
|
|
let mut seg_map: HashMap<String, u64> = HashMap::new();
|
|
|
|
#[derive(PartialEq)]
|
|
enum LookingFor { Segment, Rss }
|
|
let mut looking_for = LookingFor::Segment;
|
|
|
|
let mut curr_seg_name = String::new();
|
|
|
|
// Parse the file.
|
|
for line in f.lines() {
|
|
let line = match line {
|
|
Ok(line) => line,
|
|
Err(_) => continue,
|
|
};
|
|
if looking_for == LookingFor::Segment {
|
|
// Look for a segment info line.
|
|
let cap = match seg_re.captures(line.as_slice()) {
|
|
Some(cap) => cap,
|
|
None => continue,
|
|
};
|
|
let perms = cap.at(1).unwrap();
|
|
let pathname = cap.at(2).unwrap();
|
|
|
|
// Construct the segment name from its pathname and permissions.
|
|
curr_seg_name.clear();
|
|
curr_seg_name.push_str("- ");
|
|
if pathname == "" || pathname.starts_with("[stack:") {
|
|
// Anonymous memory. Entries marked with "[stack:nnn]"
|
|
// look like thread stacks but they may include other
|
|
// anonymous mappings, so we can't trust them and just
|
|
// treat them as entirely anonymous.
|
|
curr_seg_name.push_str("anonymous");
|
|
} else {
|
|
curr_seg_name.push_str(pathname);
|
|
}
|
|
curr_seg_name.push_str(" (");
|
|
curr_seg_name.push_str(perms);
|
|
curr_seg_name.push_str(")");
|
|
|
|
looking_for = LookingFor::Rss;
|
|
} else {
|
|
// Look for an "Rss:" line.
|
|
let cap = match rss_re.captures(line.as_slice()) {
|
|
Some(cap) => cap,
|
|
None => continue,
|
|
};
|
|
let rss = cap.at(1).unwrap().parse::<u64>().unwrap() * 1024;
|
|
|
|
if rss > 0 {
|
|
// Aggregate small segments into "- other".
|
|
let seg_name = if rss < 512 * 1024 {
|
|
"- other".to_owned()
|
|
} else {
|
|
curr_seg_name.clone()
|
|
};
|
|
match seg_map.entry(seg_name) {
|
|
Entry::Vacant(entry) => { entry.insert(rss); },
|
|
Entry::Occupied(mut entry) => *entry.get_mut() += rss,
|
|
}
|
|
}
|
|
|
|
looking_for = LookingFor::Segment;
|
|
}
|
|
}
|
|
|
|
let mut segs: Vec<(String, u64)> = seg_map.into_iter().collect();
|
|
|
|
// Get the total and add it to the vector. Note that this total differs
|
|
// from the "resident" measurement obtained via /proc/<pid>/statm in
|
|
// get_resident(). It's unclear why this difference occurs; for some
|
|
// processes the measurements match, but for Servo they do not.
|
|
let total = segs.iter().map(|&(_, size)| size).sum();
|
|
segs.push(("resident-according-to-smaps".to_owned(), total));
|
|
|
|
// Sort by size; the total will be first.
|
|
segs.sort_by(|&(_, rss1), &(_, rss2)| rss2.cmp(&rss1));
|
|
|
|
segs
|
|
}
|
|
|
|
#[cfg(not(target_os="linux"))]
|
|
fn get_resident_segments() -> Vec<(String, u64)> {
|
|
vec![]
|
|
}
|
|
|