servo/components/canvas/canvas_paint_thread.rs
Emilio Cobos Álvarez cfe22e3979
Revert "Auto merge of #17891 - MortimerGoro:webgl_move, r=glennw,emilio"
This reverts commit 90f55ea458, reversing
changes made to 2e60b27a21.
2017-08-16 16:42:13 +02:00

1075 lines
44 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use azure::azure::AzFloat;
use azure::azure_hl::{AntialiasMode, CapStyle, CompositionOp, JoinStyle};
use azure::azure_hl::{BackendType, DrawOptions, DrawTarget, Pattern, StrokeOptions, SurfaceFormat};
use azure::azure_hl::{Color, ColorPattern, DrawSurfaceOptions, Filter, PathBuilder};
use azure::azure_hl::{ExtendMode, GradientStop, LinearGradientPattern, RadialGradientPattern};
use azure::azure_hl::SurfacePattern;
use canvas_traits::*;
use cssparser::RGBA;
use euclid::{Transform2D, Point2D, Vector2D, Rect, Size2D};
use ipc_channel::ipc::{self, IpcSender};
use num_traits::ToPrimitive;
use std::borrow::ToOwned;
use std::mem;
use std::sync::Arc;
use std::thread;
use webrender_api;
impl<'a> CanvasPaintThread<'a> {
/// It reads image data from the canvas
/// canvas_size: The size of the canvas we're reading from
/// read_rect: The area of the canvas we want to read from
fn read_pixels(&self, read_rect: Rect<i32>, canvas_size: Size2D<f64>) -> Vec<u8>{
let canvas_size = canvas_size.to_i32();
let canvas_rect = Rect::new(Point2D::new(0i32, 0i32), canvas_size);
let src_read_rect = canvas_rect.intersection(&read_rect).unwrap_or(Rect::zero());
let mut image_data = vec![];
if src_read_rect.is_empty() || canvas_size.width <= 0 && canvas_size.height <= 0 {
return image_data;
}
let data_surface = self.drawtarget.snapshot().get_data_surface();
let mut src_data = Vec::new();
data_surface.with_data(|element| { src_data = element.to_vec(); });
let stride = data_surface.stride();
//start offset of the copyable rectangle
let mut src = (src_read_rect.origin.y * stride + src_read_rect.origin.x * 4) as usize;
//copy the data to the destination vector
for _ in 0..src_read_rect.size.height {
let row = &src_data[src .. src + (4 * src_read_rect.size.width) as usize];
image_data.extend_from_slice(row);
src += stride as usize;
}
image_data
}
}
pub struct CanvasPaintThread<'a> {
drawtarget: DrawTarget,
/// TODO(pcwalton): Support multiple paths.
path_builder: PathBuilder,
state: CanvasPaintState<'a>,
saved_states: Vec<CanvasPaintState<'a>>,
webrender_api: webrender_api::RenderApi,
image_key: Option<webrender_api::ImageKey>,
/// An old webrender image key that can be deleted when the next epoch ends.
old_image_key: Option<webrender_api::ImageKey>,
/// An old webrender image key that can be deleted when the current epoch ends.
very_old_image_key: Option<webrender_api::ImageKey>,
}
#[derive(Clone)]
struct CanvasPaintState<'a> {
draw_options: DrawOptions,
fill_style: Pattern,
stroke_style: Pattern,
stroke_opts: StrokeOptions<'a>,
/// The current 2D transform matrix.
transform: Transform2D<f32>,
shadow_offset_x: f64,
shadow_offset_y: f64,
shadow_blur: f64,
shadow_color: Color,
}
impl<'a> CanvasPaintState<'a> {
fn new(antialias: AntialiasMode) -> CanvasPaintState<'a> {
CanvasPaintState {
draw_options: DrawOptions::new(1.0, CompositionOp::Over, antialias),
fill_style: Pattern::Color(ColorPattern::new(Color::black())),
stroke_style: Pattern::Color(ColorPattern::new(Color::black())),
stroke_opts: StrokeOptions::new(1.0, JoinStyle::MiterOrBevel, CapStyle::Butt, 10.0, &[]),
transform: Transform2D::identity(),
shadow_offset_x: 0.0,
shadow_offset_y: 0.0,
shadow_blur: 0.0,
shadow_color: Color::transparent(),
}
}
}
impl<'a> CanvasPaintThread<'a> {
fn new(size: Size2D<i32>,
webrender_api_sender: webrender_api::RenderApiSender,
antialias: AntialiasMode) -> CanvasPaintThread<'a> {
let draw_target = CanvasPaintThread::create(size);
let path_builder = draw_target.create_path_builder();
let webrender_api = webrender_api_sender.create_api();
CanvasPaintThread {
drawtarget: draw_target,
path_builder: path_builder,
state: CanvasPaintState::new(antialias),
saved_states: vec![],
webrender_api: webrender_api,
image_key: None,
old_image_key: None,
very_old_image_key: None,
}
}
/// Creates a new `CanvasPaintThread` and returns an `IpcSender` to
/// communicate with it.
pub fn start(size: Size2D<i32>,
webrender_api_sender: webrender_api::RenderApiSender,
antialias: bool)
-> IpcSender<CanvasMsg> {
let (sender, receiver) = ipc::channel::<CanvasMsg>().unwrap();
let antialias = if antialias {
AntialiasMode::Default
} else {
AntialiasMode::None
};
thread::Builder::new().name("CanvasThread".to_owned()).spawn(move || {
let mut painter = CanvasPaintThread::new(size, webrender_api_sender, antialias);
loop {
let msg = receiver.recv();
match msg.unwrap() {
CanvasMsg::Canvas2d(message) => {
match message {
Canvas2dMsg::FillRect(ref rect) => painter.fill_rect(rect),
Canvas2dMsg::StrokeRect(ref rect) => painter.stroke_rect(rect),
Canvas2dMsg::ClearRect(ref rect) => painter.clear_rect(rect),
Canvas2dMsg::BeginPath => painter.begin_path(),
Canvas2dMsg::ClosePath => painter.close_path(),
Canvas2dMsg::Fill => painter.fill(),
Canvas2dMsg::Stroke => painter.stroke(),
Canvas2dMsg::Clip => painter.clip(),
Canvas2dMsg::IsPointInPath(x, y, fill_rule, chan) => {
painter.is_point_in_path(x, y, fill_rule, chan)
},
Canvas2dMsg::DrawImage(imagedata, image_size, dest_rect, source_rect,
smoothing_enabled) => {
painter.draw_image(imagedata, image_size, dest_rect, source_rect, smoothing_enabled)
}
Canvas2dMsg::DrawImageSelf(image_size, dest_rect, source_rect, smoothing_enabled) => {
painter.draw_image_self(image_size, dest_rect, source_rect, smoothing_enabled)
}
Canvas2dMsg::DrawImageInOther(
renderer, image_size, dest_rect, source_rect, smoothing, sender
) => {
painter.draw_image_in_other(
renderer, image_size, dest_rect, source_rect, smoothing, sender)
}
Canvas2dMsg::MoveTo(ref point) => painter.move_to(point),
Canvas2dMsg::LineTo(ref point) => painter.line_to(point),
Canvas2dMsg::Rect(ref rect) => painter.rect(rect),
Canvas2dMsg::QuadraticCurveTo(ref cp, ref pt) => {
painter.quadratic_curve_to(cp, pt)
}
Canvas2dMsg::BezierCurveTo(ref cp1, ref cp2, ref pt) => {
painter.bezier_curve_to(cp1, cp2, pt)
}
Canvas2dMsg::Arc(ref center, radius, start, end, ccw) => {
painter.arc(center, radius, start, end, ccw)
}
Canvas2dMsg::ArcTo(ref cp1, ref cp2, radius) => {
painter.arc_to(cp1, cp2, radius)
}
Canvas2dMsg::RestoreContext => painter.restore_context_state(),
Canvas2dMsg::SaveContext => painter.save_context_state(),
Canvas2dMsg::SetFillStyle(style) => painter.set_fill_style(style),
Canvas2dMsg::SetStrokeStyle(style) => painter.set_stroke_style(style),
Canvas2dMsg::SetLineWidth(width) => painter.set_line_width(width),
Canvas2dMsg::SetLineCap(cap) => painter.set_line_cap(cap),
Canvas2dMsg::SetLineJoin(join) => painter.set_line_join(join),
Canvas2dMsg::SetMiterLimit(limit) => painter.set_miter_limit(limit),
Canvas2dMsg::SetTransform(ref matrix) => painter.set_transform(matrix),
Canvas2dMsg::SetGlobalAlpha(alpha) => painter.set_global_alpha(alpha),
Canvas2dMsg::SetGlobalComposition(op) => painter.set_global_composition(op),
Canvas2dMsg::GetImageData(dest_rect, canvas_size, chan)
=> painter.image_data(dest_rect, canvas_size, chan),
Canvas2dMsg::PutImageData(imagedata, offset, image_data_size, dirty_rect)
=> painter.put_image_data(imagedata, offset, image_data_size, dirty_rect),
Canvas2dMsg::SetShadowOffsetX(value) => painter.set_shadow_offset_x(value),
Canvas2dMsg::SetShadowOffsetY(value) => painter.set_shadow_offset_y(value),
Canvas2dMsg::SetShadowBlur(value) => painter.set_shadow_blur(value),
Canvas2dMsg::SetShadowColor(ref color) => painter.set_shadow_color(color.to_azure_style()),
}
},
CanvasMsg::Common(message) => {
match message {
CanvasCommonMsg::Close => break,
CanvasCommonMsg::Recreate(size) => painter.recreate(size),
}
},
CanvasMsg::FromScript(message) => {
match message {
FromScriptMsg::SendPixels(chan) => {
painter.send_pixels(chan)
}
}
}
CanvasMsg::FromLayout(message) => {
match message {
FromLayoutMsg::SendData(chan) => {
painter.send_data(chan)
}
}
}
CanvasMsg::WebGL(_) => panic!("Wrong WebGL message sent to Canvas2D thread"),
CanvasMsg::WebVR(_) => panic!("Wrong WebVR message sent to Canvas2D thread"),
}
}
}).expect("Thread spawning failed");
sender
}
fn save_context_state(&mut self) {
self.saved_states.push(self.state.clone());
}
fn restore_context_state(&mut self) {
if let Some(state) = self.saved_states.pop() {
mem::replace(&mut self.state, state);
self.drawtarget.set_transform(&self.state.transform);
self.drawtarget.pop_clip();
}
}
fn fill_rect(&self, rect: &Rect<f32>) {
if is_zero_size_gradient(&self.state.fill_style) {
return; // Paint nothing if gradient size is zero.
}
let draw_rect = Rect::new(rect.origin,
match self.state.fill_style {
Pattern::Surface(ref surface) => {
let surface_size = surface.size();
match (surface.repeat_x, surface.repeat_y) {
(true, true) => rect.size,
(true, false) => Size2D::new(rect.size.width, surface_size.height as f32),
(false, true) => Size2D::new(surface_size.width as f32, rect.size.height),
(false, false) => Size2D::new(surface_size.width as f32, surface_size.height as f32),
}
},
_ => rect.size,
}
);
if self.need_to_draw_shadow() {
self.draw_with_shadow(&draw_rect, |new_draw_target: &DrawTarget| {
new_draw_target.fill_rect(&draw_rect, self.state.fill_style.to_pattern_ref(),
Some(&self.state.draw_options));
});
} else {
self.drawtarget.fill_rect(&draw_rect, self.state.fill_style.to_pattern_ref(),
Some(&self.state.draw_options));
}
}
fn clear_rect(&self, rect: &Rect<f32>) {
self.drawtarget.clear_rect(rect);
}
fn stroke_rect(&self, rect: &Rect<f32>) {
if is_zero_size_gradient(&self.state.stroke_style) {
return; // Paint nothing if gradient size is zero.
}
if self.need_to_draw_shadow() {
self.draw_with_shadow(&rect, |new_draw_target: &DrawTarget| {
new_draw_target.stroke_rect(rect, self.state.stroke_style.to_pattern_ref(),
&self.state.stroke_opts, &self.state.draw_options);
});
} else if rect.size.width == 0. || rect.size.height == 0. {
let cap = match self.state.stroke_opts.line_join {
JoinStyle::Round => CapStyle::Round,
_ => CapStyle::Butt
};
let stroke_opts =
StrokeOptions::new(self.state.stroke_opts.line_width,
self.state.stroke_opts.line_join,
cap,
self.state.stroke_opts.miter_limit,
self.state.stroke_opts.mDashPattern);
self.drawtarget.stroke_line(rect.origin, rect.bottom_right(),
self.state.stroke_style.to_pattern_ref(),
&stroke_opts, &self.state.draw_options);
} else {
self.drawtarget.stroke_rect(rect, self.state.stroke_style.to_pattern_ref(),
&self.state.stroke_opts, &self.state.draw_options);
}
}
fn begin_path(&mut self) {
self.path_builder = self.drawtarget.create_path_builder()
}
fn close_path(&self) {
self.path_builder.close()
}
fn fill(&self) {
if is_zero_size_gradient(&self.state.fill_style) {
return; // Paint nothing if gradient size is zero.
}
self.drawtarget.fill(&self.path_builder.finish(),
self.state.fill_style.to_pattern_ref(),
&self.state.draw_options);
}
fn stroke(&self) {
if is_zero_size_gradient(&self.state.stroke_style) {
return; // Paint nothing if gradient size is zero.
}
self.drawtarget.stroke(&self.path_builder.finish(),
self.state.stroke_style.to_pattern_ref(),
&self.state.stroke_opts,
&self.state.draw_options);
}
fn clip(&self) {
self.drawtarget.push_clip(&self.path_builder.finish());
}
fn is_point_in_path(&mut self, x: f64, y: f64,
_fill_rule: FillRule, chan: IpcSender<bool>) {
let path = self.path_builder.finish();
let result = path.contains_point(x, y, &self.state.transform);
self.path_builder = path.copy_to_builder();
chan.send(result).unwrap();
}
fn draw_image(&self, image_data: Vec<u8>, image_size: Size2D<f64>,
dest_rect: Rect<f64>, source_rect: Rect<f64>, smoothing_enabled: bool) {
// We round up the floating pixel values to draw the pixels
let source_rect = source_rect.ceil();
// It discards the extra pixels (if any) that won't be painted
let image_data = crop_image(image_data, image_size, source_rect);
if self.need_to_draw_shadow() {
let rect = Rect::new(Point2D::new(dest_rect.origin.x as f32, dest_rect.origin.y as f32),
Size2D::new(dest_rect.size.width as f32, dest_rect.size.height as f32));
self.draw_with_shadow(&rect, |new_draw_target: &DrawTarget| {
write_image(&new_draw_target, image_data, source_rect.size, dest_rect,
smoothing_enabled, self.state.draw_options.composition,
self.state.draw_options.alpha);
});
} else {
write_image(&self.drawtarget, image_data, source_rect.size, dest_rect,
smoothing_enabled, self.state.draw_options.composition,
self.state.draw_options.alpha);
}
}
fn draw_image_self(&self, image_size: Size2D<f64>,
dest_rect: Rect<f64>, source_rect: Rect<f64>,
smoothing_enabled: bool) {
// Reads pixels from source image
// In this case source and target are the same canvas
let image_data = self.read_pixels(source_rect.to_i32(), image_size);
if self.need_to_draw_shadow() {
let rect = Rect::new(Point2D::new(dest_rect.origin.x as f32, dest_rect.origin.y as f32),
Size2D::new(dest_rect.size.width as f32, dest_rect.size.height as f32));
self.draw_with_shadow(&rect, |new_draw_target: &DrawTarget| {
write_image(&new_draw_target, image_data, source_rect.size, dest_rect,
smoothing_enabled, self.state.draw_options.composition,
self.state.draw_options.alpha);
});
} else {
// Writes on target canvas
write_image(&self.drawtarget, image_data, image_size, dest_rect,
smoothing_enabled, self.state.draw_options.composition,
self.state.draw_options.alpha);
}
}
fn draw_image_in_other(&self,
renderer: IpcSender<CanvasMsg>,
image_size: Size2D<f64>,
dest_rect: Rect<f64>,
source_rect: Rect<f64>,
smoothing_enabled: bool,
sender: IpcSender<()>) {
let mut image_data = self.read_pixels(source_rect.to_i32(), image_size);
// TODO: avoid double byte_swap.
byte_swap(&mut image_data);
let msg = CanvasMsg::Canvas2d(Canvas2dMsg::DrawImage(
image_data, source_rect.size, dest_rect, source_rect, smoothing_enabled));
renderer.send(msg).unwrap();
// We acknowledge to the caller here that the data was sent to the
// other canvas so that if JS immediately afterwards try to get the
// pixels of the other one, it won't retrieve the other values.
sender.send(()).unwrap();
}
fn move_to(&self, point: &Point2D<AzFloat>) {
self.path_builder.move_to(*point)
}
fn line_to(&self, point: &Point2D<AzFloat>) {
self.path_builder.line_to(*point)
}
fn rect(&self, rect: &Rect<f32>) {
self.path_builder.move_to(Point2D::new(rect.origin.x, rect.origin.y));
self.path_builder.line_to(Point2D::new(rect.origin.x + rect.size.width, rect.origin.y));
self.path_builder.line_to(Point2D::new(rect.origin.x + rect.size.width,
rect.origin.y + rect.size.height));
self.path_builder.line_to(Point2D::new(rect.origin.x, rect.origin.y + rect.size.height));
self.path_builder.close();
}
fn quadratic_curve_to(&self,
cp: &Point2D<AzFloat>,
endpoint: &Point2D<AzFloat>) {
self.path_builder.quadratic_curve_to(cp, endpoint)
}
fn bezier_curve_to(&self,
cp1: &Point2D<AzFloat>,
cp2: &Point2D<AzFloat>,
endpoint: &Point2D<AzFloat>) {
self.path_builder.bezier_curve_to(cp1, cp2, endpoint)
}
fn arc(&self,
center: &Point2D<AzFloat>,
radius: AzFloat,
start_angle: AzFloat,
end_angle: AzFloat,
ccw: bool) {
self.path_builder.arc(*center, radius, start_angle, end_angle, ccw)
}
fn arc_to(&self,
cp1: &Point2D<AzFloat>,
cp2: &Point2D<AzFloat>,
radius: AzFloat) {
let cp0 = self.path_builder.get_current_point();
let cp1 = *cp1;
let cp2 = *cp2;
if (cp0.x == cp1.x && cp0.y == cp1.y) || cp1 == cp2 || radius == 0.0 {
self.line_to(&cp1);
return;
}
// if all three control points lie on a single straight line,
// connect the first two by a straight line
let direction = (cp2.x - cp1.x) * (cp0.y - cp1.y) + (cp2.y - cp1.y) * (cp1.x - cp0.x);
if direction == 0.0 {
self.line_to(&cp1);
return;
}
// otherwise, draw the Arc
let a2 = (cp0.x - cp1.x).powi(2) + (cp0.y - cp1.y).powi(2);
let b2 = (cp1.x - cp2.x).powi(2) + (cp1.y - cp2.y).powi(2);
let d = {
let c2 = (cp0.x - cp2.x).powi(2) + (cp0.y - cp2.y).powi(2);
let cosx = (a2 + b2 - c2) / (2.0 * (a2 * b2).sqrt());
let sinx = (1.0 - cosx.powi(2)).sqrt();
radius / ((1.0 - cosx) / sinx)
};
// first tangent point
let anx = (cp1.x - cp0.x) / a2.sqrt();
let any = (cp1.y - cp0.y) / a2.sqrt();
let tp1 = Point2D::new(cp1.x - anx * d, cp1.y - any * d);
// second tangent point
let bnx = (cp1.x - cp2.x) / b2.sqrt();
let bny = (cp1.y - cp2.y) / b2.sqrt();
let tp2 = Point2D::new(cp1.x - bnx * d, cp1.y - bny * d);
// arc center and angles
let anticlockwise = direction < 0.0;
let cx = tp1.x + any * radius * if anticlockwise { 1.0 } else { -1.0 };
let cy = tp1.y - anx * radius * if anticlockwise { 1.0 } else { -1.0 };
let angle_start = (tp1.y - cy).atan2(tp1.x - cx);
let angle_end = (tp2.y - cy).atan2(tp2.x - cx);
self.line_to(&tp1);
if [cx, cy, angle_start, angle_end].iter().all(|x| x.is_finite()) {
self.arc(&Point2D::new(cx, cy), radius,
angle_start, angle_end, anticlockwise);
}
}
fn set_fill_style(&mut self, style: FillOrStrokeStyle) {
if let Some(pattern) = style.to_azure_pattern(&self.drawtarget) {
self.state.fill_style = pattern
}
}
fn set_stroke_style(&mut self, style: FillOrStrokeStyle) {
if let Some(pattern) = style.to_azure_pattern(&self.drawtarget) {
self.state.stroke_style = pattern
}
}
fn set_line_width(&mut self, width: f32) {
self.state.stroke_opts.line_width = width;
}
fn set_line_cap(&mut self, cap: LineCapStyle) {
self.state.stroke_opts.line_cap = cap.to_azure_style();
}
fn set_line_join(&mut self, join: LineJoinStyle) {
self.state.stroke_opts.line_join = join.to_azure_style();
}
fn set_miter_limit(&mut self, limit: f32) {
self.state.stroke_opts.miter_limit = limit;
}
fn set_transform(&mut self, transform: &Transform2D<f32>) {
self.state.transform = transform.clone();
self.drawtarget.set_transform(transform)
}
fn set_global_alpha(&mut self, alpha: f32) {
self.state.draw_options.alpha = alpha;
}
fn set_global_composition(&mut self, op: CompositionOrBlending) {
self.state.draw_options.set_composition_op(op.to_azure_style());
}
fn create(size: Size2D<i32>) -> DrawTarget {
DrawTarget::new(BackendType::Skia, size, SurfaceFormat::B8G8R8A8)
}
fn recreate(&mut self, size: Size2D<i32>) {
// TODO: clear the thread state. https://github.com/servo/servo/issues/17533
self.drawtarget = CanvasPaintThread::create(size);
self.state = CanvasPaintState::new(self.state.draw_options.antialias);
self.saved_states.clear();
// Webrender doesn't let images change size, so we clear the webrender image key.
// TODO: there is an annying race condition here: the display list builder
// might still be using the old image key. Really, we should be scheduling the image
// for later deletion, not deleting it immediately.
// https://github.com/servo/servo/issues/17534
if let Some(image_key) = self.image_key.take() {
// If this executes, then we are in a new epoch since we last recreated the canvas,
// so `old_image_key` must be `None`.
debug_assert!(self.old_image_key.is_none());
self.old_image_key = Some(image_key);
}
}
fn send_pixels(&mut self, chan: IpcSender<Option<Vec<u8>>>) {
self.drawtarget.snapshot().get_data_surface().with_data(|element| {
chan.send(Some(element.into())).unwrap();
})
}
fn send_data(&mut self, chan: IpcSender<CanvasData>) {
self.drawtarget.snapshot().get_data_surface().with_data(|element| {
let size = self.drawtarget.get_size();
let descriptor = webrender_api::ImageDescriptor {
width: size.width as u32,
height: size.height as u32,
stride: None,
format: webrender_api::ImageFormat::BGRA8,
offset: 0,
is_opaque: false,
};
let data = webrender_api::ImageData::Raw(Arc::new(element.into()));
let mut updates = webrender_api::ResourceUpdates::new();
match self.image_key {
Some(image_key) => {
debug!("Updating image {:?}.", image_key);
updates.update_image(image_key,
descriptor,
data,
None);
}
None => {
self.image_key = Some(self.webrender_api.generate_image_key());
debug!("New image {:?}.", self.image_key);
updates.add_image(self.image_key.unwrap(),
descriptor,
data,
None);
}
}
if let Some(image_key) = mem::replace(&mut self.very_old_image_key, self.old_image_key.take()) {
updates.delete_image(image_key);
}
self.webrender_api.update_resources(updates);
let data = CanvasImageData {
image_key: self.image_key.unwrap(),
};
chan.send(CanvasData::Image(data)).unwrap();
})
}
fn image_data(&self, dest_rect: Rect<i32>, canvas_size: Size2D<f64>, chan: IpcSender<Vec<u8>>) {
let mut dest_data = self.read_pixels(dest_rect, canvas_size);
// bgra -> rgba
byte_swap(&mut dest_data);
chan.send(dest_data).unwrap();
}
// https://html.spec.whatwg.org/multipage/#dom-context-2d-putimagedata
fn put_image_data(&mut self, imagedata: Vec<u8>,
offset: Vector2D<f64>,
image_data_size: Size2D<f64>,
mut dirty_rect: Rect<f64>) {
if image_data_size.width <= 0.0 || image_data_size.height <= 0.0 {
return
}
assert!(image_data_size.width * image_data_size.height * 4.0 == imagedata.len() as f64);
// Step 1. TODO (neutered data)
// Step 2.
if dirty_rect.size.width < 0.0f64 {
dirty_rect.origin.x += dirty_rect.size.width;
dirty_rect.size.width = -dirty_rect.size.width;
}
if dirty_rect.size.height < 0.0f64 {
dirty_rect.origin.y += dirty_rect.size.height;
dirty_rect.size.height = -dirty_rect.size.height;
}
// Step 3.
if dirty_rect.origin.x < 0.0f64 {
dirty_rect.size.width += dirty_rect.origin.x;
dirty_rect.origin.x = 0.0f64;
}
if dirty_rect.origin.y < 0.0f64 {
dirty_rect.size.height += dirty_rect.origin.y;
dirty_rect.origin.y = 0.0f64;
}
// Step 4.
if dirty_rect.max_x() > image_data_size.width {
dirty_rect.size.width = image_data_size.width - dirty_rect.origin.x;
}
if dirty_rect.max_y() > image_data_size.height {
dirty_rect.size.height = image_data_size.height - dirty_rect.origin.y;
}
// 5) If either dirtyWidth or dirtyHeight is negative or zero,
// stop without affecting any bitmaps
if dirty_rect.size.width <= 0.0 || dirty_rect.size.height <= 0.0 {
return
}
// Step 6.
let dest_rect = dirty_rect.translate(&offset).to_i32();
// azure_hl operates with integers. We need to cast the image size
let image_size = image_data_size.to_i32();
let first_pixel = dest_rect.origin - offset.to_i32();
let mut src_line = (first_pixel.y * (image_size.width * 4) + first_pixel.x * 4) as usize;
let mut dest =
Vec::with_capacity((dest_rect.size.width * dest_rect.size.height * 4) as usize);
for _ in 0 .. dest_rect.size.height {
let mut src_offset = src_line;
for _ in 0 .. dest_rect.size.width {
let alpha = imagedata[src_offset + 3] as u16;
// add 127 before dividing for more accurate rounding
let premultiply_channel = |channel: u8| (((channel as u16 * alpha) + 127) / 255) as u8;
dest.push(premultiply_channel(imagedata[src_offset + 2]));
dest.push(premultiply_channel(imagedata[src_offset + 1]));
dest.push(premultiply_channel(imagedata[src_offset + 0]));
dest.push(imagedata[src_offset + 3]);
src_offset += 4;
}
src_line += (image_size.width * 4) as usize;
}
if let Some(source_surface) = self.drawtarget.create_source_surface_from_data(
&dest,
dest_rect.size,
dest_rect.size.width * 4,
SurfaceFormat::B8G8R8A8) {
self.drawtarget.copy_surface(source_surface,
Rect::new(Point2D::new(0, 0), dest_rect.size),
dest_rect.origin);
}
}
fn set_shadow_offset_x(&mut self, value: f64) {
self.state.shadow_offset_x = value;
}
fn set_shadow_offset_y(&mut self, value: f64) {
self.state.shadow_offset_y = value;
}
fn set_shadow_blur(&mut self, value: f64) {
self.state.shadow_blur = value;
}
fn set_shadow_color(&mut self, value: Color) {
self.state.shadow_color = value;
}
// https://html.spec.whatwg.org/multipage/#when-shadows-are-drawn
fn need_to_draw_shadow(&self) -> bool {
self.state.shadow_color.a != 0.0f32 &&
(self.state.shadow_offset_x != 0.0f64 ||
self.state.shadow_offset_y != 0.0f64 ||
self.state.shadow_blur != 0.0f64)
}
fn create_draw_target_for_shadow(&self, source_rect: &Rect<f32>) -> DrawTarget {
let draw_target = self.drawtarget.create_similar_draw_target(&Size2D::new(source_rect.size.width as i32,
source_rect.size.height as i32),
self.drawtarget.get_format());
let matrix = Transform2D::identity()
.pre_translate(-source_rect.origin.to_vector().cast().unwrap())
.pre_mul(&self.state.transform);
draw_target.set_transform(&matrix);
draw_target
}
fn draw_with_shadow<F>(&self, rect: &Rect<f32>, draw_shadow_source: F)
where F: FnOnce(&DrawTarget)
{
let shadow_src_rect = self.state.transform.transform_rect(rect);
let new_draw_target = self.create_draw_target_for_shadow(&shadow_src_rect);
draw_shadow_source(&new_draw_target);
self.drawtarget.draw_surface_with_shadow(new_draw_target.snapshot(),
&Point2D::new(shadow_src_rect.origin.x as AzFloat,
shadow_src_rect.origin.y as AzFloat),
&self.state.shadow_color,
&Vector2D::new(self.state.shadow_offset_x as AzFloat,
self.state.shadow_offset_y as AzFloat),
(self.state.shadow_blur / 2.0f64) as AzFloat,
self.state.draw_options.composition);
}
}
impl<'a> Drop for CanvasPaintThread<'a> {
fn drop(&mut self) {
let mut updates = webrender_api::ResourceUpdates::new();
if let Some(image_key) = self.old_image_key.take() {
updates.delete_image(image_key);
}
if let Some(image_key) = self.very_old_image_key.take() {
updates.delete_image(image_key);
}
self.webrender_api.update_resources(updates);
}
}
/// Used by drawImage to get rid of the extra pixels of the image data that
/// won't be copied to the canvas
/// image_data: Color pixel data of the image
/// image_size: Image dimensions
/// crop_rect: It determines the area of the image we want to keep
fn crop_image(image_data: Vec<u8>,
image_size: Size2D<f64>,
crop_rect: Rect<f64>) -> Vec<u8>{
// We're going to iterate over a pixel values array so we need integers
let crop_rect = crop_rect.to_i32();
let image_size = image_size.to_i32();
// Assuming 4 bytes per pixel and row-major order for storage
// (consecutive elements in a pixel row of the image are contiguous in memory)
let stride = image_size.width * 4;
let image_bytes_length = image_size.height * image_size.width * 4;
let crop_area_bytes_length = crop_rect.size.height * crop_rect.size.width * 4;
// If the image size is less or equal than the crop area we do nothing
if image_bytes_length <= crop_area_bytes_length {
return image_data;
}
let mut new_image_data = Vec::new();
let mut src = (crop_rect.origin.y * stride + crop_rect.origin.x * 4) as usize;
for _ in 0..crop_rect.size.height {
let row = &image_data[src .. src + (4 * crop_rect.size.width) as usize];
new_image_data.extend_from_slice(row);
src += stride as usize;
}
new_image_data
}
/// It writes an image to the destination target
/// draw_target: the destination target where the image_data will be copied
/// image_data: Pixel information of the image to be written. It takes RGBA8
/// image_size: The size of the image to be written
/// dest_rect: Area of the destination target where the pixels will be copied
/// smoothing_enabled: It determines if smoothing is applied to the image result
fn write_image(draw_target: &DrawTarget,
mut image_data: Vec<u8>,
image_size: Size2D<f64>,
dest_rect: Rect<f64>,
smoothing_enabled: bool,
composition_op: CompositionOp,
global_alpha: f32) {
if image_data.is_empty() {
return
}
let image_rect = Rect::new(Point2D::zero(), image_size);
// rgba -> bgra
byte_swap(&mut image_data);
// From spec https://html.spec.whatwg.org/multipage/#dom-context-2d-drawimage
// When scaling up, if the imageSmoothingEnabled attribute is set to true, the user agent should attempt
// to apply a smoothing algorithm to the image data when it is scaled.
// Otherwise, the image must be rendered using nearest-neighbor interpolation.
let filter = if smoothing_enabled {
Filter::Linear
} else {
Filter::Point
};
// azure_hl operates with integers. We need to cast the image size
let image_size = image_size.to_i32();
if let Some(source_surface) =
draw_target.create_source_surface_from_data(&image_data,
image_size,
image_size.width * 4,
SurfaceFormat::B8G8R8A8) {
let draw_surface_options = DrawSurfaceOptions::new(filter, true);
let draw_options = DrawOptions::new(global_alpha, composition_op, AntialiasMode::None);
draw_target.draw_surface(source_surface,
dest_rect.to_azure_style(),
image_rect.to_azure_style(),
draw_surface_options,
draw_options);
}
}
fn is_zero_size_gradient(pattern: &Pattern) -> bool {
if let &Pattern::LinearGradient(ref gradient) = pattern {
if gradient.is_zero_size() {
return true;
}
}
false
}
pub trait PointToi32 {
fn to_i32(&self) -> Point2D<i32>;
}
impl PointToi32 for Point2D<f64> {
fn to_i32(&self) -> Point2D<i32> {
Point2D::new(self.x.to_i32().unwrap(),
self.y.to_i32().unwrap())
}
}
pub trait SizeToi32 {
fn to_i32(&self) -> Size2D<i32>;
}
impl SizeToi32 for Size2D<f64> {
fn to_i32(&self) -> Size2D<i32> {
Size2D::new(self.width.to_i32().unwrap(),
self.height.to_i32().unwrap())
}
}
pub trait RectToi32 {
fn to_i32(&self) -> Rect<i32>;
fn ceil(&self) -> Rect<f64>;
}
impl RectToi32 for Rect<f64> {
fn to_i32(&self) -> Rect<i32> {
Rect::new(Point2D::new(self.origin.x.to_i32().unwrap(),
self.origin.y.to_i32().unwrap()),
Size2D::new(self.size.width.to_i32().unwrap(),
self.size.height.to_i32().unwrap()))
}
fn ceil(&self) -> Rect<f64> {
Rect::new(Point2D::new(self.origin.x.ceil(),
self.origin.y.ceil()),
Size2D::new(self.size.width.ceil(),
self.size.height.ceil()))
}
}
pub trait ToAzureStyle {
type Target;
fn to_azure_style(self) -> Self::Target;
}
impl ToAzureStyle for Rect<f64> {
type Target = Rect<AzFloat>;
fn to_azure_style(self) -> Rect<AzFloat> {
Rect::new(Point2D::new(self.origin.x as AzFloat, self.origin.y as AzFloat),
Size2D::new(self.size.width as AzFloat, self.size.height as AzFloat))
}
}
impl ToAzureStyle for LineCapStyle {
type Target = CapStyle;
fn to_azure_style(self) -> CapStyle {
match self {
LineCapStyle::Butt => CapStyle::Butt,
LineCapStyle::Round => CapStyle::Round,
LineCapStyle::Square => CapStyle::Square,
}
}
}
impl ToAzureStyle for LineJoinStyle {
type Target = JoinStyle;
fn to_azure_style(self) -> JoinStyle {
match self {
LineJoinStyle::Round => JoinStyle::Round,
LineJoinStyle::Bevel => JoinStyle::Bevel,
LineJoinStyle::Miter => JoinStyle::Miter,
}
}
}
impl ToAzureStyle for CompositionStyle {
type Target = CompositionOp;
fn to_azure_style(self) -> CompositionOp {
match self {
CompositionStyle::SrcIn => CompositionOp::In,
CompositionStyle::SrcOut => CompositionOp::Out,
CompositionStyle::SrcOver => CompositionOp::Over,
CompositionStyle::SrcAtop => CompositionOp::Atop,
CompositionStyle::DestIn => CompositionOp::DestIn,
CompositionStyle::DestOut => CompositionOp::DestOut,
CompositionStyle::DestOver => CompositionOp::DestOver,
CompositionStyle::DestAtop => CompositionOp::DestAtop,
CompositionStyle::Copy => CompositionOp::Source,
CompositionStyle::Lighter => CompositionOp::Add,
CompositionStyle::Xor => CompositionOp::Xor,
}
}
}
impl ToAzureStyle for BlendingStyle {
type Target = CompositionOp;
fn to_azure_style(self) -> CompositionOp {
match self {
BlendingStyle::Multiply => CompositionOp::Multiply,
BlendingStyle::Screen => CompositionOp::Screen,
BlendingStyle::Overlay => CompositionOp::Overlay,
BlendingStyle::Darken => CompositionOp::Darken,
BlendingStyle::Lighten => CompositionOp::Lighten,
BlendingStyle::ColorDodge => CompositionOp::ColorDodge,
BlendingStyle::ColorBurn => CompositionOp::ColorBurn,
BlendingStyle::HardLight => CompositionOp::HardLight,
BlendingStyle::SoftLight => CompositionOp::SoftLight,
BlendingStyle::Difference => CompositionOp::Difference,
BlendingStyle::Exclusion => CompositionOp::Exclusion,
BlendingStyle::Hue => CompositionOp::Hue,
BlendingStyle::Saturation => CompositionOp::Saturation,
BlendingStyle::Color => CompositionOp::Color,
BlendingStyle::Luminosity => CompositionOp::Luminosity,
}
}
}
impl ToAzureStyle for CompositionOrBlending {
type Target = CompositionOp;
fn to_azure_style(self) -> CompositionOp {
match self {
CompositionOrBlending::Composition(op) => op.to_azure_style(),
CompositionOrBlending::Blending(op) => op.to_azure_style(),
}
}
}
pub trait ToAzurePattern {
fn to_azure_pattern(&self, drawtarget: &DrawTarget) -> Option<Pattern>;
}
impl ToAzurePattern for FillOrStrokeStyle {
fn to_azure_pattern(&self, drawtarget: &DrawTarget) -> Option<Pattern> {
match *self {
FillOrStrokeStyle::Color(ref color) => {
Some(Pattern::Color(ColorPattern::new(color.to_azure_style())))
},
FillOrStrokeStyle::LinearGradient(ref linear_gradient_style) => {
let gradient_stops: Vec<GradientStop> = linear_gradient_style.stops.iter().map(|s| {
GradientStop {
offset: s.offset as AzFloat,
color: s.color.to_azure_style()
}
}).collect();
Some(Pattern::LinearGradient(LinearGradientPattern::new(
&Point2D::new(linear_gradient_style.x0 as AzFloat, linear_gradient_style.y0 as AzFloat),
&Point2D::new(linear_gradient_style.x1 as AzFloat, linear_gradient_style.y1 as AzFloat),
drawtarget.create_gradient_stops(&gradient_stops, ExtendMode::Clamp),
&Transform2D::identity())))
},
FillOrStrokeStyle::RadialGradient(ref radial_gradient_style) => {
let gradient_stops: Vec<GradientStop> = radial_gradient_style.stops.iter().map(|s| {
GradientStop {
offset: s.offset as AzFloat,
color: s.color.to_azure_style()
}
}).collect();
Some(Pattern::RadialGradient(RadialGradientPattern::new(
&Point2D::new(radial_gradient_style.x0 as AzFloat, radial_gradient_style.y0 as AzFloat),
&Point2D::new(radial_gradient_style.x1 as AzFloat, radial_gradient_style.y1 as AzFloat),
radial_gradient_style.r0 as AzFloat, radial_gradient_style.r1 as AzFloat,
drawtarget.create_gradient_stops(&gradient_stops, ExtendMode::Clamp),
&Transform2D::identity())))
},
FillOrStrokeStyle::Surface(ref surface_style) => {
drawtarget.create_source_surface_from_data(&surface_style.surface_data,
surface_style.surface_size,
surface_style.surface_size.width * 4,
SurfaceFormat::B8G8R8A8)
.map(|source_surface| {
Pattern::Surface(SurfacePattern::new(
source_surface.azure_source_surface,
surface_style.repeat_x,
surface_style.repeat_y,
&Transform2D::identity()))
})
}
}
}
}
impl ToAzureStyle for RGBA {
type Target = Color;
fn to_azure_style(self) -> Color {
Color::rgba(self.red_f32() as AzFloat,
self.green_f32() as AzFloat,
self.blue_f32() as AzFloat,
self.alpha_f32() as AzFloat)
}
}