mirror of
https://github.com/servo/servo.git
synced 2025-06-25 01:24:37 +01:00
We don't really need two levels of abstraction for every element in the DisplayList. This simplifies the complexity of the data structure in preparation for providing documentation and properly handling scrolling roots.
1450 lines
53 KiB
Rust
1450 lines
53 KiB
Rust
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
//! Servo heavily uses display lists, which are retained-mode lists of painting commands to
|
|
//! perform. Using a list instead of painting elements in immediate mode allows transforms, hit
|
|
//! testing, and invalidation to be performed using the same primitives as painting. It also allows
|
|
//! Servo to aggressively cull invisible and out-of-bounds painting elements, to reduce overdraw.
|
|
//! Finally, display lists allow tiles to be farmed out onto multiple CPUs and painted in parallel
|
|
//! (although this benefit does not apply to GPU-based painting).
|
|
//!
|
|
//! Display items describe relatively high-level drawing operations (for example, entire borders
|
|
//! and shadows instead of lines and blur operations), to reduce the amount of allocation required.
|
|
//! They are therefore not exactly analogous to constructs like Skia pictures, which consist of
|
|
//! low-level drawing primitives.
|
|
|
|
use app_units::Au;
|
|
use azure::azure::AzFloat;
|
|
use azure::azure_hl::Color;
|
|
use euclid::approxeq::ApproxEq;
|
|
use euclid::num::Zero;
|
|
use euclid::rect::TypedRect;
|
|
use euclid::{Matrix2D, Matrix4D, Point2D, Rect, SideOffsets2D, Size2D};
|
|
use fnv::FnvHasher;
|
|
use gfx_traits::{LayerId, ScrollPolicy};
|
|
use heapsize::HeapSizeOf;
|
|
use ipc_channel::ipc::IpcSharedMemory;
|
|
use msg::constellation_msg::PipelineId;
|
|
use net_traits::image::base::{Image, PixelFormat};
|
|
use paint_context::PaintContext;
|
|
use range::Range;
|
|
use serde::de::{self, Deserialize, Deserializer, MapVisitor, Visitor};
|
|
use serde::ser::impls::MapIteratorVisitor;
|
|
use serde::ser::{Serialize, Serializer};
|
|
use std::cmp::{self, Ordering};
|
|
use std::collections::HashMap;
|
|
use std::fmt;
|
|
use std::hash::{BuildHasherDefault, Hash};
|
|
use std::marker::PhantomData;
|
|
use std::ops::{Deref, DerefMut};
|
|
use std::sync::Arc;
|
|
use style::computed_values::{border_style, filter, image_rendering, mix_blend_mode};
|
|
use style::properties::{ComputedValues};
|
|
use style_traits::cursor::Cursor;
|
|
use text::TextRun;
|
|
use text::glyph::CharIndex;
|
|
use util::geometry::{self, MAX_RECT, ScreenPx};
|
|
use util::print_tree::PrintTree;
|
|
use webrender_traits::{self, WebGLContextId};
|
|
|
|
pub use style::dom::OpaqueNode;
|
|
|
|
// It seems cleaner to have layout code not mention Azure directly, so let's just reexport this for
|
|
// layout to use.
|
|
pub use azure::azure_hl::GradientStop;
|
|
|
|
/// The factor that we multiply the blur radius by in order to inflate the boundaries of display
|
|
/// items that involve a blur. This ensures that the display item boundaries include all the ink.
|
|
pub static BLUR_INFLATION_FACTOR: i32 = 3;
|
|
|
|
/// LayerInfo is used to store PaintLayer metadata during DisplayList construction.
|
|
/// It is also used for tracking LayerIds when creating layers to preserve ordering when
|
|
/// layered DisplayItems should render underneath unlayered DisplayItems.
|
|
#[derive(Clone, Copy, HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct LayerInfo {
|
|
/// The base LayerId of this layer.
|
|
pub layer_id: LayerId,
|
|
|
|
/// The scroll policy of this layer.
|
|
pub scroll_policy: ScrollPolicy,
|
|
|
|
/// The subpage that this layer represents, if there is one.
|
|
pub subpage_pipeline_id: Option<PipelineId>,
|
|
|
|
/// The id for the next layer in the sequence. This is used for synthesizing
|
|
/// layers for content that needs to be displayed on top of this layer.
|
|
pub next_layer_id: LayerId,
|
|
|
|
/// The color of the background in this layer. Used for unpainted content.
|
|
pub background_color: Color,
|
|
}
|
|
|
|
impl LayerInfo {
|
|
pub fn new(id: LayerId,
|
|
scroll_policy: ScrollPolicy,
|
|
subpage_pipeline_id: Option<PipelineId>,
|
|
background_color: Color)
|
|
-> LayerInfo {
|
|
LayerInfo {
|
|
layer_id: id,
|
|
scroll_policy: scroll_policy,
|
|
subpage_pipeline_id: subpage_pipeline_id,
|
|
next_layer_id: id.companion_layer_id(),
|
|
background_color: background_color,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct DisplayListTraversal<'a> {
|
|
pub display_list: &'a DisplayList,
|
|
pub current_item_index: usize,
|
|
pub last_item_index: usize,
|
|
}
|
|
|
|
impl<'a> DisplayListTraversal<'a> {
|
|
fn can_draw_item_at_index(&self, index: usize) -> bool {
|
|
index <= self.last_item_index && index < self.display_list.list.len()
|
|
}
|
|
|
|
pub fn advance(&mut self, context: &StackingContext) -> Option<&'a DisplayItem> {
|
|
if !self.can_draw_item_at_index(self.current_item_index) {
|
|
return None
|
|
}
|
|
if self.display_list.list[self.current_item_index].base().stacking_context_id != context.id {
|
|
return None
|
|
}
|
|
|
|
self.current_item_index += 1;
|
|
Some(&self.display_list.list[self.current_item_index - 1])
|
|
}
|
|
|
|
fn current_item_offset(&self) -> u32 {
|
|
self.display_list.get_offset_for_item(&self.display_list.list[self.current_item_index])
|
|
}
|
|
|
|
pub fn skip_past_stacking_context(&mut self, stacking_context: &StackingContext) {
|
|
let next_stacking_context_offset =
|
|
self.display_list.offsets[&stacking_context.id].outlines + 1;
|
|
while self.can_draw_item_at_index(self.current_item_index + 1) &&
|
|
self.current_item_offset() < next_stacking_context_offset {
|
|
self.current_item_index += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct StackingContextOffsets {
|
|
pub start: u32,
|
|
pub block_backgrounds_and_borders: u32,
|
|
pub content: u32,
|
|
pub outlines: u32,
|
|
}
|
|
|
|
/// A FNV-based hash map. This is not serializable by `serde` by default, so we provide an
|
|
/// implementation ourselves.
|
|
pub struct FnvHashMap<K, V>(pub HashMap<K, V, BuildHasherDefault<FnvHasher>>);
|
|
|
|
impl<K, V> Deref for FnvHashMap<K, V> {
|
|
type Target = HashMap<K, V, BuildHasherDefault<FnvHasher>>;
|
|
fn deref(&self) -> &Self::Target {
|
|
&self.0
|
|
}
|
|
}
|
|
|
|
impl<K, V> DerefMut for FnvHashMap<K, V> {
|
|
fn deref_mut(&mut self) -> &mut Self::Target {
|
|
&mut self.0
|
|
}
|
|
}
|
|
|
|
impl<K, V> Serialize for FnvHashMap<K, V> where K: Eq + Hash + Serialize, V: Serialize {
|
|
#[inline]
|
|
fn serialize<S>(&self, serializer: &mut S) -> Result<(), S::Error> where S: Serializer {
|
|
serializer.serialize_map(MapIteratorVisitor::new(self.iter(), Some(self.len())))
|
|
}
|
|
}
|
|
|
|
impl<K, V> Deserialize for FnvHashMap<K, V> where K: Eq + Hash + Deserialize, V: Deserialize {
|
|
#[inline]
|
|
fn deserialize<D>(deserializer: &mut D) -> Result<Self, D::Error> where D: Deserializer {
|
|
deserializer.deserialize_map(FnvHashMapVisitor::new())
|
|
}
|
|
}
|
|
/// A visitor that produces a map.
|
|
pub struct FnvHashMapVisitor<K, V> {
|
|
marker: PhantomData<FnvHashMap<K, V>>,
|
|
}
|
|
|
|
impl<K, V> FnvHashMapVisitor<K, V> {
|
|
/// Construct a `FnvHashMapVisitor<T>`.
|
|
pub fn new() -> Self {
|
|
FnvHashMapVisitor {
|
|
marker: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<K, V> Visitor for FnvHashMapVisitor<K, V> where K: Eq + Hash + Deserialize, V: Deserialize {
|
|
type Value = FnvHashMap<K, V>;
|
|
|
|
#[inline]
|
|
fn visit_unit<E>(&mut self) -> Result<FnvHashMap<K, V>, E> where E: de::Error {
|
|
Ok(FnvHashMap(HashMap::with_hasher(Default::default())))
|
|
}
|
|
|
|
#[inline]
|
|
fn visit_map<Visitor>(&mut self, mut visitor: Visitor)
|
|
-> Result<FnvHashMap<K, V>, Visitor::Error>
|
|
where Visitor: MapVisitor {
|
|
let mut values = FnvHashMap(HashMap::with_hasher(Default::default()));
|
|
while let Some((key, value)) = try!(visitor.visit()) {
|
|
HashMap::insert(&mut values, key, value);
|
|
}
|
|
try!(visitor.end());
|
|
Ok(values)
|
|
}
|
|
}
|
|
|
|
#[derive(HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct DisplayList {
|
|
pub list: Vec<DisplayItem>,
|
|
pub offsets: FnvHashMap<StackingContextId, StackingContextOffsets>,
|
|
pub root_stacking_context: StackingContext,
|
|
}
|
|
|
|
impl DisplayList {
|
|
pub fn new(mut root_stacking_context: StackingContext,
|
|
items: &mut Option<Vec<DisplayItem>>)
|
|
-> DisplayList {
|
|
let items = match items.take() {
|
|
Some(items) => items,
|
|
None => panic!("Tried to create empty display list."),
|
|
};
|
|
|
|
let mut offsets = FnvHashMap(HashMap::with_hasher(Default::default()));
|
|
DisplayList::sort_and_count_stacking_contexts(&mut root_stacking_context, &mut offsets, 0);
|
|
|
|
let mut display_list = DisplayList {
|
|
list: items,
|
|
offsets: offsets,
|
|
root_stacking_context: root_stacking_context,
|
|
};
|
|
display_list.sort();
|
|
display_list
|
|
}
|
|
|
|
pub fn get_offset_for_item(&self, item: &DisplayItem) -> u32 {
|
|
let offsets = &self.offsets[&item.base().stacking_context_id];
|
|
match item.base().section {
|
|
DisplayListSection::BackgroundAndBorders => offsets.start,
|
|
DisplayListSection::BlockBackgroundsAndBorders =>
|
|
offsets.block_backgrounds_and_borders,
|
|
DisplayListSection::Content => offsets.content,
|
|
DisplayListSection::Outlines => offsets.outlines,
|
|
}
|
|
}
|
|
|
|
fn sort(&mut self) {
|
|
let mut list = Vec::new();
|
|
list.append(&mut self.list);
|
|
|
|
list.sort_by(|a, b| {
|
|
if a.base().stacking_context_id == b.base().stacking_context_id {
|
|
return a.base().section.cmp(&b.base().section);
|
|
}
|
|
self.get_offset_for_item(a).cmp(&self.get_offset_for_item(b))
|
|
});
|
|
|
|
self.list.append(&mut list);
|
|
}
|
|
|
|
pub fn print(&self) {
|
|
let mut print_tree = PrintTree::new("Display List".to_owned());
|
|
self.print_with_tree(&mut print_tree);
|
|
}
|
|
|
|
fn sort_and_count_stacking_contexts(
|
|
stacking_context: &mut StackingContext,
|
|
offsets: &mut HashMap<StackingContextId,
|
|
StackingContextOffsets,
|
|
BuildHasherDefault<FnvHasher>>,
|
|
mut current_offset: u32)
|
|
-> u32 {
|
|
stacking_context.children.sort();
|
|
|
|
let start_offset = current_offset;
|
|
let mut block_backgrounds_and_borders_offset = None;
|
|
let mut content_offset = None;
|
|
|
|
for child in stacking_context.children.iter_mut() {
|
|
if child.z_index >= 0 {
|
|
if block_backgrounds_and_borders_offset.is_none() {
|
|
current_offset += 1;
|
|
block_backgrounds_and_borders_offset = Some(current_offset);
|
|
}
|
|
|
|
if child.context_type != StackingContextType::PseudoFloat &&
|
|
content_offset.is_none() {
|
|
current_offset += 1;
|
|
content_offset = Some(current_offset);
|
|
}
|
|
}
|
|
|
|
current_offset += 1;
|
|
current_offset =
|
|
DisplayList::sort_and_count_stacking_contexts(child, offsets, current_offset);
|
|
}
|
|
|
|
let block_backgrounds_and_borders_offset =
|
|
block_backgrounds_and_borders_offset.unwrap_or_else(|| {
|
|
current_offset += 1;
|
|
current_offset
|
|
});
|
|
|
|
let content_offset = content_offset.unwrap_or_else(|| {
|
|
current_offset += 1;
|
|
current_offset
|
|
});
|
|
|
|
current_offset += 1;
|
|
|
|
offsets.insert(
|
|
stacking_context.id,
|
|
StackingContextOffsets {
|
|
start: start_offset,
|
|
block_backgrounds_and_borders: block_backgrounds_and_borders_offset,
|
|
content: content_offset,
|
|
outlines: current_offset,
|
|
});
|
|
|
|
current_offset + 1
|
|
}
|
|
|
|
pub fn print_with_tree(&self, print_tree: &mut PrintTree) {
|
|
print_tree.new_level("Items".to_owned());
|
|
for item in &self.list {
|
|
print_tree.add_item(format!("{:?} StackingContext: {:?}",
|
|
item,
|
|
item.base().stacking_context_id));
|
|
}
|
|
print_tree.end_level();
|
|
|
|
print_tree.new_level("Stacking Contexts".to_owned());
|
|
self.root_stacking_context.print_with_tree(print_tree);
|
|
print_tree.end_level();
|
|
}
|
|
|
|
/// Draws a single DisplayItem into the given PaintContext.
|
|
pub fn draw_item_at_index_into_context(&self,
|
|
paint_context: &mut PaintContext,
|
|
transform: &Matrix4D<f32>,
|
|
index: usize) {
|
|
let old_transform = paint_context.draw_target.get_transform();
|
|
paint_context.draw_target.set_transform(
|
|
&Matrix2D::new(transform.m11, transform.m12,
|
|
transform.m21, transform.m22,
|
|
transform.m41, transform.m42));
|
|
|
|
let item = &self.list[index];
|
|
item.draw_into_context(paint_context);
|
|
|
|
paint_context.draw_target.set_transform(&old_transform);
|
|
}
|
|
|
|
pub fn find_stacking_context<'a>(&'a self,
|
|
stacking_context_id: StackingContextId)
|
|
-> Option<&'a StackingContext> {
|
|
fn find_stacking_context_in_stacking_context<'a>(stacking_context: &'a StackingContext,
|
|
stacking_context_id: StackingContextId)
|
|
-> Option<&'a StackingContext> {
|
|
if stacking_context.id == stacking_context_id {
|
|
return Some(stacking_context);
|
|
}
|
|
|
|
for kid in stacking_context.children.iter() {
|
|
let result = find_stacking_context_in_stacking_context(kid, stacking_context_id);
|
|
if result.is_some() {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
find_stacking_context_in_stacking_context(&self.root_stacking_context,
|
|
stacking_context_id)
|
|
}
|
|
|
|
/// Draws the DisplayList in order.
|
|
pub fn draw_into_context<'a>(&self,
|
|
paint_context: &mut PaintContext,
|
|
transform: &Matrix4D<f32>,
|
|
stacking_context_id: StackingContextId,
|
|
start: usize,
|
|
end: usize) {
|
|
let stacking_context = self.find_stacking_context(stacking_context_id).unwrap();
|
|
let mut traversal = DisplayListTraversal {
|
|
display_list: self,
|
|
current_item_index: start,
|
|
last_item_index: end,
|
|
};
|
|
self.draw_stacking_context(stacking_context, &mut traversal, paint_context, transform);
|
|
}
|
|
|
|
fn draw_stacking_context_contents<'a>(&'a self,
|
|
stacking_context: &StackingContext,
|
|
traversal: &mut DisplayListTraversal<'a>,
|
|
paint_context: &mut PaintContext,
|
|
transform: &Matrix4D<f32>,
|
|
tile_rect: Option<Rect<Au>>) {
|
|
for child in stacking_context.children.iter() {
|
|
while let Some(item) = traversal.advance(stacking_context) {
|
|
if item.intersects_rect_in_parent_context(tile_rect) {
|
|
item.draw_into_context(paint_context);
|
|
}
|
|
}
|
|
|
|
if child.intersects_rect_in_parent_context(tile_rect) {
|
|
self.draw_stacking_context(child, traversal, paint_context, &transform);
|
|
} else {
|
|
traversal.skip_past_stacking_context(child);
|
|
}
|
|
}
|
|
|
|
while let Some(item) = traversal.advance(stacking_context) {
|
|
if item.intersects_rect_in_parent_context(tile_rect) {
|
|
item.draw_into_context(paint_context);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
fn draw_stacking_context<'a>(&'a self,
|
|
stacking_context: &StackingContext,
|
|
traversal: &mut DisplayListTraversal<'a>,
|
|
paint_context: &mut PaintContext,
|
|
transform: &Matrix4D<f32>) {
|
|
|
|
if stacking_context.context_type != StackingContextType::Real {
|
|
self.draw_stacking_context_contents(stacking_context,
|
|
traversal,
|
|
paint_context,
|
|
transform,
|
|
None);
|
|
return;
|
|
}
|
|
|
|
let draw_target = paint_context.get_or_create_temporary_draw_target(
|
|
&stacking_context.filters,
|
|
stacking_context.blend_mode);
|
|
|
|
// If a layer is being used, the transform for this layer
|
|
// will be handled by the compositor.
|
|
let old_transform = paint_context.draw_target.get_transform();
|
|
let transform = match stacking_context.layer_info {
|
|
Some(..) => *transform,
|
|
None => {
|
|
let pixels_per_px = paint_context.screen_pixels_per_px();
|
|
let origin = &stacking_context.bounds.origin;
|
|
transform.translate(
|
|
origin.x.to_nearest_pixel(pixels_per_px.get()) as AzFloat,
|
|
origin.y.to_nearest_pixel(pixels_per_px.get()) as AzFloat,
|
|
0.0).mul(&stacking_context.transform)
|
|
}
|
|
};
|
|
|
|
{
|
|
let mut paint_subcontext = PaintContext {
|
|
draw_target: draw_target.clone(),
|
|
font_context: &mut *paint_context.font_context,
|
|
page_rect: paint_context.page_rect,
|
|
screen_rect: paint_context.screen_rect,
|
|
clip_rect: Some(stacking_context.overflow),
|
|
transient_clip: None,
|
|
layer_kind: paint_context.layer_kind,
|
|
};
|
|
|
|
// Set up our clip rect and transform.
|
|
paint_subcontext.draw_target.set_transform(
|
|
&Matrix2D::new(transform.m11, transform.m12,
|
|
transform.m21, transform.m22,
|
|
transform.m41, transform.m42));
|
|
paint_subcontext.push_clip_if_applicable();
|
|
|
|
self.draw_stacking_context_contents(
|
|
stacking_context,
|
|
traversal,
|
|
&mut paint_subcontext,
|
|
&transform,
|
|
Some(transformed_tile_rect(paint_context.screen_rect, &transform)));
|
|
|
|
paint_subcontext.remove_transient_clip_if_applicable();
|
|
paint_subcontext.pop_clip_if_applicable();
|
|
}
|
|
|
|
draw_target.set_transform(&old_transform);
|
|
paint_context.draw_temporary_draw_target_if_necessary(
|
|
&draw_target, &stacking_context.filters, stacking_context.blend_mode);
|
|
}
|
|
|
|
/// Places all nodes containing the point of interest into `result`, topmost first. Respects
|
|
/// the `pointer-events` CSS property If `topmost_only` is true, stops after placing one node
|
|
/// into the list. `result` must be empty upon entry to this function.
|
|
pub fn hit_test(&self, point: Point2D<Au>) -> Vec<DisplayItemMetadata> {
|
|
let mut traversal = DisplayListTraversal {
|
|
display_list: self,
|
|
current_item_index: 0,
|
|
last_item_index: self.list.len() - 1,
|
|
};
|
|
let mut result = Vec::new();
|
|
self.root_stacking_context.hit_test(&mut traversal, point, &mut result);
|
|
result.reverse();
|
|
result
|
|
}
|
|
}
|
|
|
|
fn transformed_tile_rect(tile_rect: TypedRect<ScreenPx, usize>, transform: &Matrix4D<f32>) -> Rect<Au> {
|
|
// Invert the current transform, then use this to back transform
|
|
// the tile rect (placed at the origin) into the space of this
|
|
// stacking context.
|
|
let inverse_transform = transform.invert();
|
|
let inverse_transform_2d = Matrix2D::new(inverse_transform.m11, inverse_transform.m12,
|
|
inverse_transform.m21, inverse_transform.m22,
|
|
inverse_transform.m41, inverse_transform.m42);
|
|
let tile_size = Size2D::new(tile_rect.as_f32().size.width, tile_rect.as_f32().size.height);
|
|
let tile_rect = Rect::new(Point2D::zero(), tile_size).to_untyped();
|
|
geometry::f32_rect_to_au_rect(inverse_transform_2d.transform_rect(&tile_rect))
|
|
}
|
|
|
|
|
|
/// Display list sections that make up a stacking context. Each section here refers
|
|
/// to the steps in CSS 2.1 Appendix E.
|
|
///
|
|
#[derive(Clone, Copy, Debug, Deserialize, Eq, HeapSizeOf, Ord, PartialEq, PartialOrd, RustcEncodable, Serialize)]
|
|
pub enum DisplayListSection {
|
|
BackgroundAndBorders,
|
|
BlockBackgroundsAndBorders,
|
|
Content,
|
|
Outlines,
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, Deserialize, Eq, HeapSizeOf, Ord, PartialEq, PartialOrd, RustcEncodable, Serialize)]
|
|
pub enum StackingContextType {
|
|
Real,
|
|
PseudoPositioned,
|
|
PseudoFloat,
|
|
}
|
|
|
|
#[derive(HeapSizeOf, Deserialize, Serialize)]
|
|
/// Represents one CSS stacking context, which may or may not have a hardware layer.
|
|
pub struct StackingContext {
|
|
/// The ID of this StackingContext for uniquely identifying it.
|
|
pub id: StackingContextId,
|
|
|
|
/// The type of this StackingContext. Used for collecting and sorting.
|
|
pub context_type: StackingContextType,
|
|
|
|
/// The position and size of this stacking context.
|
|
pub bounds: Rect<Au>,
|
|
|
|
/// The overflow rect for this stacking context in its coordinate system.
|
|
pub overflow: Rect<Au>,
|
|
|
|
/// The `z-index` for this stacking context.
|
|
pub z_index: i32,
|
|
|
|
/// CSS filters to be applied to this stacking context (including opacity).
|
|
pub filters: filter::T,
|
|
|
|
/// The blend mode with which this stacking context blends with its backdrop.
|
|
pub blend_mode: mix_blend_mode::T,
|
|
|
|
/// A transform to be applied to this stacking context.
|
|
pub transform: Matrix4D<f32>,
|
|
|
|
/// The perspective matrix to be applied to children.
|
|
pub perspective: Matrix4D<f32>,
|
|
|
|
/// Whether this stacking context creates a new 3d rendering context.
|
|
pub establishes_3d_context: bool,
|
|
|
|
/// Whether this stacking context scrolls its overflow area.
|
|
pub scrolls_overflow_area: bool,
|
|
|
|
/// The layer info for this stacking context, if there is any.
|
|
pub layer_info: Option<LayerInfo>,
|
|
|
|
/// Children of this StackingContext.
|
|
pub children: Vec<Box<StackingContext>>,
|
|
}
|
|
|
|
impl StackingContext {
|
|
/// Creates a new stacking context.
|
|
#[inline]
|
|
pub fn new(id: StackingContextId,
|
|
context_type: StackingContextType,
|
|
bounds: &Rect<Au>,
|
|
overflow: &Rect<Au>,
|
|
z_index: i32,
|
|
filters: filter::T,
|
|
blend_mode: mix_blend_mode::T,
|
|
transform: Matrix4D<f32>,
|
|
perspective: Matrix4D<f32>,
|
|
establishes_3d_context: bool,
|
|
scrolls_overflow_area: bool,
|
|
layer_info: Option<LayerInfo>)
|
|
-> StackingContext {
|
|
StackingContext {
|
|
id: id,
|
|
context_type: context_type,
|
|
bounds: *bounds,
|
|
overflow: *overflow,
|
|
z_index: z_index,
|
|
filters: filters,
|
|
blend_mode: blend_mode,
|
|
transform: transform,
|
|
perspective: perspective,
|
|
establishes_3d_context: establishes_3d_context,
|
|
scrolls_overflow_area: scrolls_overflow_area,
|
|
layer_info: layer_info,
|
|
children: Vec::new(),
|
|
}
|
|
}
|
|
|
|
pub fn hit_test<'a>(&self,
|
|
traversal: &mut DisplayListTraversal<'a>,
|
|
point: Point2D<Au>,
|
|
result: &mut Vec<DisplayItemMetadata>) {
|
|
// Convert the point into stacking context local space
|
|
let point = if self.context_type == StackingContextType::Real {
|
|
let point = point - self.bounds.origin;
|
|
let inv_transform = self.transform.invert();
|
|
let frac_point = inv_transform.transform_point(&Point2D::new(point.x.to_f32_px(),
|
|
point.y.to_f32_px()));
|
|
Point2D::new(Au::from_f32_px(frac_point.x), Au::from_f32_px(frac_point.y))
|
|
} else {
|
|
point
|
|
};
|
|
|
|
for child in self.children.iter() {
|
|
while let Some(item) = traversal.advance(self) {
|
|
item.hit_test(point, result);
|
|
}
|
|
child.hit_test(traversal, point, result);
|
|
}
|
|
|
|
while let Some(item) = traversal.advance(self) {
|
|
item.hit_test(point, result);
|
|
}
|
|
}
|
|
|
|
pub fn print_with_tree(&self, print_tree: &mut PrintTree) {
|
|
print_tree.new_level(format!("{:?}", self));
|
|
for kid in self.children.iter() {
|
|
kid.print_with_tree(print_tree);
|
|
}
|
|
print_tree.end_level();
|
|
}
|
|
|
|
pub fn intersects_rect_in_parent_context(&self, rect: Option<Rect<Au>>) -> bool {
|
|
// We only do intersection checks for real stacking contexts, since
|
|
// pseudo stacking contexts might not have proper position information.
|
|
if self.context_type != StackingContextType::Real {
|
|
return true;
|
|
}
|
|
|
|
let rect = match rect {
|
|
Some(ref rect) => rect,
|
|
None => return true,
|
|
};
|
|
|
|
// Transform this stacking context to get it into the same space as
|
|
// the parent stacking context.
|
|
let origin_x = self.bounds.origin.x.to_f32_px();
|
|
let origin_y = self.bounds.origin.y.to_f32_px();
|
|
|
|
let transform = Matrix4D::identity().translate(origin_x,
|
|
origin_y,
|
|
0.0)
|
|
.mul(&self.transform);
|
|
let transform_2d = Matrix2D::new(transform.m11, transform.m12,
|
|
transform.m21, transform.m22,
|
|
transform.m41, transform.m42);
|
|
|
|
let overflow = geometry::au_rect_to_f32_rect(self.overflow);
|
|
let overflow = transform_2d.transform_rect(&overflow);
|
|
let overflow = geometry::f32_rect_to_au_rect(overflow);
|
|
|
|
rect.intersects(&overflow)
|
|
}
|
|
}
|
|
|
|
impl Ord for StackingContext {
|
|
fn cmp(&self, other: &Self) -> Ordering {
|
|
if self.z_index != 0 || other.z_index != 0 {
|
|
return self.z_index.cmp(&other.z_index);
|
|
}
|
|
|
|
match (self.context_type, other.context_type) {
|
|
(StackingContextType::PseudoFloat, StackingContextType::PseudoFloat) => Ordering::Equal,
|
|
(StackingContextType::PseudoFloat, _) => Ordering::Less,
|
|
(_, StackingContextType::PseudoFloat) => Ordering::Greater,
|
|
(_, _) => Ordering::Equal,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl PartialOrd for StackingContext {
|
|
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
|
Some(self.cmp(other))
|
|
}
|
|
}
|
|
|
|
impl Eq for StackingContext {}
|
|
impl PartialEq for StackingContext {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
self.id == other.id
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for StackingContext {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
let type_string = if self.layer_info.is_some() {
|
|
"Layered StackingContext"
|
|
} else if self.context_type == StackingContextType::Real {
|
|
"StackingContext"
|
|
} else {
|
|
"Pseudo-StackingContext"
|
|
};
|
|
|
|
let scrollable_string = if self.scrolls_overflow_area {
|
|
" (scrolls overflow area)"
|
|
} else {
|
|
""
|
|
};
|
|
|
|
write!(f, "{}{} at {:?} with overflow {:?}: {:?}",
|
|
type_string,
|
|
scrollable_string,
|
|
self.bounds,
|
|
self.overflow,
|
|
self.id)
|
|
}
|
|
}
|
|
|
|
/// One drawing command in the list.
|
|
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
|
|
pub enum DisplayItem {
|
|
SolidColorClass(Box<SolidColorDisplayItem>),
|
|
TextClass(Box<TextDisplayItem>),
|
|
ImageClass(Box<ImageDisplayItem>),
|
|
WebGLClass(Box<WebGLDisplayItem>),
|
|
BorderClass(Box<BorderDisplayItem>),
|
|
GradientClass(Box<GradientDisplayItem>),
|
|
LineClass(Box<LineDisplayItem>),
|
|
BoxShadowClass(Box<BoxShadowDisplayItem>),
|
|
LayeredItemClass(Box<LayeredItem>),
|
|
IframeClass(Box<IframeDisplayItem>),
|
|
}
|
|
|
|
/// Information common to all display items.
|
|
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
|
|
pub struct BaseDisplayItem {
|
|
/// The boundaries of the display item, in layer coordinates.
|
|
pub bounds: Rect<Au>,
|
|
|
|
/// Metadata attached to this display item.
|
|
pub metadata: DisplayItemMetadata,
|
|
|
|
/// The region to clip to.
|
|
pub clip: ClippingRegion,
|
|
|
|
/// The section of the display list that this item belongs to.
|
|
pub section: DisplayListSection,
|
|
|
|
/// The id of the stacking context this item belongs to.
|
|
pub stacking_context_id: StackingContextId,
|
|
}
|
|
|
|
impl BaseDisplayItem {
|
|
#[inline(always)]
|
|
pub fn new(bounds: &Rect<Au>,
|
|
metadata: DisplayItemMetadata,
|
|
clip: &ClippingRegion,
|
|
section: DisplayListSection,
|
|
stacking_context_id: StackingContextId)
|
|
-> BaseDisplayItem {
|
|
// Detect useless clipping regions here and optimize them to `ClippingRegion::max()`.
|
|
// The painting backend may want to optimize out clipping regions and this makes it easier
|
|
// for it to do so.
|
|
BaseDisplayItem {
|
|
bounds: *bounds,
|
|
metadata: metadata,
|
|
clip: if clip.does_not_clip_rect(&bounds) {
|
|
ClippingRegion::max()
|
|
} else {
|
|
(*clip).clone()
|
|
},
|
|
section: section,
|
|
stacking_context_id: stacking_context_id,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A clipping region for a display item. Currently, this can describe rectangles, rounded
|
|
/// rectangles (for `border-radius`), or arbitrary intersections of the two. Arbitrary transforms
|
|
/// are not supported because those are handled by the higher-level `StackingContext` abstraction.
|
|
#[derive(Clone, PartialEq, Debug, HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct ClippingRegion {
|
|
/// The main rectangular region. This does not include any corners.
|
|
pub main: Rect<Au>,
|
|
/// Any complex regions.
|
|
///
|
|
/// TODO(pcwalton): Atomically reference count these? Not sure if it's worth the trouble.
|
|
/// Measure and follow up.
|
|
pub complex: Vec<ComplexClippingRegion>,
|
|
}
|
|
|
|
/// A complex clipping region. These don't as easily admit arbitrary intersection operations, so
|
|
/// they're stored in a list over to the side. Currently a complex clipping region is just a
|
|
/// rounded rectangle, but the CSS WGs will probably make us throw more stuff in here eventually.
|
|
#[derive(Clone, PartialEq, Debug, HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct ComplexClippingRegion {
|
|
/// The boundaries of the rectangle.
|
|
pub rect: Rect<Au>,
|
|
/// Border radii of this rectangle.
|
|
pub radii: BorderRadii<Au>,
|
|
}
|
|
|
|
impl ClippingRegion {
|
|
/// Returns an empty clipping region that, if set, will result in no pixels being visible.
|
|
#[inline]
|
|
pub fn empty() -> ClippingRegion {
|
|
ClippingRegion {
|
|
main: Rect::zero(),
|
|
complex: Vec::new(),
|
|
}
|
|
}
|
|
|
|
/// Returns an all-encompassing clipping region that clips no pixels out.
|
|
#[inline]
|
|
pub fn max() -> ClippingRegion {
|
|
ClippingRegion {
|
|
main: MAX_RECT,
|
|
complex: Vec::new(),
|
|
}
|
|
}
|
|
|
|
/// Returns a clipping region that represents the given rectangle.
|
|
#[inline]
|
|
pub fn from_rect(rect: &Rect<Au>) -> ClippingRegion {
|
|
ClippingRegion {
|
|
main: *rect,
|
|
complex: Vec::new(),
|
|
}
|
|
}
|
|
|
|
/// Mutates this clipping region to intersect with the given rectangle.
|
|
///
|
|
/// TODO(pcwalton): This could more eagerly eliminate complex clipping regions, at the cost of
|
|
/// complexity.
|
|
#[inline]
|
|
pub fn intersect_rect(&mut self, rect: &Rect<Au>) {
|
|
self.main = self.main.intersection(rect).unwrap_or(Rect::zero())
|
|
}
|
|
|
|
/// Returns true if this clipping region might be nonempty. This can return false positives,
|
|
/// but never false negatives.
|
|
#[inline]
|
|
pub fn might_be_nonempty(&self) -> bool {
|
|
!self.main.is_empty()
|
|
}
|
|
|
|
/// Returns true if this clipping region might contain the given point and false otherwise.
|
|
/// This is a quick, not a precise, test; it can yield false positives.
|
|
#[inline]
|
|
pub fn might_intersect_point(&self, point: &Point2D<Au>) -> bool {
|
|
self.main.contains(point) &&
|
|
self.complex.iter().all(|complex| complex.rect.contains(point))
|
|
}
|
|
|
|
/// Returns true if this clipping region might intersect the given rectangle and false
|
|
/// otherwise. This is a quick, not a precise, test; it can yield false positives.
|
|
#[inline]
|
|
pub fn might_intersect_rect(&self, rect: &Rect<Au>) -> bool {
|
|
self.main.intersects(rect) &&
|
|
self.complex.iter().all(|complex| complex.rect.intersects(rect))
|
|
}
|
|
|
|
/// Returns true if this clipping region completely surrounds the given rect.
|
|
#[inline]
|
|
pub fn does_not_clip_rect(&self, rect: &Rect<Au>) -> bool {
|
|
self.main.contains(&rect.origin) && self.main.contains(&rect.bottom_right()) &&
|
|
self.complex.iter().all(|complex| {
|
|
complex.rect.contains(&rect.origin) && complex.rect.contains(&rect.bottom_right())
|
|
})
|
|
}
|
|
|
|
/// Returns a bounding rect that surrounds this entire clipping region.
|
|
#[inline]
|
|
pub fn bounding_rect(&self) -> Rect<Au> {
|
|
let mut rect = self.main;
|
|
for complex in &*self.complex {
|
|
rect = rect.union(&complex.rect)
|
|
}
|
|
rect
|
|
}
|
|
|
|
/// Intersects this clipping region with the given rounded rectangle.
|
|
#[inline]
|
|
pub fn intersect_with_rounded_rect(&mut self, rect: &Rect<Au>, radii: &BorderRadii<Au>) {
|
|
let new_complex_region = ComplexClippingRegion {
|
|
rect: *rect,
|
|
radii: *radii,
|
|
};
|
|
|
|
// FIXME(pcwalton): This is O(n²) worst case for disjoint clipping regions. Is that OK?
|
|
// They're slow anyway…
|
|
//
|
|
// Possibly relevant if we want to do better:
|
|
//
|
|
// http://www.inrg.csie.ntu.edu.tw/algorithm2014/presentation/D&C%20Lee-84.pdf
|
|
for existing_complex_region in &mut self.complex {
|
|
if existing_complex_region.completely_encloses(&new_complex_region) {
|
|
*existing_complex_region = new_complex_region;
|
|
return
|
|
}
|
|
if new_complex_region.completely_encloses(existing_complex_region) {
|
|
return
|
|
}
|
|
}
|
|
|
|
self.complex.push(ComplexClippingRegion {
|
|
rect: *rect,
|
|
radii: *radii,
|
|
});
|
|
}
|
|
|
|
/// Translates this clipping region by the given vector.
|
|
#[inline]
|
|
pub fn translate(&self, delta: &Point2D<Au>) -> ClippingRegion {
|
|
ClippingRegion {
|
|
main: self.main.translate(delta),
|
|
complex: self.complex.iter().map(|complex| {
|
|
ComplexClippingRegion {
|
|
rect: complex.rect.translate(delta),
|
|
radii: complex.radii,
|
|
}
|
|
}).collect(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ComplexClippingRegion {
|
|
// TODO(pcwalton): This could be more aggressive by considering points that touch the inside of
|
|
// the border radius ellipse.
|
|
fn completely_encloses(&self, other: &ComplexClippingRegion) -> bool {
|
|
let left = cmp::max(self.radii.top_left.width, self.radii.bottom_left.width);
|
|
let top = cmp::max(self.radii.top_left.height, self.radii.top_right.height);
|
|
let right = cmp::max(self.radii.top_right.width, self.radii.bottom_right.width);
|
|
let bottom = cmp::max(self.radii.bottom_left.height, self.radii.bottom_right.height);
|
|
let interior = Rect::new(Point2D::new(self.rect.origin.x + left, self.rect.origin.y + top),
|
|
Size2D::new(self.rect.size.width - left - right,
|
|
self.rect.size.height - top - bottom));
|
|
interior.origin.x <= other.rect.origin.x && interior.origin.y <= other.rect.origin.y &&
|
|
interior.max_x() >= other.rect.max_x() && interior.max_y() >= other.rect.max_y()
|
|
}
|
|
}
|
|
|
|
/// Metadata attached to each display item. This is useful for performing auxiliary threads with
|
|
/// the display list involving hit testing: finding the originating DOM node and determining the
|
|
/// cursor to use when the element is hovered over.
|
|
#[derive(Clone, Copy, HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct DisplayItemMetadata {
|
|
/// The DOM node from which this display item originated.
|
|
pub node: OpaqueNode,
|
|
/// The value of the `cursor` property when the mouse hovers over this display item. If `None`,
|
|
/// this display item is ineligible for pointer events (`pointer-events: none`).
|
|
pub pointing: Option<Cursor>,
|
|
}
|
|
|
|
/// Paints a solid color.
|
|
#[derive(Clone, HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct SolidColorDisplayItem {
|
|
/// Fields common to all display items.
|
|
pub base: BaseDisplayItem,
|
|
|
|
/// The color.
|
|
pub color: Color,
|
|
}
|
|
|
|
/// Paints text.
|
|
#[derive(Clone, HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct TextDisplayItem {
|
|
/// Fields common to all display items.
|
|
pub base: BaseDisplayItem,
|
|
|
|
/// The text run.
|
|
#[ignore_heap_size_of = "Because it is non-owning"]
|
|
pub text_run: Arc<TextRun>,
|
|
|
|
/// The range of text within the text run.
|
|
pub range: Range<CharIndex>,
|
|
|
|
/// The color of the text.
|
|
pub text_color: Color,
|
|
|
|
/// The position of the start of the baseline of this text.
|
|
pub baseline_origin: Point2D<Au>,
|
|
|
|
/// The orientation of the text: upright or sideways left/right.
|
|
pub orientation: TextOrientation,
|
|
|
|
/// The blur radius for this text. If zero, this text is not blurred.
|
|
pub blur_radius: Au,
|
|
}
|
|
|
|
#[derive(Clone, Eq, PartialEq, HeapSizeOf, Deserialize, Serialize)]
|
|
pub enum TextOrientation {
|
|
Upright,
|
|
SidewaysLeft,
|
|
SidewaysRight,
|
|
}
|
|
|
|
/// Paints an image.
|
|
#[derive(Clone, HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct ImageDisplayItem {
|
|
pub base: BaseDisplayItem,
|
|
|
|
pub webrender_image: WebRenderImageInfo,
|
|
|
|
#[ignore_heap_size_of = "Because it is non-owning"]
|
|
pub image_data: Option<Arc<IpcSharedMemory>>,
|
|
|
|
/// The dimensions to which the image display item should be stretched. If this is smaller than
|
|
/// the bounds of this display item, then the image will be repeated in the appropriate
|
|
/// direction to tile the entire bounds.
|
|
pub stretch_size: Size2D<Au>,
|
|
|
|
/// The algorithm we should use to stretch the image. See `image_rendering` in CSS-IMAGES-3 §
|
|
/// 5.3.
|
|
pub image_rendering: image_rendering::T,
|
|
}
|
|
|
|
#[derive(Clone, HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct WebGLDisplayItem {
|
|
pub base: BaseDisplayItem,
|
|
#[ignore_heap_size_of = "Defined in webrender_traits"]
|
|
pub context_id: WebGLContextId,
|
|
}
|
|
|
|
|
|
/// Paints an iframe.
|
|
#[derive(Clone, HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct IframeDisplayItem {
|
|
pub base: BaseDisplayItem,
|
|
pub iframe: PipelineId,
|
|
}
|
|
|
|
/// Paints a gradient.
|
|
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
|
|
pub struct GradientDisplayItem {
|
|
/// Fields common to all display items.
|
|
pub base: BaseDisplayItem,
|
|
|
|
/// The start point of the gradient (computed during display list construction).
|
|
pub start_point: Point2D<Au>,
|
|
|
|
/// The end point of the gradient (computed during display list construction).
|
|
pub end_point: Point2D<Au>,
|
|
|
|
/// A list of color stops.
|
|
pub stops: Vec<GradientStop>,
|
|
}
|
|
|
|
/// Paints a border.
|
|
#[derive(Clone, HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct BorderDisplayItem {
|
|
/// Fields common to all display items.
|
|
pub base: BaseDisplayItem,
|
|
|
|
/// Border widths.
|
|
pub border_widths: SideOffsets2D<Au>,
|
|
|
|
/// Border colors.
|
|
pub color: SideOffsets2D<Color>,
|
|
|
|
/// Border styles.
|
|
pub style: SideOffsets2D<border_style::T>,
|
|
|
|
/// Border radii.
|
|
///
|
|
/// TODO(pcwalton): Elliptical radii.
|
|
pub radius: BorderRadii<Au>,
|
|
}
|
|
|
|
/// Information about the border radii.
|
|
///
|
|
/// TODO(pcwalton): Elliptical radii.
|
|
#[derive(Clone, PartialEq, Debug, Copy, HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct BorderRadii<T> {
|
|
pub top_left: Size2D<T>,
|
|
pub top_right: Size2D<T>,
|
|
pub bottom_right: Size2D<T>,
|
|
pub bottom_left: Size2D<T>,
|
|
}
|
|
|
|
impl<T> Default for BorderRadii<T> where T: Default, T: Clone {
|
|
fn default() -> Self {
|
|
let top_left = Size2D::new(Default::default(),
|
|
Default::default());
|
|
let top_right = Size2D::new(Default::default(),
|
|
Default::default());
|
|
let bottom_left = Size2D::new(Default::default(),
|
|
Default::default());
|
|
let bottom_right = Size2D::new(Default::default(),
|
|
Default::default());
|
|
BorderRadii { top_left: top_left,
|
|
top_right: top_right,
|
|
bottom_left: bottom_left,
|
|
bottom_right: bottom_right }
|
|
}
|
|
}
|
|
|
|
impl BorderRadii<Au> {
|
|
// Scale the border radii by the specified factor
|
|
pub fn scale_by(&self, s: f32) -> BorderRadii<Au> {
|
|
BorderRadii { top_left: BorderRadii::scale_corner_by(self.top_left, s),
|
|
top_right: BorderRadii::scale_corner_by(self.top_right, s),
|
|
bottom_left: BorderRadii::scale_corner_by(self.bottom_left, s),
|
|
bottom_right: BorderRadii::scale_corner_by(self.bottom_right, s) }
|
|
}
|
|
|
|
// Scale the border corner radius by the specified factor
|
|
pub fn scale_corner_by(corner: Size2D<Au>, s: f32) -> Size2D<Au> {
|
|
Size2D { width: corner.width.scale_by(s), height: corner.height.scale_by(s) }
|
|
}
|
|
}
|
|
|
|
impl<T> BorderRadii<T> where T: PartialEq + Zero {
|
|
/// Returns true if all the radii are zero.
|
|
pub fn is_square(&self) -> bool {
|
|
let zero = Zero::zero();
|
|
self.top_left == zero && self.top_right == zero && self.bottom_right == zero &&
|
|
self.bottom_left == zero
|
|
}
|
|
}
|
|
|
|
impl<T> BorderRadii<T> where T: PartialEq + Zero + Clone {
|
|
/// Returns a set of border radii that all have the given value.
|
|
pub fn all_same(value: T) -> BorderRadii<T> {
|
|
BorderRadii {
|
|
top_left: Size2D { width: value.clone(), height: value.clone() },
|
|
top_right: Size2D { width: value.clone(), height: value.clone() },
|
|
bottom_right: Size2D { width: value.clone(), height: value.clone() },
|
|
bottom_left: Size2D { width: value.clone(), height: value.clone() },
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Paints a line segment.
|
|
#[derive(Clone, HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct LineDisplayItem {
|
|
pub base: BaseDisplayItem,
|
|
|
|
/// The line segment color.
|
|
pub color: Color,
|
|
|
|
/// The line segment style.
|
|
pub style: border_style::T
|
|
}
|
|
|
|
/// Paints a box shadow per CSS-BACKGROUNDS.
|
|
#[derive(Clone, HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct BoxShadowDisplayItem {
|
|
/// Fields common to all display items.
|
|
pub base: BaseDisplayItem,
|
|
|
|
/// The dimensions of the box that we're placing a shadow around.
|
|
pub box_bounds: Rect<Au>,
|
|
|
|
/// The offset of this shadow from the box.
|
|
pub offset: Point2D<Au>,
|
|
|
|
/// The color of this shadow.
|
|
pub color: Color,
|
|
|
|
/// The blur radius for this shadow.
|
|
pub blur_radius: Au,
|
|
|
|
/// The spread radius of this shadow.
|
|
pub spread_radius: Au,
|
|
|
|
/// The border radius of this shadow.
|
|
///
|
|
/// TODO(pcwalton): Elliptical radii; different radii for each corner.
|
|
pub border_radius: Au,
|
|
|
|
/// How we should clip the result.
|
|
pub clip_mode: BoxShadowClipMode,
|
|
}
|
|
|
|
/// Contains an item that should get its own layer during layer creation.
|
|
#[derive(Clone, HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct LayeredItem {
|
|
/// Fields common to all display items.
|
|
pub item: DisplayItem,
|
|
|
|
/// The id of the layer this item belongs to.
|
|
pub layer_info: LayerInfo,
|
|
}
|
|
|
|
/// How a box shadow should be clipped.
|
|
#[derive(Clone, Copy, Debug, PartialEq, HeapSizeOf, Deserialize, Serialize)]
|
|
pub enum BoxShadowClipMode {
|
|
/// No special clipping should occur. This is used for (shadowed) text decorations.
|
|
None,
|
|
/// The area inside `box_bounds` should be clipped out. Corresponds to the normal CSS
|
|
/// `box-shadow`.
|
|
Outset,
|
|
/// The area outside `box_bounds` should be clipped out. Corresponds to the `inset` flag on CSS
|
|
/// `box-shadow`.
|
|
Inset,
|
|
}
|
|
|
|
impl DisplayItem {
|
|
/// Paints this display item into the given painting context.
|
|
fn draw_into_context(&self, paint_context: &mut PaintContext) {
|
|
let this_clip = &self.base().clip;
|
|
match paint_context.transient_clip {
|
|
Some(ref transient_clip) if transient_clip == this_clip => {}
|
|
Some(_) | None => paint_context.push_transient_clip((*this_clip).clone()),
|
|
}
|
|
|
|
match *self {
|
|
DisplayItem::SolidColorClass(ref solid_color) => {
|
|
if !solid_color.color.a.approx_eq(&0.0) {
|
|
paint_context.draw_solid_color(&solid_color.base.bounds, solid_color.color)
|
|
}
|
|
}
|
|
|
|
DisplayItem::TextClass(ref text) => {
|
|
debug!("Drawing text at {:?}.", text.base.bounds);
|
|
paint_context.draw_text(&**text);
|
|
}
|
|
|
|
DisplayItem::ImageClass(ref image_item) => {
|
|
debug!("Drawing image at {:?}.", image_item.base.bounds);
|
|
paint_context.draw_image(
|
|
&image_item.base.bounds,
|
|
&image_item.stretch_size,
|
|
&image_item.webrender_image,
|
|
&image_item.image_data
|
|
.as_ref()
|
|
.expect("Non-WR painting needs image data!")[..],
|
|
image_item.image_rendering.clone());
|
|
}
|
|
|
|
DisplayItem::WebGLClass(_) => {
|
|
panic!("Shouldn't be here, WebGL display items are created just with webrender");
|
|
}
|
|
|
|
DisplayItem::BorderClass(ref border) => {
|
|
paint_context.draw_border(&border.base.bounds,
|
|
&border.border_widths,
|
|
&border.radius,
|
|
&border.color,
|
|
&border.style)
|
|
}
|
|
|
|
DisplayItem::GradientClass(ref gradient) => {
|
|
paint_context.draw_linear_gradient(&gradient.base.bounds,
|
|
&gradient.start_point,
|
|
&gradient.end_point,
|
|
&gradient.stops);
|
|
}
|
|
|
|
DisplayItem::LineClass(ref line) => {
|
|
paint_context.draw_line(&line.base.bounds, line.color, line.style)
|
|
}
|
|
|
|
DisplayItem::BoxShadowClass(ref box_shadow) => {
|
|
paint_context.draw_box_shadow(&box_shadow.box_bounds,
|
|
&box_shadow.offset,
|
|
box_shadow.color,
|
|
box_shadow.blur_radius,
|
|
box_shadow.spread_radius,
|
|
box_shadow.clip_mode);
|
|
}
|
|
|
|
DisplayItem::LayeredItemClass(ref item) => item.item.draw_into_context(paint_context),
|
|
|
|
DisplayItem::IframeClass(..) => {}
|
|
}
|
|
}
|
|
|
|
pub fn intersects_rect_in_parent_context(&self, rect: Option<Rect<Au>>) -> bool {
|
|
let rect = match rect {
|
|
Some(ref rect) => rect,
|
|
None => return true,
|
|
};
|
|
|
|
if !rect.intersects(&self.bounds()) {
|
|
return false;
|
|
}
|
|
|
|
self.base().clip.might_intersect_rect(&rect)
|
|
}
|
|
|
|
pub fn base(&self) -> &BaseDisplayItem {
|
|
match *self {
|
|
DisplayItem::SolidColorClass(ref solid_color) => &solid_color.base,
|
|
DisplayItem::TextClass(ref text) => &text.base,
|
|
DisplayItem::ImageClass(ref image_item) => &image_item.base,
|
|
DisplayItem::WebGLClass(ref webgl_item) => &webgl_item.base,
|
|
DisplayItem::BorderClass(ref border) => &border.base,
|
|
DisplayItem::GradientClass(ref gradient) => &gradient.base,
|
|
DisplayItem::LineClass(ref line) => &line.base,
|
|
DisplayItem::BoxShadowClass(ref box_shadow) => &box_shadow.base,
|
|
DisplayItem::LayeredItemClass(ref layered_item) => layered_item.item.base(),
|
|
DisplayItem::IframeClass(ref iframe) => &iframe.base,
|
|
}
|
|
}
|
|
|
|
pub fn bounds(&self) -> Rect<Au> {
|
|
self.base().bounds
|
|
}
|
|
|
|
pub fn debug_with_level(&self, level: u32) {
|
|
let mut indent = String::new();
|
|
for _ in 0..level {
|
|
indent.push_str("| ")
|
|
}
|
|
println!("{}+ {:?}", indent, self);
|
|
}
|
|
|
|
fn hit_test(&self, point: Point2D<Au>, result: &mut Vec<DisplayItemMetadata>) {
|
|
// TODO(pcwalton): Use a precise algorithm here. This will allow us to properly hit
|
|
// test elements with `border-radius`, for example.
|
|
let base_item = self.base();
|
|
if !base_item.clip.might_intersect_point(&point) {
|
|
// Clipped out.
|
|
return;
|
|
}
|
|
if !self.bounds().contains(&point) {
|
|
// Can't possibly hit.
|
|
return;
|
|
}
|
|
if base_item.metadata.pointing.is_none() {
|
|
// `pointer-events` is `none`. Ignore this item.
|
|
return;
|
|
}
|
|
|
|
match *self {
|
|
DisplayItem::BorderClass(ref border) => {
|
|
// If the point is inside the border, it didn't hit the border!
|
|
let interior_rect =
|
|
Rect::new(
|
|
Point2D::new(border.base.bounds.origin.x +
|
|
border.border_widths.left,
|
|
border.base.bounds.origin.y +
|
|
border.border_widths.top),
|
|
Size2D::new(border.base.bounds.size.width -
|
|
(border.border_widths.left +
|
|
border.border_widths.right),
|
|
border.base.bounds.size.height -
|
|
(border.border_widths.top +
|
|
border.border_widths.bottom)));
|
|
if interior_rect.contains(&point) {
|
|
return;
|
|
}
|
|
}
|
|
DisplayItem::BoxShadowClass(_) => {
|
|
// Box shadows can never be hit.
|
|
return
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
// We found a hit!
|
|
result.push(base_item.metadata);
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for DisplayItem {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "{} @ {:?} {:?}",
|
|
match *self {
|
|
DisplayItem::SolidColorClass(ref solid_color) =>
|
|
format!("SolidColor rgba({}, {}, {}, {})",
|
|
solid_color.color.r,
|
|
solid_color.color.g,
|
|
solid_color.color.b,
|
|
solid_color.color.a),
|
|
DisplayItem::TextClass(_) => "Text".to_owned(),
|
|
DisplayItem::ImageClass(_) => "Image".to_owned(),
|
|
DisplayItem::WebGLClass(_) => "WebGL".to_owned(),
|
|
DisplayItem::BorderClass(_) => "Border".to_owned(),
|
|
DisplayItem::GradientClass(_) => "Gradient".to_owned(),
|
|
DisplayItem::LineClass(_) => "Line".to_owned(),
|
|
DisplayItem::BoxShadowClass(_) => "BoxShadow".to_owned(),
|
|
DisplayItem::LayeredItemClass(ref layered_item) =>
|
|
format!("LayeredItem({:?})", layered_item.item),
|
|
DisplayItem::IframeClass(_) => "Iframe".to_owned(),
|
|
},
|
|
self.bounds(),
|
|
self.base().clip
|
|
)
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, Deserialize, Serialize, HeapSizeOf, RustcEncodable)]
|
|
pub enum FragmentType {
|
|
/// A StackingContext for the fragment body itself.
|
|
FragmentBody,
|
|
/// A StackingContext created to contain ::before pseudo-element content.
|
|
BeforePseudoContent,
|
|
/// A StackingContext created to contain ::after pseudo-element content.
|
|
AfterPseudoContent,
|
|
}
|
|
|
|
/// A unique ID for every stacking context.
|
|
#[derive(Clone, Copy, Debug, Deserialize, Eq, Hash, HeapSizeOf, PartialEq, RustcEncodable, Serialize)]
|
|
pub struct StackingContextId(
|
|
/// The type of the fragment for this StackingContext. This serves to differentiate
|
|
/// StackingContexts that share fragments.
|
|
FragmentType,
|
|
/// The identifier for this StackingContexts, derived from the Flow's memory address.
|
|
usize
|
|
);
|
|
|
|
impl StackingContextId {
|
|
pub fn new(id: usize) -> StackingContextId {
|
|
StackingContextId(FragmentType::FragmentBody, id)
|
|
}
|
|
|
|
pub fn new_of_type(id: usize, fragment_type: FragmentType) -> StackingContextId {
|
|
StackingContextId(fragment_type, id)
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, HeapSizeOf, Deserialize, Serialize)]
|
|
pub struct WebRenderImageInfo {
|
|
pub width: u32,
|
|
pub height: u32,
|
|
pub format: PixelFormat,
|
|
#[ignore_heap_size_of = "WebRender traits type, and tiny"]
|
|
pub key: Option<webrender_traits::ImageKey>,
|
|
}
|
|
|
|
impl WebRenderImageInfo {
|
|
#[inline]
|
|
pub fn from_image(image: &Image) -> WebRenderImageInfo {
|
|
WebRenderImageInfo {
|
|
width: image.width,
|
|
height: image.height,
|
|
format: image.format,
|
|
key: image.id,
|
|
}
|
|
}
|
|
}
|