servo/components/style/values/generics/calc.rs
Oriol Brufau 6785c57c78 Add support for the 'cap' font-relative unit
This is a backport of https://phabricator.services.mozilla.com/D133101,
by Jonathan Kew.

Note that Servo isn't using font metrics yet, so the unit still won't
really work.
2023-05-10 03:02:30 +02:00

581 lines
19 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! [Calc expressions][calc].
//!
//! [calc]: https://drafts.csswg.org/css-values/#calc-notation
use crate::Zero;
use smallvec::SmallVec;
use std::fmt::{self, Write};
use std::ops::Add;
use std::{cmp, mem};
use style_traits::{CssWriter, ToCss};
/// Whether we're a `min` or `max` function.
#[derive(
Clone,
Copy,
Debug,
Deserialize,
MallocSizeOf,
PartialEq,
Serialize,
ToAnimatedZero,
ToResolvedValue,
ToShmem,
)]
#[repr(u8)]
pub enum MinMaxOp {
/// `min()`
Min,
/// `max()`
Max,
}
/// This determines the order in which we serialize members of a calc() sum.
///
/// See https://drafts.csswg.org/css-values-4/#sort-a-calculations-children
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
#[allow(missing_docs)]
pub enum SortKey {
Number,
Percentage,
Cap,
Ch,
Deg,
Em,
Ex,
Px,
Rem,
Sec,
Vh,
Vmax,
Vmin,
Vw,
Other,
}
/// A generic node in a calc expression.
///
/// FIXME: This would be much more elegant if we used `Self` in the types below,
/// but we can't because of https://github.com/serde-rs/serde/issues/1565.
///
/// FIXME: The following annotations are to workaround an LLVM inlining bug, see
/// bug 1631929.
///
/// cbindgen:destructor-attributes=MOZ_NEVER_INLINE
/// cbindgen:copy-constructor-attributes=MOZ_NEVER_INLINE
/// cbindgen:eq-attributes=MOZ_NEVER_INLINE
#[repr(u8)]
#[derive(
Clone,
Debug,
Deserialize,
MallocSizeOf,
PartialEq,
Serialize,
ToAnimatedZero,
ToResolvedValue,
ToShmem,
)]
pub enum GenericCalcNode<L> {
/// A leaf node.
Leaf(L),
/// A sum node, representing `a + b + c` where a, b, and c are the
/// arguments.
Sum(crate::OwnedSlice<GenericCalcNode<L>>),
/// A `min` or `max` function.
MinMax(crate::OwnedSlice<GenericCalcNode<L>>, MinMaxOp),
/// A `clamp()` function.
Clamp {
/// The minimum value.
min: Box<GenericCalcNode<L>>,
/// The central value.
center: Box<GenericCalcNode<L>>,
/// The maximum value.
max: Box<GenericCalcNode<L>>,
},
}
pub use self::GenericCalcNode as CalcNode;
/// A trait that represents all the stuff a valid leaf of a calc expression.
pub trait CalcNodeLeaf: Clone + Sized + PartialOrd + PartialEq + ToCss {
/// Whether this value is known-negative.
fn is_negative(&self) -> bool;
/// Tries to merge one sum to another, that is, perform `x` + `y`.
fn try_sum_in_place(&mut self, other: &Self) -> Result<(), ()>;
/// Multiplies the leaf by a given scalar number.
fn mul_by(&mut self, scalar: f32);
/// Negates the leaf.
fn negate(&mut self) {
self.mul_by(-1.);
}
/// Canonicalizes the expression if necessary.
fn simplify(&mut self);
/// Returns the sort key for simplification.
fn sort_key(&self) -> SortKey;
}
impl<L: CalcNodeLeaf> CalcNode<L> {
/// Negates the node.
pub fn negate(&mut self) {
self.mul_by(-1.);
}
fn sort_key(&self) -> SortKey {
match *self {
Self::Leaf(ref l) => l.sort_key(),
_ => SortKey::Other,
}
}
/// Tries to merge one sum to another, that is, perform `x` + `y`.
fn try_sum_in_place(&mut self, other: &Self) -> Result<(), ()> {
match (self, other) {
(&mut CalcNode::Leaf(ref mut one), &CalcNode::Leaf(ref other)) => {
one.try_sum_in_place(other)
},
_ => Err(()),
}
}
/// Convert this `CalcNode` into a `CalcNode` with a different leaf kind.
pub fn map_leaves<O, F>(&self, mut map: F) -> CalcNode<O>
where
O: CalcNodeLeaf,
F: FnMut(&L) -> O,
{
self.map_leaves_internal(&mut map)
}
fn map_leaves_internal<O, F>(&self, map: &mut F) -> CalcNode<O>
where
O: CalcNodeLeaf,
F: FnMut(&L) -> O,
{
fn map_children<L, O, F>(
children: &[CalcNode<L>],
map: &mut F,
) -> crate::OwnedSlice<CalcNode<O>>
where
L: CalcNodeLeaf,
O: CalcNodeLeaf,
F: FnMut(&L) -> O,
{
children
.iter()
.map(|c| c.map_leaves_internal(map))
.collect()
}
match *self {
Self::Leaf(ref l) => CalcNode::Leaf(map(l)),
Self::Sum(ref c) => CalcNode::Sum(map_children(c, map)),
Self::MinMax(ref c, op) => CalcNode::MinMax(map_children(c, map), op),
Self::Clamp {
ref min,
ref center,
ref max,
} => {
let min = Box::new(min.map_leaves_internal(map));
let center = Box::new(center.map_leaves_internal(map));
let max = Box::new(max.map_leaves_internal(map));
CalcNode::Clamp { min, center, max }
},
}
}
/// Resolves the expression returning a value of `O`, given a function to
/// turn a leaf into the relevant value.
pub fn resolve<O>(
&self,
mut leaf_to_output_fn: impl FnMut(&L) -> Result<O, ()>,
) -> Result<O, ()>
where
O: PartialOrd + PartialEq + Add<Output = O> + Zero,
{
self.resolve_internal(&mut leaf_to_output_fn)
}
fn resolve_internal<O, F>(&self, leaf_to_output_fn: &mut F) -> Result<O, ()>
where
O: PartialOrd + PartialEq + Add<Output = O> + Zero,
F: FnMut(&L) -> Result<O, ()>,
{
Ok(match *self {
Self::Leaf(ref l) => return leaf_to_output_fn(l),
Self::Sum(ref c) => {
let mut result = Zero::zero();
for child in &**c {
result = result + child.resolve_internal(leaf_to_output_fn)?;
}
result
},
Self::MinMax(ref nodes, op) => {
let mut result = nodes[0].resolve_internal(leaf_to_output_fn)?;
for node in nodes.iter().skip(1) {
let candidate = node.resolve_internal(leaf_to_output_fn)?;
let candidate_wins = match op {
MinMaxOp::Min => candidate < result,
MinMaxOp::Max => candidate > result,
};
if candidate_wins {
result = candidate;
}
}
result
},
Self::Clamp {
ref min,
ref center,
ref max,
} => {
let min = min.resolve_internal(leaf_to_output_fn)?;
let center = center.resolve_internal(leaf_to_output_fn)?;
let max = max.resolve_internal(leaf_to_output_fn)?;
let mut result = center;
if result > max {
result = max;
}
if result < min {
result = min
}
result
},
})
}
fn is_negative_leaf(&self) -> bool {
match *self {
Self::Leaf(ref l) => l.is_negative(),
_ => false,
}
}
/// Multiplies the node by a scalar.
pub fn mul_by(&mut self, scalar: f32) {
match *self {
Self::Leaf(ref mut l) => l.mul_by(scalar),
// Multiplication is distributive across this.
Self::Sum(ref mut children) => {
for node in &mut **children {
node.mul_by(scalar);
}
},
// This one is a bit trickier.
Self::MinMax(ref mut children, ref mut op) => {
for node in &mut **children {
node.mul_by(scalar);
}
// For negatives we need to invert the operation.
if scalar < 0. {
*op = match *op {
MinMaxOp::Min => MinMaxOp::Max,
MinMaxOp::Max => MinMaxOp::Min,
}
}
},
// This one is slightly tricky too.
Self::Clamp {
ref mut min,
ref mut center,
ref mut max,
} => {
min.mul_by(scalar);
center.mul_by(scalar);
max.mul_by(scalar);
// For negatives we need to swap min / max.
if scalar < 0. {
mem::swap(min, max);
}
},
}
}
/// Visits all the nodes in this calculation tree recursively, starting by
/// the leaves and bubbling all the way up.
///
/// This is useful for simplification, but can also be used for validation
/// and such.
pub fn visit_depth_first(&mut self, mut f: impl FnMut(&mut Self)) {
self.visit_depth_first_internal(&mut f);
}
fn visit_depth_first_internal(&mut self, f: &mut impl FnMut(&mut Self)) {
match *self {
Self::Clamp {
ref mut min,
ref mut center,
ref mut max,
} => {
min.visit_depth_first_internal(f);
center.visit_depth_first_internal(f);
max.visit_depth_first_internal(f);
},
Self::Sum(ref mut children) | Self::MinMax(ref mut children, _) => {
for child in &mut **children {
child.visit_depth_first_internal(f);
}
},
Self::Leaf(..) => {},
}
f(self);
}
/// Simplifies and sorts the calculation of a given node. All the nodes
/// below it should be simplified already, this only takes care of
/// simplifying directly nested nodes. So, probably should always be used in
/// combination with `visit_depth_first()`.
///
/// This is only needed if it's going to be preserved after parsing (so, for
/// `<length-percentage>`). Otherwise we can just evaluate it using
/// `resolve()`, and we'll come up with a simplified value anyways.
pub fn simplify_and_sort_direct_children(&mut self) {
macro_rules! replace_self_with {
($slot:expr) => {{
let dummy = Self::MinMax(Default::default(), MinMaxOp::Max);
let result = mem::replace($slot, dummy);
*self = result;
}};
}
match *self {
Self::Clamp {
ref mut min,
ref mut center,
ref mut max,
} => {
// NOTE: clamp() is max(min, min(center, max))
let min_cmp_center = match min.partial_cmp(&center) {
Some(o) => o,
None => return,
};
// So if we can prove that min is more than center, then we won,
// as that's what we should always return.
if matches!(min_cmp_center, cmp::Ordering::Greater) {
return replace_self_with!(&mut **min);
}
// Otherwise try with max.
let max_cmp_center = match max.partial_cmp(&center) {
Some(o) => o,
None => return,
};
if matches!(max_cmp_center, cmp::Ordering::Less) {
// max is less than center, so we need to return effectively
// `max(min, max)`.
let max_cmp_min = match max.partial_cmp(&min) {
Some(o) => o,
None => {
debug_assert!(
false,
"We compared center with min and max, how are \
min / max not comparable with each other?"
);
return;
},
};
if matches!(max_cmp_min, cmp::Ordering::Less) {
return replace_self_with!(&mut **min);
}
return replace_self_with!(&mut **max);
}
// Otherwise we're the center node.
return replace_self_with!(&mut **center);
},
Self::MinMax(ref mut children, op) => {
let winning_order = match op {
MinMaxOp::Min => cmp::Ordering::Less,
MinMaxOp::Max => cmp::Ordering::Greater,
};
let mut result = 0;
for i in 1..children.len() {
let o = match children[i].partial_cmp(&children[result]) {
// We can't compare all the children, so we can't
// know which one will actually win. Bail out and
// keep ourselves as a min / max function.
//
// TODO: Maybe we could simplify compatible children,
// see https://github.com/w3c/csswg-drafts/issues/4756
None => return,
Some(o) => o,
};
if o == winning_order {
result = i;
}
}
replace_self_with!(&mut children[result]);
},
Self::Sum(ref mut children_slot) => {
let mut sums_to_merge = SmallVec::<[_; 3]>::new();
let mut extra_kids = 0;
for (i, child) in children_slot.iter().enumerate() {
if let Self::Sum(ref children) = *child {
extra_kids += children.len();
sums_to_merge.push(i);
}
}
// If we only have one kid, we've already simplified it, and it
// doesn't really matter whether it's a sum already or not, so
// lift it up and continue.
if children_slot.len() == 1 {
return replace_self_with!(&mut children_slot[0]);
}
let mut children = mem::replace(children_slot, Default::default()).into_vec();
if !sums_to_merge.is_empty() {
children.reserve(extra_kids - sums_to_merge.len());
// Merge all our nested sums, in reverse order so that the
// list indices are not invalidated.
for i in sums_to_merge.drain(..).rev() {
let kid_children = match children.swap_remove(i) {
Self::Sum(c) => c,
_ => unreachable!(),
};
// This would be nicer with
// https://github.com/rust-lang/rust/issues/59878 fixed.
children.extend(kid_children.into_vec());
}
}
debug_assert!(children.len() >= 2, "Should still have multiple kids!");
// Sort by spec order.
children.sort_unstable_by_key(|c| c.sort_key());
// NOTE: if the function returns true, by the docs of dedup_by,
// a is removed.
children.dedup_by(|a, b| b.try_sum_in_place(a).is_ok());
if children.len() == 1 {
// If only one children remains, lift it up, and carry on.
replace_self_with!(&mut children[0]);
} else {
// Else put our simplified children back.
*children_slot = children.into_boxed_slice().into();
}
},
Self::Leaf(ref mut l) => {
l.simplify();
},
}
}
/// Simplifies and sorts the kids in the whole calculation subtree.
pub fn simplify_and_sort(&mut self) {
self.visit_depth_first(|node| node.simplify_and_sort_direct_children())
}
fn to_css_impl<W>(&self, dest: &mut CssWriter<W>, is_outermost: bool) -> fmt::Result
where
W: Write,
{
let write_closing_paren = match *self {
Self::MinMax(_, op) => {
dest.write_str(match op {
MinMaxOp::Max => "max(",
MinMaxOp::Min => "min(",
})?;
true
},
Self::Clamp { .. } => {
dest.write_str("clamp(")?;
true
},
_ => {
if is_outermost {
dest.write_str("calc(")?;
}
is_outermost
},
};
match *self {
Self::MinMax(ref children, _) => {
let mut first = true;
for child in &**children {
if !first {
dest.write_str(", ")?;
}
first = false;
child.to_css_impl(dest, false)?;
}
},
Self::Sum(ref children) => {
let mut first = true;
for child in &**children {
if !first {
if child.is_negative_leaf() {
dest.write_str(" - ")?;
let mut c = child.clone();
c.negate();
c.to_css_impl(dest, false)?;
} else {
dest.write_str(" + ")?;
child.to_css_impl(dest, false)?;
}
} else {
first = false;
child.to_css_impl(dest, false)?;
}
}
},
Self::Clamp {
ref min,
ref center,
ref max,
} => {
min.to_css_impl(dest, false)?;
dest.write_str(", ")?;
center.to_css_impl(dest, false)?;
dest.write_str(", ")?;
max.to_css_impl(dest, false)?;
},
Self::Leaf(ref l) => l.to_css(dest)?,
}
if write_closing_paren {
dest.write_str(")")?;
}
Ok(())
}
}
impl<L: CalcNodeLeaf> PartialOrd for CalcNode<L> {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
match (self, other) {
(&CalcNode::Leaf(ref one), &CalcNode::Leaf(ref other)) => one.partial_cmp(other),
_ => None,
}
}
}
impl<L: CalcNodeLeaf> ToCss for CalcNode<L> {
/// <https://drafts.csswg.org/css-values/#calc-serialize>
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: Write,
{
self.to_css_impl(dest, /* is_outermost = */ true)
}
}