servo/components/gfx/display_list/mod.rs
Martin Robinson 1c09b1d8aa Split out layered child stacking contexts in display lists
This patch is in preparation for more dynamic layerization of the
pieces of display lists. It also prevents having to sort the children
by z-index multiple times.
2015-08-26 10:20:28 -07:00

1171 lines
46 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Servo heavily uses display lists, which are retained-mode lists of painting commands to
//! perform. Using a list instead of painting elements in immediate mode allows transforms, hit
//! testing, and invalidation to be performed using the same primitives as painting. It also allows
//! Servo to aggressively cull invisible and out-of-bounds painting elements, to reduce overdraw.
//! Finally, display lists allow tiles to be farmed out onto multiple CPUs and painted in parallel
//! (although this benefit does not apply to GPU-based painting).
//!
//! Display items describe relatively high-level drawing operations (for example, entire borders
//! and shadows instead of lines and blur operations), to reduce the amount of allocation required.
//! They are therefore not exactly analogous to constructs like Skia pictures, which consist of
//! low-level drawing primitives.
#![deny(unsafe_code)]
use display_list::optimizer::DisplayListOptimizer;
use paint_context::PaintContext;
use self::DisplayItem::*;
use self::DisplayItemIterator::*;
use text::TextRun;
use text::glyph::CharIndex;
use azure::azure::AzFloat;
use azure::azure_hl::Color;
use euclid::approxeq::ApproxEq;
use euclid::num::Zero;
use euclid::{Point2D, Rect, SideOffsets2D, Size2D, Matrix2D, Matrix4};
use libc::uintptr_t;
use msg::compositor_msg::{LayerId, LayerKind};
use net_traits::image::base::Image;
use paint_task::PaintLayer;
use smallvec::SmallVec;
use std::collections::linked_list::{self, LinkedList};
use std::fmt;
use std::slice::Iter;
use std::sync::Arc;
use style::computed_values::{border_style, cursor, filter, image_rendering, mix_blend_mode};
use style::computed_values::{pointer_events};
use style::properties::ComputedValues;
use util::cursor::Cursor;
use util::geometry::{self, Au, MAX_RECT, ZERO_RECT};
use util::linked_list::prepend_from;
use util::mem::HeapSizeOf;
use util::opts;
use util::range::Range;
// It seems cleaner to have layout code not mention Azure directly, so let's just reexport this for
// layout to use.
pub use azure::azure_hl::GradientStop;
pub mod optimizer;
/// The factor that we multiply the blur radius by in order to inflate the boundaries of display
/// items that involve a blur. This ensures that the display item boundaries include all the ink.
pub static BLUR_INFLATION_FACTOR: i32 = 3;
const MIN_INDENTATION_LENGTH: usize = 4;
/// An opaque handle to a node. The only safe operation that can be performed on this node is to
/// compare it to another opaque handle or to another node.
///
/// Because the script task's GC does not trace layout, node data cannot be safely stored in layout
/// data structures. Also, layout code tends to be faster when the DOM is not being accessed, for
/// locality reasons. Using `OpaqueNode` enforces this invariant.
#[derive(Clone, PartialEq, Copy, Debug, HeapSizeOf, Hash, Eq, Deserialize, Serialize)]
pub struct OpaqueNode(pub uintptr_t);
impl OpaqueNode {
/// Returns the address of this node, for debugging purposes.
#[inline]
pub fn id(&self) -> uintptr_t {
let OpaqueNode(pointer) = *self;
pointer
}
}
/// Display items that make up a stacking context. "Steps" here refer to the steps in CSS 2.1
/// Appendix E.
///
/// TODO(pcwalton): We could reduce the size of this structure with a more "skip list"-like
/// structure, omitting several pointers and lengths.
#[derive(HeapSizeOf, Deserialize, Serialize)]
pub struct DisplayList {
/// The border and backgrounds for the root of this stacking context: steps 1 and 2.
pub background_and_borders: LinkedList<DisplayItem>,
/// Borders and backgrounds for block-level descendants: step 4.
pub block_backgrounds_and_borders: LinkedList<DisplayItem>,
/// Floats: step 5. These are treated as pseudo-stacking contexts.
pub floats: LinkedList<DisplayItem>,
/// All non-positioned content.
pub content: LinkedList<DisplayItem>,
/// All positioned content that does not get a stacking context.
pub positioned_content: LinkedList<DisplayItem>,
/// Outlines: step 10.
pub outlines: LinkedList<DisplayItem>,
/// Child stacking contexts.
pub children: LinkedList<Arc<StackingContext>>,
/// Child stacking contexts with their own layers.
pub layered_children: LinkedList<Arc<StackingContext>>,
}
impl DisplayList {
/// Creates a new, empty display list.
#[inline]
pub fn new() -> DisplayList {
DisplayList {
background_and_borders: LinkedList::new(),
block_backgrounds_and_borders: LinkedList::new(),
floats: LinkedList::new(),
content: LinkedList::new(),
positioned_content: LinkedList::new(),
outlines: LinkedList::new(),
children: LinkedList::new(),
layered_children: LinkedList::new(),
}
}
/// Sort all children by their z-index and split layered children into their own
/// section of the display list.
/// TODO(mrobinson): This should properly handle unlayered children that are on
/// top of layered children.
#[inline]
pub fn sort_and_layerize_children(&mut self) {
let mut children: SmallVec<[Arc<StackingContext>; 8]> = SmallVec::new();
while let Some(stacking_context) = self.children.pop_front() {
children.push(stacking_context);
}
children.sort_by(|this, other| this.z_index.cmp(&other.z_index));
for stacking_context in children.into_iter() {
if stacking_context.layer.is_some() {
self.layered_children.push_back(stacking_context);
} else {
self.children.push_back(stacking_context);
}
}
}
/// Appends all display items from `other` into `self`, preserving stacking order and emptying
/// `other` in the process.
#[inline]
pub fn append_from(&mut self, other: &mut DisplayList) {
self.background_and_borders.append(&mut other.background_and_borders);
self.block_backgrounds_and_borders.append(&mut other.block_backgrounds_and_borders);
self.floats.append(&mut other.floats);
self.content.append(&mut other.content);
self.positioned_content.append(&mut other.positioned_content);
self.outlines.append(&mut other.outlines);
self.children.append(&mut other.children);
self.layered_children.append(&mut other.children);
}
/// Merges all display items from all non-float stacking levels to the `float` stacking level.
#[inline]
pub fn form_float_pseudo_stacking_context(&mut self) {
prepend_from(&mut self.floats, &mut self.outlines);
prepend_from(&mut self.floats, &mut self.positioned_content);
prepend_from(&mut self.floats, &mut self.content);
prepend_from(&mut self.floats, &mut self.block_backgrounds_and_borders);
prepend_from(&mut self.floats, &mut self.background_and_borders);
}
/// Merges all display items from all non-positioned-content stacking levels to the
/// positioned-content stacking level.
#[inline]
pub fn form_pseudo_stacking_context_for_positioned_content(&mut self) {
prepend_from(&mut self.positioned_content, &mut self.outlines);
prepend_from(&mut self.positioned_content, &mut self.content);
prepend_from(&mut self.positioned_content, &mut self.floats);
prepend_from(&mut self.positioned_content, &mut self.block_backgrounds_and_borders);
prepend_from(&mut self.positioned_content, &mut self.background_and_borders);
}
/// Returns a list of all items in this display list concatenated together. This is extremely
/// inefficient and should only be used for debugging.
pub fn all_display_items(&self) -> Vec<DisplayItem> {
let mut result = Vec::new();
for display_item in &self.background_and_borders {
result.push((*display_item).clone())
}
for display_item in &self.block_backgrounds_and_borders {
result.push((*display_item).clone())
}
for display_item in &self.floats {
result.push((*display_item).clone())
}
for display_item in &self.content {
result.push((*display_item).clone())
}
for display_item in &self.positioned_content {
result.push((*display_item).clone())
}
for display_item in &self.outlines {
result.push((*display_item).clone())
}
result
}
// Print the display list. Only makes sense to call it after performing reflow.
pub fn print_items(&self, indentation: String) {
// Closures are so nice!
let doit = |items: &Vec<DisplayItem>| {
for item in items {
match *item {
DisplayItem::SolidColorClass(ref solid_color) => {
println!("{} SolidColor({},{},{},{}). {:?}",
indentation,
solid_color.color.r,
solid_color.color.g,
solid_color.color.b,
solid_color.color.a,
solid_color.base.bounds)
}
DisplayItem::TextClass(ref text) => {
println!("{} Text. {:?}", indentation, text.base.bounds)
}
DisplayItem::ImageClass(ref image) => {
println!("{} Image. {:?}", indentation, image.base.bounds)
}
DisplayItem::BorderClass(ref border) => {
println!("{} Border. {:?}", indentation, border.base.bounds)
}
DisplayItem::GradientClass(ref gradient) => {
println!("{} Gradient. {:?}", indentation, gradient.base.bounds)
}
DisplayItem::LineClass(ref line) => {
println!("{} Line. {:?}", indentation, line.base.bounds)
}
DisplayItem::BoxShadowClass(ref box_shadow) => {
println!("{} Box_shadow. {:?}", indentation, box_shadow.base.bounds)
}
}
}
println!("\n");
};
doit(&(self.all_display_items()));
if !self.children.is_empty() {
println!("{} Children stacking contexts list length: {}",
indentation,
self.children.len());
for stacking_context in &self.children {
stacking_context.print(indentation.clone() +
&indentation[0..MIN_INDENTATION_LENGTH]);
}
}
if !self.layered_children.is_empty() {
println!("{} Layered children stacking contexts list length: {}",
indentation,
self.layered_children.len());
for stacking_context in &self.layered_children {
stacking_context.print(indentation.clone() +
&indentation[0..MIN_INDENTATION_LENGTH]);
}
}
}
}
#[derive(HeapSizeOf, Deserialize, Serialize)]
/// Represents one CSS stacking context, which may or may not have a hardware layer.
pub struct StackingContext {
/// The display items that make up this stacking context.
pub display_list: Box<DisplayList>,
/// The layer for this stacking context, if there is one.
#[ignore_heap_size_of = "FIXME(njn): should measure this at some point"]
pub layer: Option<PaintLayer>,
/// The position and size of this stacking context.
pub bounds: Rect<Au>,
/// The overflow rect for this stacking context in its coordinate system.
pub overflow: Rect<Au>,
/// The `z-index` for this stacking context.
pub z_index: i32,
/// CSS filters to be applied to this stacking context (including opacity).
pub filters: filter::T,
/// The blend mode with which this stacking context blends with its backdrop.
pub blend_mode: mix_blend_mode::T,
/// A transform to be applied to this stacking context.
pub transform: Matrix4,
/// The perspective matrix to be applied to children.
pub perspective: Matrix4,
/// Whether this stacking context creates a new 3d rendering context.
pub establishes_3d_context: bool,
/// Whether this stacking context scrolls its overflow area.
pub scrolls_overflow_area: bool,
}
impl StackingContext {
/// Creates a new stacking context.
#[inline]
pub fn new(mut display_list: Box<DisplayList>,
bounds: &Rect<Au>,
overflow: &Rect<Au>,
z_index: i32,
filters: filter::T,
blend_mode: mix_blend_mode::T,
layer: Option<PaintLayer>,
transform: Matrix4,
perspective: Matrix4,
establishes_3d_context: bool,
scrolls_overflow_area: bool)
-> StackingContext {
display_list.sort_and_layerize_children();
StackingContext {
display_list: display_list,
bounds: *bounds,
overflow: *overflow,
z_index: z_index,
filters: filters,
blend_mode: blend_mode,
layer: layer,
transform: transform,
perspective: perspective,
establishes_3d_context: establishes_3d_context,
scrolls_overflow_area: scrolls_overflow_area,
}
}
/// Draws the stacking context in the proper order according to the steps in CSS 2.1 § E.2.
pub fn draw_into_context(&self,
display_list: &DisplayList,
paint_context: &mut PaintContext,
transform: &Matrix4,
clip_rect: Option<&Rect<Au>>) {
let temporary_draw_target =
paint_context.get_or_create_temporary_draw_target(&self.filters, self.blend_mode);
{
let mut paint_subcontext = PaintContext {
draw_target: temporary_draw_target.clone(),
font_context: &mut *paint_context.font_context,
page_rect: paint_context.page_rect,
screen_rect: paint_context.screen_rect,
clip_rect: clip_rect.map(|clip_rect| *clip_rect),
transient_clip: None,
layer_kind: paint_context.layer_kind,
};
if opts::get().dump_display_list_optimized {
println!("**** optimized display list. Tile bounds: {:?}", paint_context.page_rect);
display_list.print_items("####".to_owned());
}
// Set up our clip rect and transform.
let old_transform = paint_subcontext.draw_target.get_transform();
let xform_2d = Matrix2D::new(transform.m11, transform.m12,
transform.m21, transform.m22,
transform.m41, transform.m42);
paint_subcontext.draw_target.set_transform(&xform_2d);
paint_subcontext.push_clip_if_applicable();
// Steps 1 and 2: Borders and background for the root.
for display_item in &display_list.background_and_borders {
display_item.draw_into_context(&mut paint_subcontext)
}
// Step 3: Positioned descendants with negative z-indices.
for positioned_kid in &display_list.children {
if positioned_kid.z_index >= 0 {
break
}
let new_transform =
transform.translate(positioned_kid.bounds
.origin
.x
.to_nearest_px() as AzFloat,
positioned_kid.bounds
.origin
.y
.to_nearest_px() as AzFloat,
0.0);
positioned_kid.optimize_and_draw_into_context(&mut paint_subcontext,
&new_transform,
Some(&positioned_kid.overflow))
}
// Step 4: Block backgrounds and borders.
for display_item in &display_list.block_backgrounds_and_borders {
display_item.draw_into_context(&mut paint_subcontext)
}
// Step 5: Floats.
for display_item in &display_list.floats {
display_item.draw_into_context(&mut paint_subcontext)
}
// TODO(pcwalton): Step 6: Inlines that generate stacking contexts.
// Step 7: Content.
for display_item in &display_list.content {
display_item.draw_into_context(&mut paint_subcontext)
}
// Step 8: Positioned descendants with `z-index: auto`.
for display_item in &display_list.positioned_content {
display_item.draw_into_context(&mut paint_subcontext)
}
// Step 9: Positioned descendants with nonnegative, numeric z-indices.
for positioned_kid in &self.display_list.children {
if positioned_kid.z_index < 0 {
continue
}
let new_transform =
transform.translate(positioned_kid.bounds
.origin
.x
.to_nearest_px() as AzFloat,
positioned_kid.bounds
.origin
.y
.to_nearest_px() as AzFloat,
0.0);
positioned_kid.optimize_and_draw_into_context(&mut paint_subcontext,
&new_transform,
Some(&positioned_kid.overflow))
}
// Step 10: Outlines.
for display_item in &display_list.outlines {
display_item.draw_into_context(&mut paint_subcontext)
}
// Undo our clipping and transform.
paint_subcontext.remove_transient_clip_if_applicable();
paint_subcontext.pop_clip_if_applicable();
paint_subcontext.draw_target.set_transform(&old_transform)
}
paint_context.draw_temporary_draw_target_if_necessary(&temporary_draw_target,
&self.filters,
self.blend_mode)
}
/// Optionally optimize and then draws the stacking context.
pub fn optimize_and_draw_into_context(&self,
paint_context: &mut PaintContext,
transform: &Matrix4,
clip_rect: Option<&Rect<Au>>) {
// If a layer is being used, the transform for this layer
// will be handled by the compositor.
let transform = match self.layer {
Some(..) => *transform,
None => transform.mul(&self.transform),
};
// TODO(gw): This is a hack to avoid running the DL optimizer
// on 3d transformed tiles. We should have a better solution
// than just disabling the opts here.
if paint_context.layer_kind == LayerKind::HasTransform {
self.draw_into_context(&self.display_list,
paint_context,
&transform,
clip_rect);
} else {
// Invert the current transform, then use this to back transform
// the tile rect (placed at the origin) into the space of this
// stacking context.
let inverse_transform = transform.invert();
let inverse_transform_2d = Matrix2D::new(inverse_transform.m11, inverse_transform.m12,
inverse_transform.m21, inverse_transform.m22,
inverse_transform.m41, inverse_transform.m42);
let tile_size = Size2D::new(paint_context.screen_rect.size.width as f32,
paint_context.screen_rect.size.height as f32);
let tile_rect = Rect::new(Point2D::zero(), tile_size);
let tile_rect = inverse_transform_2d.transform_rect(&tile_rect);
// Optimize the display list to throw out out-of-bounds display items and so forth.
let display_list = DisplayListOptimizer::new(&tile_rect).optimize(&*self.display_list);
self.draw_into_context(&display_list,
paint_context,
&transform,
clip_rect);
}
}
/// Places all nodes containing the point of interest into `result`, topmost first. Respects
/// the `pointer-events` CSS property If `topmost_only` is true, stops after placing one node
/// into the list. `result` must be empty upon entry to this function.
pub fn hit_test(&self,
mut point: Point2D<Au>,
result: &mut Vec<DisplayItemMetadata>,
topmost_only: bool) {
fn hit_test_in_list<'a, I>(point: Point2D<Au>,
result: &mut Vec<DisplayItemMetadata>,
topmost_only: bool,
iterator: I)
where I: Iterator<Item=&'a DisplayItem> {
for item in iterator {
// TODO(pcwalton): Use a precise algorithm here. This will allow us to properly hit
// test elements with `border-radius`, for example.
if !item.base().clip.might_intersect_point(&point) {
// Clipped out.
continue
}
if !geometry::rect_contains_point(item.bounds(), point) {
// Can't possibly hit.
continue
}
if item.base().metadata.pointing.is_none() {
// `pointer-events` is `none`. Ignore this item.
continue
}
match *item {
DisplayItem::BorderClass(ref border) => {
// If the point is inside the border, it didn't hit the border!
let interior_rect =
Rect::new(
Point2D::new(border.base.bounds.origin.x +
border.border_widths.left,
border.base.bounds.origin.y +
border.border_widths.top),
Size2D::new(border.base.bounds.size.width -
(border.border_widths.left +
border.border_widths.right),
border.base.bounds.size.height -
(border.border_widths.top +
border.border_widths.bottom)));
if geometry::rect_contains_point(interior_rect, point) {
continue
}
}
_ => {}
}
// We found a hit!
result.push(item.base().metadata);
if topmost_only {
return
}
}
}
// Convert the point into stacking context local space
point = point - self.bounds.origin;
debug_assert!(!topmost_only || result.is_empty());
let inv_transform = self.transform.invert();
let frac_point = inv_transform.transform_point(&Point2D::new(point.x.to_f32_px(),
point.y.to_f32_px()));
point = Point2D::new(Au::from_f32_px(frac_point.x), Au::from_f32_px(frac_point.y));
// Iterate through display items in reverse stacking order. Steps here refer to the
// painting steps in CSS 2.1 Appendix E.
//
// Step 10: Outlines.
hit_test_in_list(point, result, topmost_only, self.display_list.outlines.iter().rev());
if topmost_only && !result.is_empty() {
return
}
// Steps 9 and 8: Positioned descendants with nonnegative z-indices.
for kid in self.display_list.children.iter().rev() {
if kid.z_index < 0 {
continue
}
kid.hit_test(point, result, topmost_only);
if topmost_only && !result.is_empty() {
return
}
}
// Steps 8, 7, 5, and 4: Positioned content, content, floats, and block backgrounds and
// borders.
//
// TODO(pcwalton): Step 6: Inlines that generate stacking contexts.
for display_list in &[
&self.display_list.positioned_content,
&self.display_list.content,
&self.display_list.floats,
&self.display_list.block_backgrounds_and_borders,
] {
hit_test_in_list(point, result, topmost_only, display_list.iter().rev());
if topmost_only && !result.is_empty() {
return
}
}
// Step 3: Positioned descendants with negative z-indices.
for kid in self.display_list.children.iter().rev() {
if kid.z_index >= 0 {
continue
}
kid.hit_test(point, result, topmost_only);
if topmost_only && !result.is_empty() {
return
}
}
// Steps 2 and 1: Borders and background for the root.
hit_test_in_list(point,
result,
topmost_only,
self.display_list.background_and_borders.iter().rev())
}
pub fn print(&self, mut indentation: String) {
// We cover the case of an empty string.
if indentation.is_empty() {
indentation = "####".to_owned();
}
// We grow the indentation by 4 characters if needed.
// I wish to push it all as a slice, but it won't work if the string is a single char.
while indentation.len() < MIN_INDENTATION_LENGTH {
let c = indentation.char_at(0);
indentation.push(c);
}
println!("{:?} Stacking context at {:?} with overflow {:?}:",
indentation,
self.bounds,
self.overflow);
self.display_list.print_items(indentation);
}
}
/// Returns the stacking context in the given tree of stacking contexts with a specific layer ID.
pub fn find_stacking_context_with_layer_id(this: &Arc<StackingContext>, layer_id: LayerId)
-> Option<Arc<StackingContext>> {
match this.layer {
Some(ref layer) if layer.id == layer_id => return Some((*this).clone()),
Some(_) | None => {}
}
for kid in &this.display_list.layered_children {
match find_stacking_context_with_layer_id(kid, layer_id) {
Some(stacking_context) => return Some(stacking_context),
None => {}
}
}
None
}
/// One drawing command in the list.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub enum DisplayItem {
SolidColorClass(Box<SolidColorDisplayItem>),
TextClass(Box<TextDisplayItem>),
ImageClass(Box<ImageDisplayItem>),
BorderClass(Box<BorderDisplayItem>),
GradientClass(Box<GradientDisplayItem>),
LineClass(Box<LineDisplayItem>),
BoxShadowClass(Box<BoxShadowDisplayItem>),
}
/// Information common to all display items.
#[derive(Clone, Deserialize, HeapSizeOf, Serialize)]
pub struct BaseDisplayItem {
/// The boundaries of the display item, in layer coordinates.
pub bounds: Rect<Au>,
/// Metadata attached to this display item.
pub metadata: DisplayItemMetadata,
/// The region to clip to.
pub clip: ClippingRegion,
}
impl BaseDisplayItem {
#[inline(always)]
pub fn new(bounds: Rect<Au>, metadata: DisplayItemMetadata, clip: ClippingRegion)
-> BaseDisplayItem {
BaseDisplayItem {
bounds: bounds,
metadata: metadata,
clip: clip,
}
}
}
/// A clipping region for a display item. Currently, this can describe rectangles, rounded
/// rectangles (for `border-radius`), or arbitrary intersections of the two. Arbitrary transforms
/// are not supported because those are handled by the higher-level `StackingContext` abstraction.
#[derive(Clone, PartialEq, Debug, HeapSizeOf, Deserialize, Serialize)]
pub struct ClippingRegion {
/// The main rectangular region. This does not include any corners.
pub main: Rect<Au>,
/// Any complex regions.
///
/// TODO(pcwalton): Atomically reference count these? Not sure if it's worth the trouble.
/// Measure and follow up.
pub complex: Vec<ComplexClippingRegion>,
}
/// A complex clipping region. These don't as easily admit arbitrary intersection operations, so
/// they're stored in a list over to the side. Currently a complex clipping region is just a
/// rounded rectangle, but the CSS WGs will probably make us throw more stuff in here eventually.
#[derive(Clone, PartialEq, Debug, HeapSizeOf, Deserialize, Serialize)]
pub struct ComplexClippingRegion {
/// The boundaries of the rectangle.
pub rect: Rect<Au>,
/// Border radii of this rectangle.
pub radii: BorderRadii<Au>,
}
impl ClippingRegion {
/// Returns an empty clipping region that, if set, will result in no pixels being visible.
#[inline]
pub fn empty() -> ClippingRegion {
ClippingRegion {
main: ZERO_RECT,
complex: Vec::new(),
}
}
/// Returns an all-encompassing clipping region that clips no pixels out.
#[inline]
pub fn max() -> ClippingRegion {
ClippingRegion {
main: MAX_RECT,
complex: Vec::new(),
}
}
/// Returns a clipping region that represents the given rectangle.
#[inline]
pub fn from_rect(rect: &Rect<Au>) -> ClippingRegion {
ClippingRegion {
main: *rect,
complex: Vec::new(),
}
}
/// Returns the intersection of this clipping region and the given rectangle.
///
/// TODO(pcwalton): This could more eagerly eliminate complex clipping regions, at the cost of
/// complexity.
#[inline]
pub fn intersect_rect(self, rect: &Rect<Au>) -> ClippingRegion {
ClippingRegion {
main: self.main.intersection(rect).unwrap_or(ZERO_RECT),
complex: self.complex,
}
}
/// Returns true if this clipping region might be nonempty. This can return false positives,
/// but never false negatives.
#[inline]
pub fn might_be_nonempty(&self) -> bool {
!self.main.is_empty()
}
/// Returns true if this clipping region might contain the given point and false otherwise.
/// This is a quick, not a precise, test; it can yield false positives.
#[inline]
pub fn might_intersect_point(&self, point: &Point2D<Au>) -> bool {
geometry::rect_contains_point(self.main, *point) &&
self.complex.iter().all(|complex| geometry::rect_contains_point(complex.rect, *point))
}
/// Returns true if this clipping region might intersect the given rectangle and false
/// otherwise. This is a quick, not a precise, test; it can yield false positives.
#[inline]
pub fn might_intersect_rect(&self, rect: &Rect<Au>) -> bool {
self.main.intersects(rect) &&
self.complex.iter().all(|complex| complex.rect.intersects(rect))
}
/// Returns a bounding rect that surrounds this entire clipping region.
#[inline]
pub fn bounding_rect(&self) -> Rect<Au> {
let mut rect = self.main;
for complex in &*self.complex {
rect = rect.union(&complex.rect)
}
rect
}
/// Intersects this clipping region with the given rounded rectangle.
#[inline]
pub fn intersect_with_rounded_rect(mut self, rect: &Rect<Au>, radii: &BorderRadii<Au>)
-> ClippingRegion {
self.complex.push(ComplexClippingRegion {
rect: *rect,
radii: *radii,
});
self
}
/// Translates this clipping region by the given vector.
#[inline]
pub fn translate(&self, delta: &Point2D<Au>) -> ClippingRegion {
ClippingRegion {
main: self.main.translate(delta),
complex: self.complex.iter().map(|complex| {
ComplexClippingRegion {
rect: complex.rect.translate(delta),
radii: complex.radii,
}
}).collect(),
}
}
}
/// Metadata attached to each display item. This is useful for performing auxiliary tasks with
/// the display list involving hit testing: finding the originating DOM node and determining the
/// cursor to use when the element is hovered over.
#[derive(Clone, Copy, HeapSizeOf, Deserialize, Serialize)]
pub struct DisplayItemMetadata {
/// The DOM node from which this display item originated.
pub node: OpaqueNode,
/// The value of the `cursor` property when the mouse hovers over this display item. If `None`,
/// this display item is ineligible for pointer events (`pointer-events: none`).
pub pointing: Option<Cursor>,
}
impl DisplayItemMetadata {
/// Creates a new set of display metadata for a display item constributed by a DOM node.
/// `default_cursor` specifies the cursor to use if `cursor` is `auto`. Typically, this will
/// be `PointerCursor`, but for text display items it may be `TextCursor` or
/// `VerticalTextCursor`.
#[inline]
pub fn new(node: OpaqueNode, style: &ComputedValues, default_cursor: Cursor)
-> DisplayItemMetadata {
DisplayItemMetadata {
node: node,
pointing: match (style.get_pointing().pointer_events, style.get_pointing().cursor) {
(pointer_events::T::none, _) => None,
(pointer_events::T::auto, cursor::T::AutoCursor) => Some(default_cursor),
(pointer_events::T::auto, cursor::T::SpecifiedCursor(cursor)) => Some(cursor),
},
}
}
}
/// Paints a solid color.
#[derive(Clone, HeapSizeOf, Deserialize, Serialize)]
pub struct SolidColorDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// The color.
pub color: Color,
}
/// Paints text.
#[derive(Clone, HeapSizeOf, Deserialize, Serialize)]
pub struct TextDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// The text run.
#[ignore_heap_size_of = "Because it is non-owning"]
pub text_run: Arc<TextRun>,
/// The range of text within the text run.
pub range: Range<CharIndex>,
/// The color of the text.
pub text_color: Color,
/// The position of the start of the baseline of this text.
pub baseline_origin: Point2D<Au>,
/// The orientation of the text: upright or sideways left/right.
pub orientation: TextOrientation,
/// The blur radius for this text. If zero, this text is not blurred.
pub blur_radius: Au,
}
#[derive(Clone, Eq, PartialEq, HeapSizeOf, Deserialize, Serialize)]
pub enum TextOrientation {
Upright,
SidewaysLeft,
SidewaysRight,
}
/// Paints an image.
#[derive(Clone, HeapSizeOf, Deserialize, Serialize)]
pub struct ImageDisplayItem {
pub base: BaseDisplayItem,
#[ignore_heap_size_of = "Because it is non-owning"]
pub image: Arc<Image>,
/// The dimensions to which the image display item should be stretched. If this is smaller than
/// the bounds of this display item, then the image will be repeated in the appropriate
/// direction to tile the entire bounds.
pub stretch_size: Size2D<Au>,
/// The algorithm we should use to stretch the image. See `image_rendering` in CSS-IMAGES-3 §
/// 5.3.
pub image_rendering: image_rendering::T,
}
/// Paints a gradient.
#[derive(Clone, Deserialize, Serialize)]
pub struct GradientDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// The start point of the gradient (computed during display list construction).
pub start_point: Point2D<Au>,
/// The end point of the gradient (computed during display list construction).
pub end_point: Point2D<Au>,
/// A list of color stops.
pub stops: Vec<GradientStop>,
}
impl HeapSizeOf for GradientDisplayItem {
fn heap_size_of_children(&self) -> usize {
use libc::c_void;
use util::mem::heap_size_of;
// We can't measure `stops` via Vec's HeapSizeOf implementation because GradientStop isn't
// defined in this module, and we don't want to import GradientStop into util::mem where
// the HeapSizeOf trait is defined. So we measure the elements directly.
self.base.heap_size_of_children() +
heap_size_of(self.stops.as_ptr() as *const c_void)
}
}
/// Paints a border.
#[derive(Clone, HeapSizeOf, Deserialize, Serialize)]
pub struct BorderDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// Border widths.
pub border_widths: SideOffsets2D<Au>,
/// Border colors.
pub color: SideOffsets2D<Color>,
/// Border styles.
pub style: SideOffsets2D<border_style::T>,
/// Border radii.
///
/// TODO(pcwalton): Elliptical radii.
pub radius: BorderRadii<Au>,
}
/// Information about the border radii.
///
/// TODO(pcwalton): Elliptical radii.
#[derive(Clone, Default, PartialEq, Debug, Copy, HeapSizeOf, Deserialize, Serialize)]
pub struct BorderRadii<T> {
pub top_left: T,
pub top_right: T,
pub bottom_right: T,
pub bottom_left: T,
}
impl<T> BorderRadii<T> where T: PartialEq + Zero {
/// Returns true if all the radii are zero.
pub fn is_square(&self) -> bool {
let zero = Zero::zero();
self.top_left == zero && self.top_right == zero && self.bottom_right == zero &&
self.bottom_left == zero
}
}
impl<T> BorderRadii<T> where T: PartialEq + Zero + Clone {
/// Returns a set of border radii that all have the given value.
pub fn all_same(value: T) -> BorderRadii<T> {
BorderRadii {
top_left: value.clone(),
top_right: value.clone(),
bottom_right: value.clone(),
bottom_left: value.clone(),
}
}
}
/// Paints a line segment.
#[derive(Clone, HeapSizeOf, Deserialize, Serialize)]
pub struct LineDisplayItem {
pub base: BaseDisplayItem,
/// The line segment color.
pub color: Color,
/// The line segment style.
pub style: border_style::T
}
/// Paints a box shadow per CSS-BACKGROUNDS.
#[derive(Clone, HeapSizeOf, Deserialize, Serialize)]
pub struct BoxShadowDisplayItem {
/// Fields common to all display items.
pub base: BaseDisplayItem,
/// The dimensions of the box that we're placing a shadow around.
pub box_bounds: Rect<Au>,
/// The offset of this shadow from the box.
pub offset: Point2D<Au>,
/// The color of this shadow.
pub color: Color,
/// The blur radius for this shadow.
pub blur_radius: Au,
/// The spread radius of this shadow.
pub spread_radius: Au,
/// How we should clip the result.
pub clip_mode: BoxShadowClipMode,
}
/// How a box shadow should be clipped.
#[derive(Clone, Copy, Debug, PartialEq, HeapSizeOf, Deserialize, Serialize)]
pub enum BoxShadowClipMode {
/// No special clipping should occur. This is used for (shadowed) text decorations.
None,
/// The area inside `box_bounds` should be clipped out. Corresponds to the normal CSS
/// `box-shadow`.
Outset,
/// The area outside `box_bounds` should be clipped out. Corresponds to the `inset` flag on CSS
/// `box-shadow`.
Inset,
}
pub enum DisplayItemIterator<'a> {
Empty,
Parent(linked_list::Iter<'a, DisplayItem>),
}
impl<'a> Iterator for DisplayItemIterator<'a> {
type Item = &'a DisplayItem;
#[inline]
fn next(&mut self) -> Option<&'a DisplayItem> {
match *self {
DisplayItemIterator::Empty => None,
DisplayItemIterator::Parent(ref mut subiterator) => subiterator.next(),
}
}
}
impl DisplayItem {
/// Paints this display item into the given painting context.
fn draw_into_context(&self, paint_context: &mut PaintContext) {
let this_clip = &self.base().clip;
match paint_context.transient_clip {
Some(ref transient_clip) if transient_clip == this_clip => {}
Some(_) | None => paint_context.push_transient_clip((*this_clip).clone()),
}
match *self {
DisplayItem::SolidColorClass(ref solid_color) => {
if !solid_color.color.a.approx_eq(&0.0) {
paint_context.draw_solid_color(&solid_color.base.bounds, solid_color.color)
}
}
DisplayItem::TextClass(ref text) => {
debug!("Drawing text at {:?}.", text.base.bounds);
paint_context.draw_text(&**text);
}
DisplayItem::ImageClass(ref image_item) => {
debug!("Drawing image at {:?}.", image_item.base.bounds);
paint_context.draw_image(&image_item.base.bounds,
&image_item.stretch_size,
image_item.image.clone(),
image_item.image_rendering.clone());
}
DisplayItem::BorderClass(ref border) => {
paint_context.draw_border(&border.base.bounds,
&border.border_widths,
&border.radius,
&border.color,
&border.style)
}
DisplayItem::GradientClass(ref gradient) => {
paint_context.draw_linear_gradient(&gradient.base.bounds,
&gradient.start_point,
&gradient.end_point,
&gradient.stops);
}
DisplayItem::LineClass(ref line) => {
paint_context.draw_line(&line.base.bounds, line.color, line.style)
}
DisplayItem::BoxShadowClass(ref box_shadow) => {
paint_context.draw_box_shadow(&box_shadow.box_bounds,
&box_shadow.offset,
box_shadow.color,
box_shadow.blur_radius,
box_shadow.spread_radius,
box_shadow.clip_mode)
}
}
}
pub fn base<'a>(&'a self) -> &'a BaseDisplayItem {
match *self {
DisplayItem::SolidColorClass(ref solid_color) => &solid_color.base,
DisplayItem::TextClass(ref text) => &text.base,
DisplayItem::ImageClass(ref image_item) => &image_item.base,
DisplayItem::BorderClass(ref border) => &border.base,
DisplayItem::GradientClass(ref gradient) => &gradient.base,
DisplayItem::LineClass(ref line) => &line.base,
DisplayItem::BoxShadowClass(ref box_shadow) => &box_shadow.base,
}
}
pub fn mut_base<'a>(&'a mut self) -> &'a mut BaseDisplayItem {
match *self {
DisplayItem::SolidColorClass(ref mut solid_color) => &mut solid_color.base,
DisplayItem::TextClass(ref mut text) => &mut text.base,
DisplayItem::ImageClass(ref mut image_item) => &mut image_item.base,
DisplayItem::BorderClass(ref mut border) => &mut border.base,
DisplayItem::GradientClass(ref mut gradient) => &mut gradient.base,
DisplayItem::LineClass(ref mut line) => &mut line.base,
DisplayItem::BoxShadowClass(ref mut box_shadow) => &mut box_shadow.base,
}
}
pub fn bounds(&self) -> Rect<Au> {
self.base().bounds
}
pub fn debug_with_level(&self, level: u32) {
let mut indent = String::new();
for _ in 0..level {
indent.push_str("| ")
}
println!("{}+ {:?}", indent, self);
}
}
impl fmt::Debug for DisplayItem {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{} @ {:?} ({:x})",
match *self {
DisplayItem::SolidColorClass(_) => "SolidColor",
DisplayItem::TextClass(_) => "Text",
DisplayItem::ImageClass(_) => "Image",
DisplayItem::BorderClass(_) => "Border",
DisplayItem::GradientClass(_) => "Gradient",
DisplayItem::LineClass(_) => "Line",
DisplayItem::BoxShadowClass(_) => "BoxShadow",
},
self.base().bounds,
self.base().metadata.node.id()
)
}
}