mirror of
https://github.com/servo/servo.git
synced 2025-06-19 22:59:03 +01:00
I've chosen this approach mainly because there's no other good way to guarantee the model is correct than holding the snapshots alive until a style refresh. What I tried before this (storing them in a sort of "immutable element data") is a pain, since we call into style from the frame constructor and other content notifications, which makes keeping track of which snapshots should be cleared an which shouldn't an insane task. Ideally we'd have a single entry-point for style, but that's not the case right now, and changing that requires pretty non-trivial changes to the frame constructor. MozReview-Commit-ID: FF1KWZv2iBM Signed-off-by: Emilio Cobos Álvarez <emilio@crisal.io>
847 lines
33 KiB
Rust
847 lines
33 KiB
Rust
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
//! Traversing the DOM tree; the bloom filter.
|
|
|
|
use atomic_refcell::{AtomicRefCell, AtomicRefMut};
|
|
use context::{SharedStyleContext, StyleContext, ThreadLocalStyleContext};
|
|
use data::{ElementData, ElementStyles, StoredRestyleHint};
|
|
use dom::{DirtyDescendants, NodeInfo, OpaqueNode, TElement, TNode};
|
|
use matching::{MatchMethods, StyleSharingBehavior};
|
|
use restyle_hints::{RESTYLE_DESCENDANTS, RESTYLE_SELF};
|
|
use selector_parser::RestyleDamage;
|
|
#[cfg(feature = "servo")] use servo_config::opts;
|
|
use std::borrow::BorrowMut;
|
|
|
|
/// A per-traversal-level chunk of data. This is sent down by the traversal, and
|
|
/// currently only holds the dom depth for the bloom filter.
|
|
///
|
|
/// NB: Keep this as small as possible, please!
|
|
#[derive(Clone, Debug)]
|
|
pub struct PerLevelTraversalData {
|
|
/// The current dom depth.
|
|
///
|
|
/// This is kept with cooperation from the traversal code and the bloom
|
|
/// filter.
|
|
pub current_dom_depth: usize,
|
|
}
|
|
|
|
bitflags! {
|
|
/// Flags that control the traversal process.
|
|
pub flags TraversalFlags: u8 {
|
|
/// Traverse only unstyled children.
|
|
const UNSTYLED_CHILDREN_ONLY = 0x01,
|
|
/// Traverse only elements for animation restyles.
|
|
const ANIMATION_ONLY = 0x02,
|
|
/// Traverse without generating any change hints.
|
|
const FOR_RECONSTRUCT = 0x04,
|
|
}
|
|
}
|
|
|
|
impl TraversalFlags {
|
|
/// Returns true if the traversal is for animation-only restyles.
|
|
pub fn for_animation_only(&self) -> bool {
|
|
self.contains(ANIMATION_ONLY)
|
|
}
|
|
|
|
/// Returns true if the traversal is for unstyled children.
|
|
pub fn for_unstyled_children_only(&self) -> bool {
|
|
self.contains(UNSTYLED_CHILDREN_ONLY)
|
|
}
|
|
|
|
/// Returns true if the traversal is for a frame reconstruction.
|
|
pub fn for_reconstruct(&self) -> bool {
|
|
self.contains(FOR_RECONSTRUCT)
|
|
}
|
|
}
|
|
|
|
/// This structure exists to enforce that callers invoke pre_traverse, and also
|
|
/// to pass information from the pre-traversal into the primary traversal.
|
|
pub struct PreTraverseToken {
|
|
traverse: bool,
|
|
unstyled_children_only: bool,
|
|
}
|
|
|
|
impl PreTraverseToken {
|
|
/// Whether we should traverse children.
|
|
pub fn should_traverse(&self) -> bool {
|
|
self.traverse
|
|
}
|
|
|
|
/// Whether we should traverse only unstyled children.
|
|
pub fn traverse_unstyled_children_only(&self) -> bool {
|
|
self.unstyled_children_only
|
|
}
|
|
}
|
|
|
|
/// Enum to prevent duplicate logging.
|
|
pub enum LogBehavior {
|
|
/// We should log.
|
|
MayLog,
|
|
/// We shouldn't log.
|
|
DontLog,
|
|
}
|
|
use self::LogBehavior::*;
|
|
impl LogBehavior {
|
|
fn allow(&self) -> bool { matches!(*self, MayLog) }
|
|
}
|
|
|
|
/// The kind of traversals we could perform.
|
|
#[derive(Debug, Copy, Clone)]
|
|
pub enum TraversalDriver {
|
|
/// A potentially parallel traversal.
|
|
Parallel,
|
|
/// A sequential traversal.
|
|
Sequential,
|
|
}
|
|
|
|
impl TraversalDriver {
|
|
/// Returns whether this represents a parallel traversal or not.
|
|
#[inline]
|
|
pub fn is_parallel(&self) -> bool {
|
|
matches!(*self, TraversalDriver::Parallel)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "servo")]
|
|
fn is_servo_nonincremental_layout() -> bool {
|
|
opts::get().nonincremental_layout
|
|
}
|
|
|
|
#[cfg(not(feature = "servo"))]
|
|
fn is_servo_nonincremental_layout() -> bool {
|
|
false
|
|
}
|
|
|
|
/// A DOM Traversal trait, that is used to generically implement styling for
|
|
/// Gecko and Servo.
|
|
pub trait DomTraversal<E: TElement> : Sync {
|
|
/// The thread-local context, used to store non-thread-safe stuff that needs
|
|
/// to be used in the traversal, and of which we use one per worker, like
|
|
/// the bloom filter, for example.
|
|
type ThreadLocalContext: Send + BorrowMut<ThreadLocalStyleContext<E>>;
|
|
|
|
/// Process `node` on the way down, before its children have been processed.
|
|
fn process_preorder(&self, data: &PerLevelTraversalData,
|
|
thread_local: &mut Self::ThreadLocalContext,
|
|
node: E::ConcreteNode);
|
|
|
|
/// Process `node` on the way up, after its children have been processed.
|
|
///
|
|
/// This is only executed if `needs_postorder_traversal` returns true.
|
|
fn process_postorder(&self,
|
|
thread_local: &mut Self::ThreadLocalContext,
|
|
node: E::ConcreteNode);
|
|
|
|
/// Boolean that specifies whether a bottom up traversal should be
|
|
/// performed.
|
|
///
|
|
/// If it's false, then process_postorder has no effect at all.
|
|
fn needs_postorder_traversal() -> bool { true }
|
|
|
|
/// Handles the postorder step of the traversal, if it exists, by bubbling
|
|
/// up the parent chain.
|
|
///
|
|
/// If we are the last child that finished processing, recursively process
|
|
/// our parent. Else, stop. Also, stop at the root.
|
|
///
|
|
/// Thus, if we start with all the leaves of a tree, we end up traversing
|
|
/// the whole tree bottom-up because each parent will be processed exactly
|
|
/// once (by the last child that finishes processing).
|
|
///
|
|
/// The only communication between siblings is that they both
|
|
/// fetch-and-subtract the parent's children count. This makes it safe to
|
|
/// call durign the parallel traversal.
|
|
fn handle_postorder_traversal(&self,
|
|
thread_local: &mut Self::ThreadLocalContext,
|
|
root: OpaqueNode,
|
|
mut node: E::ConcreteNode,
|
|
children_to_process: isize)
|
|
{
|
|
// If the postorder step is a no-op, don't bother.
|
|
if !Self::needs_postorder_traversal() {
|
|
return;
|
|
}
|
|
|
|
if children_to_process == 0 {
|
|
// We are a leaf. Walk up the chain.
|
|
loop {
|
|
self.process_postorder(thread_local, node);
|
|
if node.opaque() == root {
|
|
break;
|
|
}
|
|
let parent = node.parent_element().unwrap();
|
|
let remaining = parent.did_process_child();
|
|
if remaining != 0 {
|
|
// The parent has other unprocessed descendants. We only
|
|
// perform postorder processing after the last descendant
|
|
// has been processed.
|
|
break
|
|
}
|
|
|
|
node = parent.as_node();
|
|
}
|
|
} else {
|
|
// Otherwise record the number of children to process when the
|
|
// time comes.
|
|
node.as_element().unwrap()
|
|
.store_children_to_process(children_to_process);
|
|
}
|
|
}
|
|
|
|
/// Must be invoked before traversing the root element to determine whether
|
|
/// a traversal is needed. Returns a token that allows the caller to prove
|
|
/// that the call happened.
|
|
///
|
|
/// The traversal_flag is used in Gecko.
|
|
/// If traversal_flag::UNSTYLED_CHILDREN_ONLY is specified, style newly-
|
|
/// appended children without restyling the parent.
|
|
/// If traversal_flag::ANIMATION_ONLY is specified, style only elements for
|
|
/// animations.
|
|
fn pre_traverse(root: E,
|
|
shared_context: &SharedStyleContext,
|
|
traversal_flags: TraversalFlags)
|
|
-> PreTraverseToken
|
|
{
|
|
debug_assert!(!(traversal_flags.for_reconstruct() &&
|
|
traversal_flags.for_unstyled_children_only()),
|
|
"must not specify FOR_RECONSTRUCT in combination with UNSTYLED_CHILDREN_ONLY");
|
|
|
|
if traversal_flags.for_unstyled_children_only() {
|
|
if root.borrow_data().map_or(true, |d| d.has_styles() && d.styles().is_display_none()) {
|
|
return PreTraverseToken {
|
|
traverse: false,
|
|
unstyled_children_only: false,
|
|
};
|
|
}
|
|
return PreTraverseToken {
|
|
traverse: true,
|
|
unstyled_children_only: true,
|
|
};
|
|
}
|
|
|
|
// Expand the snapshot, if any. This is normally handled by the parent, so
|
|
// we need a special case for the root.
|
|
//
|
|
// Expanding snapshots here may create a LATER_SIBLINGS restyle hint, which
|
|
// we propagate to the next sibling element.
|
|
if let Some(mut data) = root.mutate_data() {
|
|
let later_siblings = data.compute_final_hint(root, shared_context);
|
|
if later_siblings {
|
|
if let Some(next) = root.next_sibling_element() {
|
|
if let Some(mut next_data) = next.mutate_data() {
|
|
let hint = StoredRestyleHint::subtree_and_later_siblings();
|
|
next_data.ensure_restyle().hint.insert(&hint);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PreTraverseToken {
|
|
traverse: Self::node_needs_traversal(root.as_node(), traversal_flags),
|
|
unstyled_children_only: false,
|
|
}
|
|
}
|
|
|
|
/// Returns true if traversal should visit a text node. The style system never
|
|
/// processes text nodes, but Servo overrides this to visit them for flow
|
|
/// construction when necessary.
|
|
fn text_node_needs_traversal(node: E::ConcreteNode) -> bool {
|
|
debug_assert!(node.is_text_node());
|
|
false
|
|
}
|
|
|
|
/// Returns true if traversal is needed for the given node and subtree.
|
|
fn node_needs_traversal(node: E::ConcreteNode, traversal_flags: TraversalFlags) -> bool {
|
|
// Non-incremental layout visits every node.
|
|
if is_servo_nonincremental_layout() {
|
|
return true;
|
|
}
|
|
|
|
if traversal_flags.for_reconstruct() {
|
|
return true;
|
|
}
|
|
|
|
let el = match node.as_element() {
|
|
None => return Self::text_node_needs_traversal(node),
|
|
Some(el) => el,
|
|
};
|
|
|
|
// If the element is native-anonymous and an ancestor frame will
|
|
// be reconstructed, the child and all its descendants will be
|
|
// destroyed. In that case, we wouldn't need to traverse the
|
|
// subtree...
|
|
//
|
|
// Except if there could be transitions of pseudo-elements, in
|
|
// which
|
|
// case we still need to process them, unfortunately.
|
|
//
|
|
// We need to conservatively continue the traversal to style the
|
|
// pseudo-element in order to properly process potentially-new
|
|
// transitions that we won't see otherwise.
|
|
//
|
|
// But it may be that we no longer match, so detect that case
|
|
// and act appropriately here.
|
|
if el.is_native_anonymous() {
|
|
if let Some(parent) = el.parent_element() {
|
|
let parent_data = parent.borrow_data().unwrap();
|
|
let going_to_reframe = parent_data.get_restyle().map_or(false, |r| {
|
|
(r.damage | r.damage_handled())
|
|
.contains(RestyleDamage::reconstruct())
|
|
});
|
|
|
|
let mut is_before_or_after_pseudo = false;
|
|
if let Some(pseudo) = el.implemented_pseudo_element() {
|
|
if pseudo.is_before_or_after() {
|
|
is_before_or_after_pseudo = true;
|
|
let still_match =
|
|
parent_data.styles().pseudos.get(&pseudo).is_some();
|
|
|
|
if !still_match {
|
|
debug_assert!(going_to_reframe,
|
|
"We're removing a pseudo, so we \
|
|
should reframe!");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if going_to_reframe && !is_before_or_after_pseudo {
|
|
debug!("Element {:?} is in doomed NAC subtree, \
|
|
culling traversal", el);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// In case of animation-only traversal we need to traverse
|
|
// the element if the element has animation only dirty
|
|
// descendants bit, animation-only restyle hint or recascade.
|
|
if traversal_flags.for_animation_only() {
|
|
if el.has_animation_only_dirty_descendants() {
|
|
return true;
|
|
}
|
|
|
|
let data = match el.borrow_data() {
|
|
Some(d) => d,
|
|
None => return false,
|
|
};
|
|
return data.get_restyle()
|
|
.map_or(false, |r| r.hint.has_animation_hint() || r.recascade);
|
|
}
|
|
|
|
// If the dirty descendants bit is set, we need to traverse no
|
|
// matter what. Skip examining the ElementData.
|
|
if el.has_dirty_descendants() {
|
|
return true;
|
|
}
|
|
|
|
// Check the element data. If it doesn't exist, we need to visit
|
|
// the element.
|
|
let data = match el.borrow_data() {
|
|
Some(d) => d,
|
|
None => return true,
|
|
};
|
|
|
|
// If we don't have any style data, we need to visit the element.
|
|
if !data.has_styles() {
|
|
return true;
|
|
}
|
|
|
|
// Check the restyle data.
|
|
if let Some(r) = data.get_restyle() {
|
|
// If we have a restyle hint or need to recascade, we need to
|
|
// visit the element.
|
|
//
|
|
// Note that this is different than checking has_current_styles(),
|
|
// since that can return true even if we have a restyle hint
|
|
// indicating that the element's descendants (but not necessarily
|
|
// the element) need restyling.
|
|
if !r.hint.is_empty() || r.recascade {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Servo uses the post-order traversal for flow construction, so
|
|
// we need to traverse any element with damage so that we can perform
|
|
// fixup / reconstruction on our way back up the tree.
|
|
//
|
|
// We also need to traverse nodes with explicit damage and no other
|
|
// restyle data, so that this damage can be cleared.
|
|
if (cfg!(feature = "servo") || traversal_flags.for_reconstruct()) &&
|
|
data.get_restyle().map_or(false, |r| !r.damage.is_empty()) {
|
|
return true;
|
|
}
|
|
|
|
trace!("{:?} doesn't need traversal", el);
|
|
false
|
|
}
|
|
|
|
/// Returns true if traversal of this element's children is allowed. We use
|
|
/// this to cull traversal of various subtrees.
|
|
///
|
|
/// This may be called multiple times when processing an element, so we pass
|
|
/// a parameter to keep the logs tidy.
|
|
fn should_traverse_children(&self,
|
|
thread_local: &mut ThreadLocalStyleContext<E>,
|
|
parent: E,
|
|
parent_data: &ElementData,
|
|
log: LogBehavior) -> bool
|
|
{
|
|
// See the comment on `cascade_node` for why we allow this on Gecko.
|
|
debug_assert!(cfg!(feature = "gecko") || parent.has_current_styles(parent_data));
|
|
|
|
// If the parent computed display:none, we don't style the subtree.
|
|
if parent_data.styles().is_display_none() {
|
|
if log.allow() { debug!("Parent {:?} is display:none, culling traversal", parent); }
|
|
return false;
|
|
}
|
|
|
|
// Gecko-only XBL handling.
|
|
//
|
|
// If we're computing initial styles and the parent has a Gecko XBL
|
|
// binding, that binding may inject anonymous children and remap the
|
|
// explicit children to an insertion point (or hide them entirely). It
|
|
// may also specify a scoped stylesheet, which changes the rules that
|
|
// apply within the subtree. These two effects can invalidate the result
|
|
// of property inheritance and selector matching (respectively) within the
|
|
// subtree.
|
|
//
|
|
// To avoid wasting work, we defer initial styling of XBL subtrees
|
|
// until frame construction, which does an explicit traversal of the
|
|
// unstyled children after shuffling the subtree. That explicit
|
|
// traversal may in turn find other bound elements, which get handled
|
|
// in the same way.
|
|
//
|
|
// We explicitly avoid handling restyles here (explicitly removing or
|
|
// changing bindings), since that adds complexity and is rarer. If it
|
|
// happens, we may just end up doing wasted work, since Gecko
|
|
// recursively drops Servo ElementData when the XBL insertion parent of
|
|
// an Element is changed.
|
|
if cfg!(feature = "gecko") && thread_local.is_initial_style() &&
|
|
parent_data.styles().primary.values().has_moz_binding() {
|
|
if log.allow() { debug!("Parent {:?} has XBL binding, deferring traversal", parent); }
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Helper for the traversal implementations to select the children that
|
|
/// should be enqueued for processing.
|
|
fn traverse_children<F>(&self, thread_local: &mut Self::ThreadLocalContext, parent: E, mut f: F)
|
|
where F: FnMut(&mut Self::ThreadLocalContext, E::ConcreteNode)
|
|
{
|
|
// Check if we're allowed to traverse past this element.
|
|
let should_traverse =
|
|
self.should_traverse_children(thread_local.borrow_mut(), parent,
|
|
&parent.borrow_data().unwrap(), MayLog);
|
|
thread_local.borrow_mut().end_element(parent);
|
|
if !should_traverse {
|
|
return;
|
|
}
|
|
|
|
for kid in parent.as_node().children() {
|
|
if Self::node_needs_traversal(kid, self.shared_context().traversal_flags) {
|
|
// If we are in a restyle for reconstruction, there is no need to
|
|
// perform a post-traversal, so we don't need to set the dirty
|
|
// descendants bit on the parent.
|
|
if !self.shared_context().traversal_flags.for_reconstruct() {
|
|
let el = kid.as_element();
|
|
if el.as_ref().and_then(|el| el.borrow_data())
|
|
.map_or(false, |d| d.has_styles()) {
|
|
unsafe { parent.set_dirty_descendants(); }
|
|
}
|
|
}
|
|
f(thread_local, kid);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Ensures the existence of the ElementData, and returns it. This can't live
|
|
/// on TNode because of the trait-based separation between Servo's script
|
|
/// and layout crates.
|
|
///
|
|
/// This is only safe to call in top-down traversal before processing the
|
|
/// children of |element|.
|
|
unsafe fn ensure_element_data(element: &E) -> &AtomicRefCell<ElementData>;
|
|
|
|
/// Clears the ElementData attached to this element, if any.
|
|
///
|
|
/// This is only safe to call in top-down traversal before processing the
|
|
/// children of |element|.
|
|
unsafe fn clear_element_data(element: &E);
|
|
|
|
/// Return the shared style context common to all worker threads.
|
|
fn shared_context(&self) -> &SharedStyleContext;
|
|
|
|
/// Creates a thread-local context.
|
|
fn create_thread_local_context(&self) -> Self::ThreadLocalContext;
|
|
|
|
/// Whether we're performing a parallel traversal.
|
|
///
|
|
/// NB: We do this check on runtime. We could guarantee correctness in this
|
|
/// regard via the type system via a `TraversalDriver` trait for this trait,
|
|
/// that could be one of two concrete types. It's not clear whether the
|
|
/// potential code size impact of that is worth it.
|
|
fn is_parallel(&self) -> bool;
|
|
}
|
|
|
|
/// Helper for the function below.
|
|
fn resolve_style_internal<E, F>(context: &mut StyleContext<E>,
|
|
element: E, ensure_data: &F)
|
|
-> Option<E>
|
|
where E: TElement,
|
|
F: Fn(E),
|
|
{
|
|
ensure_data(element);
|
|
let mut data = element.mutate_data().unwrap();
|
|
let mut display_none_root = None;
|
|
|
|
// If the Element isn't styled, we need to compute its style.
|
|
if data.get_styles().is_none() {
|
|
// Compute the parent style if necessary.
|
|
let parent = element.parent_element();
|
|
if let Some(p) = parent {
|
|
display_none_root = resolve_style_internal(context, p, ensure_data);
|
|
}
|
|
|
|
// Maintain the bloom filter. If it doesn't exist, we need to build it
|
|
// from scratch. Otherwise we just need to push the parent.
|
|
if context.thread_local.bloom_filter.is_empty() {
|
|
context.thread_local.bloom_filter.rebuild(element);
|
|
} else {
|
|
context.thread_local.bloom_filter.push(parent.unwrap());
|
|
context.thread_local.bloom_filter.assert_complete(element);
|
|
}
|
|
|
|
// Compute our style.
|
|
context.thread_local.begin_element(element, &data);
|
|
element.match_and_cascade(context,
|
|
&mut data,
|
|
StyleSharingBehavior::Disallow);
|
|
context.thread_local.end_element(element);
|
|
|
|
// Conservatively mark us as having dirty descendants, since there might
|
|
// be other unstyled siblings we miss when walking straight up the parent
|
|
// chain.
|
|
unsafe { element.note_descendants::<DirtyDescendants>() };
|
|
}
|
|
|
|
// If we're display:none and none of our ancestors are, we're the root
|
|
// of a display:none subtree.
|
|
if display_none_root.is_none() && data.styles().is_display_none() {
|
|
display_none_root = Some(element);
|
|
}
|
|
|
|
return display_none_root
|
|
}
|
|
|
|
/// Manually resolve style by sequentially walking up the parent chain to the
|
|
/// first styled Element, ignoring pending restyles. The resolved style is
|
|
/// made available via a callback, and can be dropped by the time this function
|
|
/// returns in the display:none subtree case.
|
|
pub fn resolve_style<E, F, G, H>(context: &mut StyleContext<E>, element: E,
|
|
ensure_data: &F, clear_data: &G, callback: H)
|
|
where E: TElement,
|
|
F: Fn(E),
|
|
G: Fn(E),
|
|
H: FnOnce(&ElementStyles)
|
|
{
|
|
// Clear the bloom filter, just in case the caller is reusing TLS.
|
|
context.thread_local.bloom_filter.clear();
|
|
|
|
// Resolve styles up the tree.
|
|
let display_none_root = resolve_style_internal(context, element, ensure_data);
|
|
|
|
// Make them available for the scope of the callback. The callee may use the
|
|
// argument, or perform any other processing that requires the styles to exist
|
|
// on the Element.
|
|
callback(element.borrow_data().unwrap().styles());
|
|
|
|
// Clear any styles in display:none subtrees or subtrees not in the document,
|
|
// to leave the tree in a valid state. For display:none subtrees, we leave
|
|
// the styles on the display:none root, but for subtrees not in the document,
|
|
// we clear styles all the way up to the root of the disconnected subtree.
|
|
let in_doc = element.as_node().is_in_doc();
|
|
if !in_doc || display_none_root.is_some() {
|
|
let mut curr = element;
|
|
loop {
|
|
unsafe {
|
|
curr.unset_dirty_descendants();
|
|
curr.unset_animation_only_dirty_descendants();
|
|
}
|
|
if in_doc && curr == display_none_root.unwrap() {
|
|
break;
|
|
}
|
|
clear_data(curr);
|
|
curr = match curr.parent_element() {
|
|
Some(parent) => parent,
|
|
None => break,
|
|
};
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Calculates the style for a single node.
|
|
#[inline]
|
|
#[allow(unsafe_code)]
|
|
pub fn recalc_style_at<E, D>(traversal: &D,
|
|
traversal_data: &PerLevelTraversalData,
|
|
context: &mut StyleContext<E>,
|
|
element: E,
|
|
mut data: &mut AtomicRefMut<ElementData>)
|
|
where E: TElement,
|
|
D: DomTraversal<E>
|
|
{
|
|
context.thread_local.begin_element(element, &data);
|
|
context.thread_local.statistics.elements_traversed += 1;
|
|
debug_assert!(!element.has_snapshot() || element.handled_snapshot(),
|
|
"Should've handled snapshots here already");
|
|
debug_assert!(data.get_restyle().map_or(true, |r| {
|
|
!r.has_sibling_invalidations()
|
|
}), "Should've computed the final hint and handled later_siblings already");
|
|
|
|
let compute_self = !element.has_current_styles(data);
|
|
let mut inherited_style_changed = false;
|
|
|
|
debug!("recalc_style_at: {:?} (compute_self={:?}, dirty_descendants={:?}, data={:?})",
|
|
element, compute_self, element.has_dirty_descendants(), data);
|
|
|
|
// Compute style for this element if necessary.
|
|
if compute_self {
|
|
compute_style(traversal, traversal_data, context, element, &mut data);
|
|
|
|
// If we're restyling this element to display:none, throw away all style
|
|
// data in the subtree, notify the caller to early-return.
|
|
if data.styles().is_display_none() {
|
|
debug!("{:?} style is display:none - clearing data from descendants.",
|
|
element);
|
|
clear_descendant_data(element, &|e| unsafe { D::clear_element_data(&e) });
|
|
}
|
|
|
|
// FIXME(bholley): Compute this accurately from the call to CalcStyleDifference.
|
|
inherited_style_changed = true;
|
|
}
|
|
|
|
// Now that matching and cascading is done, clear the bits corresponding to
|
|
// those operations and compute the propagated restyle hint.
|
|
let propagated_hint = match data.get_restyle_mut() {
|
|
None => StoredRestyleHint::empty(),
|
|
Some(r) => {
|
|
debug_assert!(context.shared.traversal_flags.for_animation_only() ||
|
|
!r.hint.has_animation_hint(),
|
|
"animation restyle hint should be handled during \
|
|
animation-only restyles");
|
|
r.recascade = false;
|
|
r.hint.propagate(&context.shared.traversal_flags)
|
|
},
|
|
};
|
|
trace!("propagated_hint={:?}, inherited_style_changed={:?}, \
|
|
is_display_none={:?}, implementing_pseudo={:?}",
|
|
propagated_hint, inherited_style_changed,
|
|
data.styles().is_display_none(),
|
|
element.implemented_pseudo_element());
|
|
debug_assert!(element.has_current_styles(data) ||
|
|
context.shared.traversal_flags.for_animation_only(),
|
|
"Should have computed style or haven't yet valid computed \
|
|
style in case of animation-only restyle");
|
|
|
|
let has_dirty_descendants_for_this_restyle =
|
|
if context.shared.traversal_flags.for_animation_only() {
|
|
element.has_animation_only_dirty_descendants()
|
|
} else {
|
|
element.has_dirty_descendants()
|
|
};
|
|
|
|
// Preprocess children, propagating restyle hints and handling sibling relationships.
|
|
if traversal.should_traverse_children(&mut context.thread_local,
|
|
element,
|
|
&data,
|
|
DontLog) &&
|
|
(has_dirty_descendants_for_this_restyle ||
|
|
!propagated_hint.is_empty() ||
|
|
inherited_style_changed) {
|
|
let damage_handled = data.get_restyle().map_or(RestyleDamage::empty(), |r| {
|
|
r.damage_handled() | r.damage.handled_for_descendants()
|
|
});
|
|
|
|
preprocess_children(traversal,
|
|
element,
|
|
propagated_hint,
|
|
damage_handled,
|
|
inherited_style_changed);
|
|
}
|
|
|
|
// If we are in a restyle for reconstruction, drop the existing restyle
|
|
// data here, since we won't need to perform a post-traversal to pick up
|
|
// any change hints.
|
|
if context.shared.traversal_flags.for_reconstruct() {
|
|
data.clear_restyle();
|
|
}
|
|
|
|
if context.shared.traversal_flags.for_animation_only() {
|
|
unsafe { element.unset_animation_only_dirty_descendants(); }
|
|
}
|
|
|
|
// There are two cases when we want to clear the dity descendants bit
|
|
// here after styling this element.
|
|
//
|
|
// The first case is when this element is the root of a display:none
|
|
// subtree, even if the style didn't change (since, if the style did
|
|
// change, we'd have already cleared it above).
|
|
//
|
|
// This keeps the tree in a valid state without requiring the DOM to
|
|
// check display:none on the parent when inserting new children (which
|
|
// can be moderately expensive). Instead, DOM implementations can
|
|
// unconditionally set the dirty descendants bit on any styled parent,
|
|
// and let the traversal sort it out.
|
|
//
|
|
// The second case is when we are in a restyle for reconstruction,
|
|
// where we won't need to perform a post-traversal to pick up any
|
|
// change hints.
|
|
if data.styles().is_display_none() ||
|
|
context.shared.traversal_flags.for_reconstruct() {
|
|
unsafe { element.unset_dirty_descendants(); }
|
|
}
|
|
}
|
|
|
|
fn compute_style<E, D>(_traversal: &D,
|
|
traversal_data: &PerLevelTraversalData,
|
|
context: &mut StyleContext<E>,
|
|
element: E,
|
|
mut data: &mut AtomicRefMut<ElementData>)
|
|
where E: TElement,
|
|
D: DomTraversal<E>,
|
|
{
|
|
use data::RestyleKind::*;
|
|
use matching::StyleSharingResult::*;
|
|
|
|
context.thread_local.statistics.elements_styled += 1;
|
|
let kind = data.restyle_kind();
|
|
|
|
// First, try the style sharing cache. If we get a match we can skip the rest
|
|
// of the work.
|
|
if let MatchAndCascade = kind {
|
|
let sharing_result = unsafe {
|
|
element.share_style_if_possible(context, &mut data)
|
|
};
|
|
if let StyleWasShared(index) = sharing_result {
|
|
context.thread_local.statistics.styles_shared += 1;
|
|
context.thread_local.style_sharing_candidate_cache.touch(index);
|
|
return;
|
|
}
|
|
}
|
|
|
|
match kind {
|
|
MatchAndCascade => {
|
|
// Ensure the bloom filter is up to date.
|
|
context.thread_local.bloom_filter
|
|
.insert_parents_recovering(element, traversal_data.current_dom_depth);
|
|
|
|
context.thread_local.bloom_filter.assert_complete(element);
|
|
context.thread_local.statistics.elements_matched += 1;
|
|
|
|
// Perform the matching and cascading.
|
|
element.match_and_cascade(context, &mut data, StyleSharingBehavior::Allow);
|
|
}
|
|
CascadeWithReplacements(hint) => {
|
|
let _rule_nodes_changed =
|
|
element.replace_rules(hint, context, &mut data);
|
|
element.cascade_primary_and_pseudos(context, &mut data);
|
|
}
|
|
CascadeOnly => {
|
|
element.cascade_primary_and_pseudos(context, &mut data);
|
|
}
|
|
};
|
|
}
|
|
|
|
fn preprocess_children<E, D>(traversal: &D,
|
|
element: E,
|
|
mut propagated_hint: StoredRestyleHint,
|
|
damage_handled: RestyleDamage,
|
|
parent_inherited_style_changed: bool)
|
|
where E: TElement,
|
|
D: DomTraversal<E>
|
|
{
|
|
trace!("preprocess_children: {:?}", element);
|
|
// Loop over all the children.
|
|
for child in element.as_node().children() {
|
|
// FIXME(bholley): Add TElement::element_children instead of this.
|
|
let child = match child.as_element() {
|
|
Some(el) => el,
|
|
None => continue,
|
|
};
|
|
|
|
let mut child_data = unsafe { D::ensure_element_data(&child).borrow_mut() };
|
|
|
|
// If the child is unstyled, we don't need to set up any restyling.
|
|
if !child_data.has_styles() {
|
|
continue;
|
|
}
|
|
|
|
// Handle element snapshots and sibling restyle hints.
|
|
//
|
|
// NB: This will be a no-op if there's no restyle data and no snapshot.
|
|
let later_siblings =
|
|
child_data.compute_final_hint(child, traversal.shared_context());
|
|
|
|
trace!(" > {:?} -> {:?} + {:?}, later_siblings: {:?}",
|
|
child,
|
|
child_data.get_restyle().map(|r| &r.hint),
|
|
propagated_hint,
|
|
later_siblings);
|
|
|
|
// If the child doesn't have pre-existing RestyleData and we don't have
|
|
// any reason to create one, avoid the useless allocation and move on to
|
|
// the next child.
|
|
if propagated_hint.is_empty() && !parent_inherited_style_changed &&
|
|
damage_handled.is_empty() && !child_data.has_restyle() {
|
|
continue;
|
|
}
|
|
|
|
let mut restyle_data = child_data.ensure_restyle();
|
|
|
|
// Propagate the parent and sibling restyle hint.
|
|
if !propagated_hint.is_empty() {
|
|
restyle_data.hint.insert(&propagated_hint);
|
|
}
|
|
|
|
if later_siblings {
|
|
propagated_hint.insert(&(RESTYLE_SELF | RESTYLE_DESCENDANTS).into());
|
|
}
|
|
|
|
// Store the damage already handled by ancestors.
|
|
restyle_data.set_damage_handled(damage_handled);
|
|
|
|
// If properties that we inherited from the parent changed, we need to
|
|
// recascade.
|
|
//
|
|
// FIXME(bholley): Need to handle explicitly-inherited reset properties
|
|
// somewhere.
|
|
if parent_inherited_style_changed {
|
|
restyle_data.recascade = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Clear style data for all the subtree under `el`.
|
|
pub fn clear_descendant_data<E: TElement, F: Fn(E)>(el: E, clear_data: &F) {
|
|
for kid in el.as_node().children() {
|
|
if let Some(kid) = kid.as_element() {
|
|
// We maintain an invariant that, if an element has data, all its ancestors
|
|
// have data as well. By consequence, any element without data has no
|
|
// descendants with data.
|
|
if kid.get_data().is_some() {
|
|
clear_data(kid);
|
|
clear_descendant_data(kid, clear_data);
|
|
}
|
|
}
|
|
}
|
|
|
|
unsafe {
|
|
el.unset_dirty_descendants();
|
|
el.unset_animation_only_dirty_descendants();
|
|
}
|
|
}
|