servo/components/canvas/webgl_thread.rs
bors-servo df73c71fb1
Auto merge of #23516 - pcwalton:webrenderup, r=pcwalton,jdm
Upgrade WebRender

This is against an old Servo because I can't build current Servo due to compile errors in RNG crates. I verified that it starts up.

---
<!-- Thank you for contributing to Servo! Please replace each `[ ]` by `[X]` when the step is complete, and replace `___` with appropriate data: -->
- [x] `./mach build -d` does not report any errors
- [x] `./mach test-tidy` does not report any errors
- [x] These changes fix #23516
- [x] There are tests for these changes

<!-- Reviewable:start -->
---
This change is [<img src="https://reviewable.io/review_button.svg" height="34" align="absmiddle" alt="Reviewable"/>](https://reviewable.io/reviews/servo/servo/23516)
<!-- Reviewable:end -->
2019-07-12 08:10:31 -04:00

2142 lines
82 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
use super::gl_context::{map_attrs_to_script_attrs, GLContextFactory, GLContextWrapper};
use byteorder::{ByteOrder, NativeEndian, WriteBytesExt};
use canvas_traits::webgl::*;
use euclid::Size2D;
use fnv::FnvHashMap;
use gleam::gl;
use half::f16;
use ipc_channel::ipc::IpcSender;
use offscreen_gl_context::{DrawBuffer, GLContext, NativeGLContextMethods};
use pixels::{self, PixelFormat};
use std::borrow::Cow;
use std::sync::{Arc, Mutex};
use std::thread;
use webrender_traits::{WebrenderExternalImageRegistry, WebrenderImageHandlerType};
/// WebGL Threading API entry point that lives in the constellation.
/// It allows to get a WebGLThread handle for each script pipeline.
pub use crate::webgl_mode::WebGLThreads;
struct GLContextData {
ctx: GLContextWrapper,
state: GLState,
}
pub struct GLState {
clear_color: (f32, f32, f32, f32),
scissor_test_enabled: bool,
stencil_write_mask: (u32, u32),
stencil_clear_value: i32,
depth_write_mask: bool,
depth_clear_value: f64,
}
impl Default for GLState {
fn default() -> GLState {
GLState {
clear_color: (0., 0., 0., 0.),
scissor_test_enabled: false,
stencil_write_mask: (0, 0),
stencil_clear_value: 0,
depth_write_mask: true,
depth_clear_value: 1.,
}
}
}
/// A WebGLThread manages the life cycle and message multiplexing of
/// a set of WebGLContexts living in the same thread.
pub struct WebGLThread<VR: WebVRRenderHandler + 'static> {
/// Factory used to create a new GLContext shared with the WR/Main thread.
gl_factory: GLContextFactory,
/// Channel used to generate/update or delete `webrender_api::ImageKey`s.
webrender_api: webrender_api::RenderApi,
/// Map of live WebGLContexts.
contexts: FnvHashMap<WebGLContextId, GLContextData>,
/// Cached information for WebGLContexts.
cached_context_info: FnvHashMap<WebGLContextId, WebGLContextInfo>,
/// Current bound context.
bound_context_id: Option<WebGLContextId>,
/// Handler user to send WebVR commands.
webvr_compositor: Option<VR>,
/// Texture ids and sizes used in DOM to texture outputs.
dom_outputs: FnvHashMap<webrender_api::PipelineId, DOMToTextureData>,
/// List of registered webrender external images.
/// We use it to get an unique ID for new WebGLContexts.
external_images: Arc<Mutex<WebrenderExternalImageRegistry>>,
}
impl<VR: WebVRRenderHandler + 'static> WebGLThread<VR> {
pub fn new(
gl_factory: GLContextFactory,
webrender_api_sender: webrender_api::RenderApiSender,
webvr_compositor: Option<VR>,
external_images: Arc<Mutex<WebrenderExternalImageRegistry>>,
) -> Self {
WebGLThread {
gl_factory,
webrender_api: webrender_api_sender.create_api(),
contexts: Default::default(),
cached_context_info: Default::default(),
bound_context_id: None,
webvr_compositor,
dom_outputs: Default::default(),
external_images,
}
}
/// Creates a new `WebGLThread` and returns a Sender to
/// communicate with it.
pub fn start(
gl_factory: GLContextFactory,
webrender_api_sender: webrender_api::RenderApiSender,
webvr_compositor: Option<VR>,
external_images: Arc<Mutex<WebrenderExternalImageRegistry>>,
) -> WebGLSender<WebGLMsg> {
let (sender, receiver) = webgl_channel::<WebGLMsg>().unwrap();
let result = sender.clone();
thread::Builder::new()
.name("WebGLThread".to_owned())
.spawn(move || {
let mut renderer = WebGLThread::new(
gl_factory,
webrender_api_sender,
webvr_compositor,
external_images,
);
let webgl_chan = WebGLChan(sender);
loop {
let msg = receiver.recv().unwrap();
let exit = renderer.handle_msg(msg, &webgl_chan);
if exit {
return;
}
}
})
.expect("Thread spawning failed");
result
}
/// Handles a generic WebGLMsg message
#[inline]
fn handle_msg(&mut self, msg: WebGLMsg, webgl_chan: &WebGLChan) -> bool {
trace!("processing {:?}", msg);
match msg {
WebGLMsg::CreateContext(version, size, attributes, result_sender) => {
let result = self.create_webgl_context(version, size, attributes);
result_sender
.send(result.map(|(id, limits, share_mode)| {
let data = Self::make_current_if_needed(
id,
&self.contexts,
&mut self.bound_context_id,
)
.expect("WebGLContext not found");
let glsl_version = Self::get_glsl_version(&data.ctx);
// FIXME(nox): Should probably be done by offscreen_gl_context.
if !is_gles() {
// Points sprites are enabled by default in OpenGL 3.2 core
// and in GLES. Rather than doing version detection, it does
// not hurt to enable them anyways.
data.ctx.gl().enable(gl::POINT_SPRITE);
let err = data.ctx.gl().get_error();
if err != 0 {
warn!("Error enabling GL point sprites: {}", err);
}
data.ctx.gl().enable(gl::PROGRAM_POINT_SIZE);
let err = data.ctx.gl().get_error();
if err != 0 {
warn!("Error enabling GL program point size: {}", err);
}
}
WebGLCreateContextResult {
sender: WebGLMsgSender::new(id, webgl_chan.clone()),
limits,
share_mode,
glsl_version,
}
}))
.unwrap();
},
WebGLMsg::ResizeContext(ctx_id, size, sender) => {
self.resize_webgl_context(ctx_id, size, sender);
},
WebGLMsg::RemoveContext(ctx_id) => {
self.remove_webgl_context(ctx_id);
},
WebGLMsg::WebGLCommand(ctx_id, command, backtrace) => {
self.handle_webgl_command(ctx_id, command, backtrace);
},
WebGLMsg::WebVRCommand(ctx_id, command) => {
self.handle_webvr_command(ctx_id, command);
},
WebGLMsg::Lock(ctx_id, sender) => {
self.handle_lock(ctx_id, sender);
},
WebGLMsg::LockIPC(ctx_id, sender) => {
self.handle_lock_ipc(ctx_id, sender);
},
WebGLMsg::Unlock(ctx_id) => {
self.handle_unlock(ctx_id);
},
WebGLMsg::UpdateWebRenderImage(ctx_id, sender) => {
self.handle_update_wr_image(ctx_id, sender);
},
WebGLMsg::DOMToTextureCommand(command) => {
self.handle_dom_to_texture(command);
},
WebGLMsg::Exit => {
return true;
},
}
false
}
/// Handles a WebGLCommand for a specific WebGLContext
fn handle_webgl_command(
&mut self,
context_id: WebGLContextId,
command: WebGLCommand,
backtrace: WebGLCommandBacktrace,
) {
let data = Self::make_current_if_needed_mut(
context_id,
&mut self.contexts,
&mut self.bound_context_id,
);
if let Some(data) = data {
data.ctx.apply_command(command, backtrace, &mut data.state);
}
}
/// Handles a WebVRCommand for a specific WebGLContext
fn handle_webvr_command(&mut self, context_id: WebGLContextId, command: WebVRCommand) {
if let Some(context) =
Self::make_current_if_needed(context_id, &self.contexts, &mut self.bound_context_id)
{
let texture = match command {
WebVRCommand::SubmitFrame(..) => self.cached_context_info.get(&context_id),
_ => None,
};
self.webvr_compositor.as_mut().unwrap().handle(
context.ctx.gl(),
command,
texture.map(|t| (t.texture_id, t.size)),
);
}
}
/// Handles a lock external callback received from webrender::ExternalImageHandler
fn handle_lock(
&mut self,
context_id: WebGLContextId,
sender: WebGLSender<(u32, Size2D<i32>, usize)>,
) {
sender.send(self.handle_lock_inner(context_id)).unwrap();
}
/// handle_lock, but unconditionally IPC (used by webxr)
fn handle_lock_ipc(
&mut self,
context_id: WebGLContextId,
sender: IpcSender<(u32, Size2D<i32>, usize)>,
) {
sender.send(self.handle_lock_inner(context_id)).unwrap();
}
/// Shared code between handle_lock and handle_lock_ipc, does the actual syncing/flushing
/// but the caller must send the response back
fn handle_lock_inner(&mut self, context_id: WebGLContextId) -> (u32, Size2D<i32>, usize) {
let data =
Self::make_current_if_needed(context_id, &self.contexts, &mut self.bound_context_id)
.expect("WebGLContext not found in a WebGLMsg::Lock message");
let info = self.cached_context_info.get_mut(&context_id).unwrap();
info.render_state = ContextRenderState::Locked(None);
// Insert a OpenGL Fence sync object that sends a signal when all the WebGL commands are finished.
// The related gl().wait_sync call is performed in the WR thread. See WebGLExternalImageApi for mor details.
let gl_sync = data.ctx.gl().fence_sync(gl::SYNC_GPU_COMMANDS_COMPLETE, 0);
info.gl_sync = Some(gl_sync);
// It is important that the fence sync is properly flushed into the GPU's command queue.
// Without proper flushing, the sync object may never be signaled.
data.ctx.gl().flush();
(info.texture_id, info.size, gl_sync as usize)
}
/// Handles an unlock external callback received from webrender::ExternalImageHandler
fn handle_unlock(&mut self, context_id: WebGLContextId) {
let data =
Self::make_current_if_needed(context_id, &self.contexts, &mut self.bound_context_id)
.expect("WebGLContext not found in a WebGLMsg::Unlock message");
let info = self.cached_context_info.get_mut(&context_id).unwrap();
info.render_state = ContextRenderState::Unlocked;
if let Some(gl_sync) = info.gl_sync.take() {
// Release the GLSync object.
data.ctx.gl().delete_sync(gl_sync);
}
}
/// Creates a new WebGLContext
fn create_webgl_context(
&mut self,
version: WebGLVersion,
size: Size2D<u32>,
attributes: GLContextAttributes,
) -> Result<(WebGLContextId, GLLimits, WebGLContextShareMode), String> {
// Creating a new GLContext may make the current bound context_id dirty.
// Clear it to ensure that make_current() is called in subsequent commands.
self.bound_context_id = None;
// First try to create a shared context for the best performance.
// Fallback to readback mode if the shared context creation fails.
let (ctx, share_mode) = self
.gl_factory
.new_shared_context(version, size, attributes)
.map(|r| (r, WebGLContextShareMode::SharedTexture))
.or_else(|err| {
warn!(
"Couldn't create shared GL context ({}), using slow readback context instead.",
err
);
let ctx = self.gl_factory.new_context(version, size, attributes)?;
Ok((ctx, WebGLContextShareMode::Readback))
})
.map_err(|msg: &str| msg.to_owned())?;
let id = WebGLContextId(
self.external_images
.lock()
.unwrap()
.next_id(WebrenderImageHandlerType::WebGL)
.0 as usize,
);
let (size, texture_id, limits) = ctx.get_info();
self.contexts.insert(
id,
GLContextData {
ctx,
state: Default::default(),
},
);
self.cached_context_info.insert(
id,
WebGLContextInfo {
texture_id,
size,
alpha: attributes.alpha,
image_key: None,
share_mode,
gl_sync: None,
render_state: ContextRenderState::Unlocked,
},
);
Ok((id, limits, share_mode))
}
/// Resizes a WebGLContext
fn resize_webgl_context(
&mut self,
context_id: WebGLContextId,
size: Size2D<u32>,
sender: WebGLSender<Result<(), String>>,
) {
let data = Self::make_current_if_needed_mut(
context_id,
&mut self.contexts,
&mut self.bound_context_id,
)
.expect("Missing WebGL context!");
match data.ctx.resize(size) {
Ok(old_draw_buffer) => {
let (real_size, texture_id, _) = data.ctx.get_info();
let info = self.cached_context_info.get_mut(&context_id).unwrap();
if let ContextRenderState::Locked(ref mut in_use) = info.render_state {
// If there's already an outdated draw buffer present, we can ignore
// the newly resized one since it's not in use by the renderer.
if in_use.is_none() {
// We're resizing the context while WR is actively rendering
// it, so we need to retain the GL resources until WR is
// finished with them.
*in_use = Some(old_draw_buffer);
}
}
// Update webgl texture size. Texture id may change too.
info.texture_id = texture_id;
info.size = real_size;
// Update WR image if needed. Resize image updates are only required for SharedTexture mode.
// Readback mode already updates the image every frame to send the raw pixels.
// See `handle_update_wr_image`.
match (info.image_key, info.share_mode) {
(Some(image_key), WebGLContextShareMode::SharedTexture) => {
Self::update_wr_external_image(
&self.webrender_api,
info.size,
info.alpha,
context_id,
image_key,
);
},
_ => {},
}
sender.send(Ok(())).unwrap();
},
Err(msg) => {
sender.send(Err(msg.into())).unwrap();
},
}
}
/// Removes a WebGLContext and releases attached resources.
fn remove_webgl_context(&mut self, context_id: WebGLContextId) {
// Release webrender image keys.
if let Some(info) = self.cached_context_info.remove(&context_id) {
let mut txn = webrender_api::Transaction::new();
if let Some(image_key) = info.image_key {
txn.delete_image(image_key);
}
self.webrender_api.update_resources(txn.resource_updates)
}
// We need to make the context current so its resources can be disposed of.
let _ =
Self::make_current_if_needed(context_id, &self.contexts, &mut self.bound_context_id);
// Release GL context.
self.contexts.remove(&context_id);
// Removing a GLContext may make the current bound context_id dirty.
self.bound_context_id = None;
}
/// Handles the creation/update of webrender_api::ImageKeys for a specific WebGLContext.
/// This method is invoked from a UpdateWebRenderImage message sent by the layout thread.
/// If SharedTexture is used the UpdateWebRenderImage message is sent only after a WebGLContext creation.
/// If Readback is used UpdateWebRenderImage message is sent always on each layout iteration in order to
/// submit the updated raw pixels.
fn handle_update_wr_image(
&mut self,
context_id: WebGLContextId,
sender: WebGLSender<webrender_api::ImageKey>,
) {
let info = self.cached_context_info.get_mut(&context_id).unwrap();
let webrender_api = &self.webrender_api;
let image_key = match info.share_mode {
WebGLContextShareMode::SharedTexture => {
let size = info.size;
let alpha = info.alpha;
// Reuse existing ImageKey or generate a new one.
// When using a shared texture ImageKeys are only generated after a WebGLContext creation.
*info.image_key.get_or_insert_with(|| {
Self::create_wr_external_image(webrender_api, size, alpha, context_id)
})
},
WebGLContextShareMode::Readback => {
let pixels = Self::raw_pixels(&self.contexts[&context_id].ctx, info.size);
match info.image_key.clone() {
Some(image_key) => {
// ImageKey was already created, but WR Images must
// be updated every frame in readback mode to send the new raw pixels.
Self::update_wr_readback_image(
webrender_api,
info.size,
info.alpha,
image_key,
pixels,
);
image_key
},
None => {
// Generate a new ImageKey for Readback mode.
let image_key = Self::create_wr_readback_image(
webrender_api,
info.size,
info.alpha,
pixels,
);
info.image_key = Some(image_key);
image_key
},
}
},
};
// Send the ImageKey to the Layout thread.
sender.send(image_key).unwrap();
}
fn handle_dom_to_texture(&mut self, command: DOMToTextureCommand) {
match command {
DOMToTextureCommand::Attach(context_id, texture_id, document_id, pipeline_id, size) => {
let data = Self::make_current_if_needed(
context_id,
&self.contexts,
&mut self.bound_context_id,
)
.expect("WebGLContext not found in a WebGL DOMToTextureCommand::Attach command");
// Initialize the texture that WR will use for frame outputs.
data.ctx.gl().tex_image_2d(
gl::TEXTURE_2D,
0,
gl::RGBA as gl::GLint,
size.width,
size.height,
0,
gl::RGBA,
gl::UNSIGNED_BYTE,
None,
);
self.dom_outputs.insert(
pipeline_id,
DOMToTextureData {
context_id,
texture_id,
document_id,
size,
},
);
let mut txn = webrender_api::Transaction::new();
txn.enable_frame_output(pipeline_id, true);
self.webrender_api.send_transaction(document_id, txn);
},
DOMToTextureCommand::Lock(pipeline_id, gl_sync, sender) => {
let contexts = &self.contexts;
let bound_context_id = &mut self.bound_context_id;
let result = self.dom_outputs.get(&pipeline_id).and_then(|dom_data| {
let data = Self::make_current_if_needed(
dom_data.context_id,
contexts,
bound_context_id,
);
data.and_then(|data| {
// The next glWaitSync call is used to synchronize the two flows of
// OpenGL commands (WR and WebGL) in order to avoid using semi-ready WR textures.
// glWaitSync doesn't block WebGL CPU thread.
data.ctx
.gl()
.wait_sync(gl_sync as gl::GLsync, 0, gl::TIMEOUT_IGNORED);
Some((dom_data.texture_id.get(), dom_data.size))
})
});
// Send the texture id and size to WR.
sender.send(result).unwrap();
},
DOMToTextureCommand::Detach(texture_id) => {
if let Some((pipeline_id, document_id)) = self
.dom_outputs
.iter()
.find(|&(_, v)| v.texture_id == texture_id)
.map(|(k, v)| (*k, v.document_id))
{
let mut txn = webrender_api::Transaction::new();
txn.enable_frame_output(pipeline_id, false);
self.webrender_api.send_transaction(document_id, txn);
self.dom_outputs.remove(&pipeline_id);
}
},
}
}
/// Gets a reference to a GLContextWrapper for a given WebGLContextId and makes it current if required.
fn make_current_if_needed<'a>(
context_id: WebGLContextId,
contexts: &'a FnvHashMap<WebGLContextId, GLContextData>,
bound_id: &mut Option<WebGLContextId>,
) -> Option<&'a GLContextData> {
let data = contexts.get(&context_id);
if let Some(data) = data {
if Some(context_id) != *bound_id {
data.ctx.make_current();
*bound_id = Some(context_id);
}
}
data
}
/// Gets a mutable reference to a GLContextWrapper for a WebGLContextId and makes it current if required.
fn make_current_if_needed_mut<'a>(
context_id: WebGLContextId,
contexts: &'a mut FnvHashMap<WebGLContextId, GLContextData>,
bound_id: &mut Option<WebGLContextId>,
) -> Option<&'a mut GLContextData> {
let data = contexts.get_mut(&context_id);
if let Some(ref data) = data {
if Some(context_id) != *bound_id {
data.ctx.make_current();
*bound_id = Some(context_id);
}
}
data
}
/// Creates a `webrender_api::ImageKey` that uses shared textures.
fn create_wr_external_image(
webrender_api: &webrender_api::RenderApi,
size: Size2D<i32>,
alpha: bool,
context_id: WebGLContextId,
) -> webrender_api::ImageKey {
let descriptor = Self::image_descriptor(size, alpha);
let data = Self::external_image_data(context_id);
let image_key = webrender_api.generate_image_key();
let mut txn = webrender_api::Transaction::new();
txn.add_image(image_key, descriptor, data, None);
webrender_api.update_resources(txn.resource_updates);
image_key
}
/// Updates a `webrender_api::ImageKey` that uses shared textures.
fn update_wr_external_image(
webrender_api: &webrender_api::RenderApi,
size: Size2D<i32>,
alpha: bool,
context_id: WebGLContextId,
image_key: webrender_api::ImageKey,
) {
let descriptor = Self::image_descriptor(size, alpha);
let data = Self::external_image_data(context_id);
let mut txn = webrender_api::Transaction::new();
txn.update_image(image_key, descriptor, data, &webrender_api::DirtyRect::All);
webrender_api.update_resources(txn.resource_updates);
}
/// Creates a `webrender_api::ImageKey` that uses raw pixels.
fn create_wr_readback_image(
webrender_api: &webrender_api::RenderApi,
size: Size2D<i32>,
alpha: bool,
data: Vec<u8>,
) -> webrender_api::ImageKey {
let descriptor = Self::image_descriptor(size, alpha);
let data = webrender_api::ImageData::new(data);
let image_key = webrender_api.generate_image_key();
let mut txn = webrender_api::Transaction::new();
txn.add_image(image_key, descriptor, data, None);
webrender_api.update_resources(txn.resource_updates);
image_key
}
/// Updates a `webrender_api::ImageKey` that uses raw pixels.
fn update_wr_readback_image(
webrender_api: &webrender_api::RenderApi,
size: Size2D<i32>,
alpha: bool,
image_key: webrender_api::ImageKey,
data: Vec<u8>,
) {
let descriptor = Self::image_descriptor(size, alpha);
let data = webrender_api::ImageData::new(data);
let mut txn = webrender_api::Transaction::new();
txn.update_image(image_key, descriptor, data, &webrender_api::DirtyRect::All);
webrender_api.update_resources(txn.resource_updates);
}
/// Helper function to create a `webrender_api::ImageDescriptor`.
fn image_descriptor(size: Size2D<i32>, alpha: bool) -> webrender_api::ImageDescriptor {
webrender_api::ImageDescriptor {
size: webrender_api::units::DeviceIntSize::new(size.width, size.height),
stride: None,
format: webrender_api::ImageFormat::BGRA8,
offset: 0,
is_opaque: !alpha,
allow_mipmaps: false,
}
}
/// Helper function to create a `webrender_api::ImageData::External` instance.
fn external_image_data(context_id: WebGLContextId) -> webrender_api::ImageData {
let data = webrender_api::ExternalImageData {
id: webrender_api::ExternalImageId(context_id.0 as u64),
channel_index: 0,
image_type: webrender_api::ExternalImageType::TextureHandle(
webrender_api::TextureTarget::Default,
),
};
webrender_api::ImageData::External(data)
}
/// Helper function to fetch the raw pixels used in readback mode.
fn raw_pixels(context: &GLContextWrapper, size: Size2D<i32>) -> Vec<u8> {
let width = size.width as usize;
let height = size.height as usize;
let mut pixels = context.gl().read_pixels(
0,
0,
size.width as gl::GLsizei,
size.height as gl::GLsizei,
gl::RGBA,
gl::UNSIGNED_BYTE,
);
// flip image vertically (texture is upside down)
let orig_pixels = pixels.clone();
let stride = width * 4;
for y in 0..height {
let dst_start = y * stride;
let src_start = (height - y - 1) * stride;
let src_slice = &orig_pixels[src_start..src_start + stride];
(&mut pixels[dst_start..dst_start + stride]).clone_from_slice(&src_slice[..stride]);
}
pixels::rgba8_byte_swap_colors_inplace(&mut pixels);
pixels
}
/// Gets the GLSL Version supported by a GLContext.
fn get_glsl_version(context: &GLContextWrapper) -> WebGLSLVersion {
let version = context.gl().get_string(gl::SHADING_LANGUAGE_VERSION);
// Fomat used by SHADING_LANGUAGE_VERSION query : major.minor[.release] [vendor info]
let mut values = version.split(&['.', ' '][..]);
let major = values
.next()
.and_then(|v| v.parse::<u32>().ok())
.unwrap_or(1);
let minor = values
.next()
.and_then(|v| v.parse::<u32>().ok())
.unwrap_or(20);
WebGLSLVersion { major, minor }
}
}
impl<VR: WebVRRenderHandler + 'static> Drop for WebGLThread<VR> {
fn drop(&mut self) {
// Call remove_context functions in order to correctly delete WebRender image keys.
let context_ids: Vec<WebGLContextId> = self.contexts.keys().map(|id| *id).collect();
for id in context_ids {
self.remove_webgl_context(id);
}
}
}
enum ContextRenderState {
/// The context is not being actively rendered.
Unlocked,
/// The context is actively being rendered. If a DrawBuffer value is present,
/// it is outdated but in use as long as the context is locked.
Locked(Option<DrawBuffer>),
}
/// Helper struct to store cached WebGLContext information.
struct WebGLContextInfo {
/// Render to texture identifier used by the WebGLContext.
texture_id: u32,
/// Size of the WebGLContext.
size: Size2D<i32>,
/// True if the WebGLContext uses an alpha channel.
alpha: bool,
/// Currently used WebRender image key.
image_key: Option<webrender_api::ImageKey>,
/// The sharing mode used to send the image to WebRender.
share_mode: WebGLContextShareMode,
/// GLSync Object used for a correct synchronization with Webrender external image callbacks.
gl_sync: Option<gl::GLsync>,
/// The status of this context with respect to external consumers.
render_state: ContextRenderState,
}
/// Data about the linked DOM<->WebGLTexture elements.
struct DOMToTextureData {
context_id: WebGLContextId,
texture_id: WebGLTextureId,
document_id: webrender_api::DocumentId,
size: Size2D<i32>,
}
/// WebGL Commands Implementation
pub struct WebGLImpl;
impl WebGLImpl {
#[allow(unsafe_code)]
pub fn apply<Native: NativeGLContextMethods>(
ctx: &GLContext<Native>,
state: &mut GLState,
command: WebGLCommand,
_backtrace: WebGLCommandBacktrace,
) {
match command {
WebGLCommand::GetContextAttributes(ref sender) => sender
.send(map_attrs_to_script_attrs(*ctx.borrow_attributes()))
.unwrap(),
WebGLCommand::ActiveTexture(target) => ctx.gl().active_texture(target),
WebGLCommand::AttachShader(program_id, shader_id) => {
ctx.gl().attach_shader(program_id.get(), shader_id.get())
},
WebGLCommand::DetachShader(program_id, shader_id) => {
ctx.gl().detach_shader(program_id.get(), shader_id.get())
},
WebGLCommand::BindAttribLocation(program_id, index, ref name) => ctx
.gl()
.bind_attrib_location(program_id.get(), index, &to_name_in_compiled_shader(name)),
WebGLCommand::BlendColor(r, g, b, a) => ctx.gl().blend_color(r, g, b, a),
WebGLCommand::BlendEquation(mode) => ctx.gl().blend_equation(mode),
WebGLCommand::BlendEquationSeparate(mode_rgb, mode_alpha) => {
ctx.gl().blend_equation_separate(mode_rgb, mode_alpha)
},
WebGLCommand::BlendFunc(src, dest) => ctx.gl().blend_func(src, dest),
WebGLCommand::BlendFuncSeparate(src_rgb, dest_rgb, src_alpha, dest_alpha) => ctx
.gl()
.blend_func_separate(src_rgb, dest_rgb, src_alpha, dest_alpha),
WebGLCommand::BufferData(buffer_type, ref receiver, usage) => {
gl::buffer_data(ctx.gl(), buffer_type, &receiver.recv().unwrap(), usage)
},
WebGLCommand::BufferSubData(buffer_type, offset, ref receiver) => {
gl::buffer_sub_data(ctx.gl(), buffer_type, offset, &receiver.recv().unwrap())
},
WebGLCommand::Clear(mask) => ctx.gl().clear(mask),
WebGLCommand::ClearColor(r, g, b, a) => {
state.clear_color = (r, g, b, a);
ctx.gl().clear_color(r, g, b, a);
},
WebGLCommand::ClearDepth(depth) => {
let value = depth.max(0.).min(1.) as f64;
state.depth_clear_value = value;
ctx.gl().clear_depth(value)
},
WebGLCommand::ClearStencil(stencil) => {
state.stencil_clear_value = stencil;
ctx.gl().clear_stencil(stencil);
},
WebGLCommand::ColorMask(r, g, b, a) => ctx.gl().color_mask(r, g, b, a),
WebGLCommand::CopyTexImage2D(
target,
level,
internal_format,
x,
y,
width,
height,
border,
) => ctx.gl().copy_tex_image_2d(
target,
level,
internal_format,
x,
y,
width,
height,
border,
),
WebGLCommand::CopyTexSubImage2D(
target,
level,
xoffset,
yoffset,
x,
y,
width,
height,
) => ctx
.gl()
.copy_tex_sub_image_2d(target, level, xoffset, yoffset, x, y, width, height),
WebGLCommand::CullFace(mode) => ctx.gl().cull_face(mode),
WebGLCommand::DepthFunc(func) => ctx.gl().depth_func(func),
WebGLCommand::DepthMask(flag) => {
state.depth_write_mask = flag;
ctx.gl().depth_mask(flag);
},
WebGLCommand::DepthRange(near, far) => ctx
.gl()
.depth_range(near.max(0.).min(1.) as f64, far.max(0.).min(1.) as f64),
WebGLCommand::Disable(cap) => {
if cap == gl::SCISSOR_TEST {
state.scissor_test_enabled = false;
}
ctx.gl().disable(cap);
},
WebGLCommand::Enable(cap) => {
if cap == gl::SCISSOR_TEST {
state.scissor_test_enabled = true;
}
ctx.gl().enable(cap);
},
WebGLCommand::FramebufferRenderbuffer(target, attachment, renderbuffertarget, rb) => {
let attach = |attachment| {
ctx.gl().framebuffer_renderbuffer(
target,
attachment,
renderbuffertarget,
rb.map_or(0, WebGLRenderbufferId::get),
)
};
if attachment == gl::DEPTH_STENCIL_ATTACHMENT {
attach(gl::DEPTH_ATTACHMENT);
attach(gl::STENCIL_ATTACHMENT);
} else {
attach(attachment);
}
},
WebGLCommand::FramebufferTexture2D(target, attachment, textarget, texture, level) => {
let attach = |attachment| {
ctx.gl().framebuffer_texture_2d(
target,
attachment,
textarget,
texture.map_or(0, WebGLTextureId::get),
level,
)
};
if attachment == gl::DEPTH_STENCIL_ATTACHMENT {
attach(gl::DEPTH_ATTACHMENT);
attach(gl::STENCIL_ATTACHMENT);
} else {
attach(attachment)
}
},
WebGLCommand::FrontFace(mode) => ctx.gl().front_face(mode),
WebGLCommand::DisableVertexAttribArray(attrib_id) => {
ctx.gl().disable_vertex_attrib_array(attrib_id)
},
WebGLCommand::EnableVertexAttribArray(attrib_id) => {
ctx.gl().enable_vertex_attrib_array(attrib_id)
},
WebGLCommand::Hint(name, val) => ctx.gl().hint(name, val),
WebGLCommand::LineWidth(width) => ctx.gl().line_width(width),
WebGLCommand::PixelStorei(name, val) => ctx.gl().pixel_store_i(name, val),
WebGLCommand::PolygonOffset(factor, units) => ctx.gl().polygon_offset(factor, units),
WebGLCommand::ReadPixels(rect, format, pixel_type, ref sender) => {
let pixels = ctx.gl().read_pixels(
rect.origin.x as i32,
rect.origin.y as i32,
rect.size.width as i32,
rect.size.height as i32,
format,
pixel_type,
);
sender.send(&pixels).unwrap();
},
WebGLCommand::RenderbufferStorage(target, format, width, height) => {
ctx.gl().renderbuffer_storage(target, format, width, height)
},
WebGLCommand::SampleCoverage(value, invert) => ctx.gl().sample_coverage(value, invert),
WebGLCommand::Scissor(x, y, width, height) => {
// FIXME(nox): Kinda unfortunate that some u32 values could
// end up as negative numbers here, but I don't even think
// that can happen in the real world.
ctx.gl().scissor(x, y, width as i32, height as i32);
},
WebGLCommand::StencilFunc(func, ref_, mask) => ctx.gl().stencil_func(func, ref_, mask),
WebGLCommand::StencilFuncSeparate(face, func, ref_, mask) => {
ctx.gl().stencil_func_separate(face, func, ref_, mask)
},
WebGLCommand::StencilMask(mask) => {
state.stencil_write_mask = (mask, mask);
ctx.gl().stencil_mask(mask);
},
WebGLCommand::StencilMaskSeparate(face, mask) => {
if face == gl::FRONT {
state.stencil_write_mask.0 = mask;
} else {
state.stencil_write_mask.1 = mask;
}
ctx.gl().stencil_mask_separate(face, mask);
},
WebGLCommand::StencilOp(fail, zfail, zpass) => ctx.gl().stencil_op(fail, zfail, zpass),
WebGLCommand::StencilOpSeparate(face, fail, zfail, zpass) => {
ctx.gl().stencil_op_separate(face, fail, zfail, zpass)
},
WebGLCommand::GetRenderbufferParameter(target, pname, ref chan) => {
Self::get_renderbuffer_parameter(ctx.gl(), target, pname, chan)
},
WebGLCommand::GetFramebufferAttachmentParameter(
target,
attachment,
pname,
ref chan,
) => Self::get_framebuffer_attachment_parameter(
ctx.gl(),
target,
attachment,
pname,
chan,
),
WebGLCommand::GetShaderPrecisionFormat(shader_type, precision_type, ref chan) => {
Self::shader_precision_format(ctx.gl(), shader_type, precision_type, chan)
},
WebGLCommand::GetExtensions(ref chan) => Self::get_extensions(ctx.gl(), chan),
WebGLCommand::GetUniformLocation(program_id, ref name, ref chan) => {
Self::uniform_location(ctx.gl(), program_id, &name, chan)
},
WebGLCommand::GetShaderInfoLog(shader_id, ref chan) => {
Self::shader_info_log(ctx.gl(), shader_id, chan)
},
WebGLCommand::GetProgramInfoLog(program_id, ref chan) => {
Self::program_info_log(ctx.gl(), program_id, chan)
},
WebGLCommand::CompileShader(shader_id, ref source) => {
Self::compile_shader(ctx.gl(), shader_id, &source)
},
WebGLCommand::CreateBuffer(ref chan) => Self::create_buffer(ctx.gl(), chan),
WebGLCommand::CreateFramebuffer(ref chan) => Self::create_framebuffer(ctx.gl(), chan),
WebGLCommand::CreateRenderbuffer(ref chan) => Self::create_renderbuffer(ctx.gl(), chan),
WebGLCommand::CreateTexture(ref chan) => Self::create_texture(ctx.gl(), chan),
WebGLCommand::CreateProgram(ref chan) => Self::create_program(ctx.gl(), chan),
WebGLCommand::CreateShader(shader_type, ref chan) => {
Self::create_shader(ctx.gl(), shader_type, chan)
},
WebGLCommand::DeleteBuffer(id) => ctx.gl().delete_buffers(&[id.get()]),
WebGLCommand::DeleteFramebuffer(id) => ctx.gl().delete_framebuffers(&[id.get()]),
WebGLCommand::DeleteRenderbuffer(id) => ctx.gl().delete_renderbuffers(&[id.get()]),
WebGLCommand::DeleteTexture(id) => ctx.gl().delete_textures(&[id.get()]),
WebGLCommand::DeleteProgram(id) => ctx.gl().delete_program(id.get()),
WebGLCommand::DeleteShader(id) => ctx.gl().delete_shader(id.get()),
WebGLCommand::BindBuffer(target, id) => ctx
.gl()
.bind_buffer(target, id.map_or(0, WebGLBufferId::get)),
WebGLCommand::BindFramebuffer(target, request) => {
Self::bind_framebuffer(ctx.gl(), target, request, ctx)
},
WebGLCommand::BindRenderbuffer(target, id) => ctx
.gl()
.bind_renderbuffer(target, id.map_or(0, WebGLRenderbufferId::get)),
WebGLCommand::BindTexture(target, id) => ctx
.gl()
.bind_texture(target, id.map_or(0, WebGLTextureId::get)),
WebGLCommand::Uniform1f(uniform_id, v) => ctx.gl().uniform_1f(uniform_id, v),
WebGLCommand::Uniform1fv(uniform_id, ref v) => ctx.gl().uniform_1fv(uniform_id, v),
WebGLCommand::Uniform1i(uniform_id, v) => ctx.gl().uniform_1i(uniform_id, v),
WebGLCommand::Uniform1iv(uniform_id, ref v) => ctx.gl().uniform_1iv(uniform_id, v),
WebGLCommand::Uniform2f(uniform_id, x, y) => ctx.gl().uniform_2f(uniform_id, x, y),
WebGLCommand::Uniform2fv(uniform_id, ref v) => ctx.gl().uniform_2fv(uniform_id, v),
WebGLCommand::Uniform2i(uniform_id, x, y) => ctx.gl().uniform_2i(uniform_id, x, y),
WebGLCommand::Uniform2iv(uniform_id, ref v) => ctx.gl().uniform_2iv(uniform_id, v),
WebGLCommand::Uniform3f(uniform_id, x, y, z) => {
ctx.gl().uniform_3f(uniform_id, x, y, z)
},
WebGLCommand::Uniform3fv(uniform_id, ref v) => ctx.gl().uniform_3fv(uniform_id, v),
WebGLCommand::Uniform3i(uniform_id, x, y, z) => {
ctx.gl().uniform_3i(uniform_id, x, y, z)
},
WebGLCommand::Uniform3iv(uniform_id, ref v) => ctx.gl().uniform_3iv(uniform_id, v),
WebGLCommand::Uniform4f(uniform_id, x, y, z, w) => {
ctx.gl().uniform_4f(uniform_id, x, y, z, w)
},
WebGLCommand::Uniform4fv(uniform_id, ref v) => ctx.gl().uniform_4fv(uniform_id, v),
WebGLCommand::Uniform4i(uniform_id, x, y, z, w) => {
ctx.gl().uniform_4i(uniform_id, x, y, z, w)
},
WebGLCommand::Uniform4iv(uniform_id, ref v) => ctx.gl().uniform_4iv(uniform_id, v),
WebGLCommand::UniformMatrix2fv(uniform_id, ref v) => {
ctx.gl().uniform_matrix_2fv(uniform_id, false, v)
},
WebGLCommand::UniformMatrix3fv(uniform_id, ref v) => {
ctx.gl().uniform_matrix_3fv(uniform_id, false, v)
},
WebGLCommand::UniformMatrix4fv(uniform_id, ref v) => {
ctx.gl().uniform_matrix_4fv(uniform_id, false, v)
},
WebGLCommand::ValidateProgram(program_id) => {
ctx.gl().validate_program(program_id.get())
},
WebGLCommand::VertexAttrib(attrib_id, x, y, z, w) => {
ctx.gl().vertex_attrib_4f(attrib_id, x, y, z, w)
},
WebGLCommand::VertexAttribPointer2f(attrib_id, size, normalized, stride, offset) => ctx
.gl()
.vertex_attrib_pointer_f32(attrib_id, size, normalized, stride, offset),
WebGLCommand::VertexAttribPointer(
attrib_id,
size,
data_type,
normalized,
stride,
offset,
) => ctx
.gl()
.vertex_attrib_pointer(attrib_id, size, data_type, normalized, stride, offset),
WebGLCommand::SetViewport(x, y, width, height) => {
ctx.gl().viewport(x, y, width, height);
},
WebGLCommand::TexImage2D {
target,
level,
effective_internal_format,
size,
format,
data_type,
effective_data_type,
unpacking_alignment,
alpha_treatment,
y_axis_treatment,
pixel_format,
ref data,
} => {
let pixels = prepare_pixels(
format,
data_type,
size,
unpacking_alignment,
alpha_treatment,
y_axis_treatment,
pixel_format,
Cow::Borrowed(&*data),
);
ctx.gl()
.pixel_store_i(gl::UNPACK_ALIGNMENT, unpacking_alignment as i32);
ctx.gl().tex_image_2d(
target,
level as i32,
effective_internal_format as i32,
size.width as i32,
size.height as i32,
0,
format.as_gl_constant(),
effective_data_type,
Some(&pixels),
);
},
WebGLCommand::TexSubImage2D {
target,
level,
xoffset,
yoffset,
size,
format,
data_type,
effective_data_type,
unpacking_alignment,
alpha_treatment,
y_axis_treatment,
pixel_format,
ref data,
} => {
let pixels = prepare_pixels(
format,
data_type,
size,
unpacking_alignment,
alpha_treatment,
y_axis_treatment,
pixel_format,
Cow::Borrowed(&*data),
);
ctx.gl()
.pixel_store_i(gl::UNPACK_ALIGNMENT, unpacking_alignment as i32);
ctx.gl().tex_sub_image_2d(
target,
level as i32,
xoffset,
yoffset,
size.width as i32,
size.height as i32,
format.as_gl_constant(),
effective_data_type,
&pixels,
);
},
WebGLCommand::CompressedTexImage2D {
target,
level,
internal_format,
size,
ref data,
} => {
ctx.gl().compressed_tex_image_2d(
target,
level as i32,
internal_format,
size.width as i32,
size.height as i32,
0,
&*data,
);
},
WebGLCommand::CompressedTexSubImage2D {
target,
level,
xoffset,
yoffset,
size,
format,
ref data,
} => {
ctx.gl().compressed_tex_sub_image_2d(
target,
level as i32,
xoffset as i32,
yoffset as i32,
size.width as i32,
size.height as i32,
format,
&*data,
);
},
WebGLCommand::DrawingBufferWidth(ref sender) => sender
.send(ctx.borrow_draw_buffer().unwrap().size().width)
.unwrap(),
WebGLCommand::DrawingBufferHeight(ref sender) => sender
.send(ctx.borrow_draw_buffer().unwrap().size().height)
.unwrap(),
WebGLCommand::Finish(ref sender) => Self::finish(ctx.gl(), sender),
WebGLCommand::Flush => ctx.gl().flush(),
WebGLCommand::GenerateMipmap(target) => ctx.gl().generate_mipmap(target),
WebGLCommand::CreateVertexArray(ref chan) => Self::create_vertex_array(ctx.gl(), chan),
WebGLCommand::DeleteVertexArray(id) => ctx.gl().delete_vertex_arrays(&[id.get()]),
WebGLCommand::BindVertexArray(id) => ctx
.gl()
.bind_vertex_array(id.map_or(0, WebGLVertexArrayId::get)),
WebGLCommand::GetParameterBool(param, ref sender) => {
let mut value = [0];
unsafe {
ctx.gl().get_boolean_v(param as u32, &mut value);
}
sender.send(value[0] != 0).unwrap()
},
WebGLCommand::GetParameterBool4(param, ref sender) => {
let mut value = [0; 4];
unsafe {
ctx.gl().get_boolean_v(param as u32, &mut value);
}
let value = [value[0] != 0, value[1] != 0, value[2] != 0, value[3] != 0];
sender.send(value).unwrap()
},
WebGLCommand::GetParameterInt(param, ref sender) => {
let mut value = [0];
unsafe {
ctx.gl().get_integer_v(param as u32, &mut value);
}
sender.send(value[0]).unwrap()
},
WebGLCommand::GetParameterInt2(param, ref sender) => {
let mut value = [0; 2];
unsafe {
ctx.gl().get_integer_v(param as u32, &mut value);
}
sender.send(value).unwrap()
},
WebGLCommand::GetParameterInt4(param, ref sender) => {
let mut value = [0; 4];
unsafe {
ctx.gl().get_integer_v(param as u32, &mut value);
}
sender.send(value).unwrap()
},
WebGLCommand::GetParameterFloat(param, ref sender) => {
let mut value = [0.];
unsafe {
ctx.gl().get_float_v(param as u32, &mut value);
}
sender.send(value[0]).unwrap()
},
WebGLCommand::GetParameterFloat2(param, ref sender) => {
let mut value = [0.; 2];
unsafe {
ctx.gl().get_float_v(param as u32, &mut value);
}
sender.send(value).unwrap()
},
WebGLCommand::GetParameterFloat4(param, ref sender) => {
let mut value = [0.; 4];
unsafe {
ctx.gl().get_float_v(param as u32, &mut value);
}
sender.send(value).unwrap()
},
WebGLCommand::GetProgramValidateStatus(program, ref sender) => {
let mut value = [0];
unsafe {
ctx.gl()
.get_program_iv(program.get(), gl::VALIDATE_STATUS, &mut value);
}
sender.send(value[0] != 0).unwrap()
},
WebGLCommand::GetProgramActiveUniforms(program, ref sender) => {
let mut value = [0];
unsafe {
ctx.gl()
.get_program_iv(program.get(), gl::ACTIVE_UNIFORMS, &mut value);
}
sender.send(value[0]).unwrap()
},
WebGLCommand::GetCurrentVertexAttrib(index, ref sender) => {
let mut value = [0.; 4];
unsafe {
ctx.gl()
.get_vertex_attrib_fv(index, gl::CURRENT_VERTEX_ATTRIB, &mut value);
}
sender.send(value).unwrap();
},
WebGLCommand::GetTexParameterFloat(target, param, ref sender) => {
sender
.send(ctx.gl().get_tex_parameter_fv(target, param as u32))
.unwrap();
},
WebGLCommand::GetTexParameterInt(target, param, ref sender) => {
sender
.send(ctx.gl().get_tex_parameter_iv(target, param as u32))
.unwrap();
},
WebGLCommand::TexParameteri(target, param, value) => {
ctx.gl().tex_parameter_i(target, param as u32, value)
},
WebGLCommand::TexParameterf(target, param, value) => {
ctx.gl().tex_parameter_f(target, param as u32, value)
},
WebGLCommand::LinkProgram(program_id, ref sender) => {
return sender
.send(Self::link_program(ctx.gl(), program_id))
.unwrap();
},
WebGLCommand::UseProgram(program_id) => {
ctx.gl().use_program(program_id.map_or(0, |p| p.get()))
},
WebGLCommand::DrawArrays { mode, first, count } => {
ctx.gl().draw_arrays(mode, first, count)
},
WebGLCommand::DrawArraysInstanced {
mode,
first,
count,
primcount,
} => ctx
.gl()
.draw_arrays_instanced(mode, first, count, primcount),
WebGLCommand::DrawElements {
mode,
count,
type_,
offset,
} => ctx.gl().draw_elements(mode, count, type_, offset),
WebGLCommand::DrawElementsInstanced {
mode,
count,
type_,
offset,
primcount,
} => ctx
.gl()
.draw_elements_instanced(mode, count, type_, offset, primcount),
WebGLCommand::VertexAttribDivisor { index, divisor } => {
ctx.gl().vertex_attrib_divisor(index, divisor)
},
WebGLCommand::GetUniformBool(program_id, loc, ref sender) => {
let mut value = [0];
unsafe {
ctx.gl().get_uniform_iv(program_id.get(), loc, &mut value);
}
sender.send(value[0] != 0).unwrap();
},
WebGLCommand::GetUniformBool2(program_id, loc, ref sender) => {
let mut value = [0; 2];
unsafe {
ctx.gl().get_uniform_iv(program_id.get(), loc, &mut value);
}
let value = [value[0] != 0, value[1] != 0];
sender.send(value).unwrap();
},
WebGLCommand::GetUniformBool3(program_id, loc, ref sender) => {
let mut value = [0; 3];
unsafe {
ctx.gl().get_uniform_iv(program_id.get(), loc, &mut value);
}
let value = [value[0] != 0, value[1] != 0, value[2] != 0];
sender.send(value).unwrap();
},
WebGLCommand::GetUniformBool4(program_id, loc, ref sender) => {
let mut value = [0; 4];
unsafe {
ctx.gl().get_uniform_iv(program_id.get(), loc, &mut value);
}
let value = [value[0] != 0, value[1] != 0, value[2] != 0, value[3] != 0];
sender.send(value).unwrap();
},
WebGLCommand::GetUniformInt(program_id, loc, ref sender) => {
let mut value = [0];
unsafe {
ctx.gl().get_uniform_iv(program_id.get(), loc, &mut value);
}
sender.send(value[0]).unwrap();
},
WebGLCommand::GetUniformInt2(program_id, loc, ref sender) => {
let mut value = [0; 2];
unsafe {
ctx.gl().get_uniform_iv(program_id.get(), loc, &mut value);
}
sender.send(value).unwrap();
},
WebGLCommand::GetUniformInt3(program_id, loc, ref sender) => {
let mut value = [0; 3];
unsafe {
ctx.gl().get_uniform_iv(program_id.get(), loc, &mut value);
}
sender.send(value).unwrap();
},
WebGLCommand::GetUniformInt4(program_id, loc, ref sender) => {
let mut value = [0; 4];
unsafe {
ctx.gl().get_uniform_iv(program_id.get(), loc, &mut value);
}
sender.send(value).unwrap();
},
WebGLCommand::GetUniformFloat(program_id, loc, ref sender) => {
let mut value = [0.];
unsafe {
ctx.gl().get_uniform_fv(program_id.get(), loc, &mut value);
}
sender.send(value[0]).unwrap();
},
WebGLCommand::GetUniformFloat2(program_id, loc, ref sender) => {
let mut value = [0.; 2];
unsafe {
ctx.gl().get_uniform_fv(program_id.get(), loc, &mut value);
}
sender.send(value).unwrap();
},
WebGLCommand::GetUniformFloat3(program_id, loc, ref sender) => {
let mut value = [0.; 3];
unsafe {
ctx.gl().get_uniform_fv(program_id.get(), loc, &mut value);
}
sender.send(value).unwrap();
},
WebGLCommand::GetUniformFloat4(program_id, loc, ref sender) => {
let mut value = [0.; 4];
unsafe {
ctx.gl().get_uniform_fv(program_id.get(), loc, &mut value);
}
sender.send(value).unwrap();
},
WebGLCommand::GetUniformFloat9(program_id, loc, ref sender) => {
let mut value = [0.; 9];
unsafe {
ctx.gl().get_uniform_fv(program_id.get(), loc, &mut value);
}
sender.send(value).unwrap();
},
WebGLCommand::GetUniformFloat16(program_id, loc, ref sender) => {
let mut value = [0.; 16];
unsafe {
ctx.gl().get_uniform_fv(program_id.get(), loc, &mut value);
}
sender.send(value).unwrap();
},
WebGLCommand::InitializeFramebuffer {
color,
depth,
stencil,
} => Self::initialize_framebuffer(ctx.gl(), state, color, depth, stencil),
}
// TODO: update test expectations in order to enable debug assertions
let error = ctx.gl().get_error();
if error != gl::NO_ERROR {
error!("Last GL operation failed: {:?}", command);
#[cfg(feature = "webgl_backtrace")]
{
error!("Backtrace from failed WebGL API:\n{}", _backtrace.backtrace);
if let Some(backtrace) = _backtrace.js_backtrace {
error!("JS backtrace from failed WebGL API:\n{}", backtrace);
}
}
}
assert_eq!(
error,
gl::NO_ERROR,
"Unexpected WebGL error: 0x{:x} ({})",
error,
error
);
}
fn initialize_framebuffer(
gl: &dyn gl::Gl,
state: &GLState,
color: bool,
depth: bool,
stencil: bool,
) {
let bits = [
(color, gl::COLOR_BUFFER_BIT),
(depth, gl::DEPTH_BUFFER_BIT),
(stencil, gl::STENCIL_BUFFER_BIT),
]
.iter()
.fold(0, |bits, &(enabled, bit)| {
bits | if enabled { bit } else { 0 }
});
if state.scissor_test_enabled {
gl.disable(gl::SCISSOR_TEST);
}
if color {
gl.clear_color(0., 0., 0., 0.);
}
if depth {
gl.depth_mask(true);
gl.clear_depth(1.);
}
if stencil {
gl.stencil_mask_separate(gl::FRONT, 0xFFFFFFFF);
gl.stencil_mask_separate(gl::BACK, 0xFFFFFFFF);
gl.clear_stencil(0);
}
gl.clear(bits);
if state.scissor_test_enabled {
gl.enable(gl::SCISSOR_TEST);
}
if color {
let (r, g, b, a) = state.clear_color;
gl.clear_color(r, g, b, a);
}
if depth {
gl.depth_mask(state.depth_write_mask);
gl.clear_depth(state.depth_clear_value);
}
if stencil {
let (front, back) = state.stencil_write_mask;
gl.stencil_mask_separate(gl::FRONT, front);
gl.stencil_mask_separate(gl::BACK, back);
gl.clear_stencil(state.stencil_clear_value);
}
}
#[allow(unsafe_code)]
fn link_program(gl: &dyn gl::Gl, program: WebGLProgramId) -> ProgramLinkInfo {
gl.link_program(program.get());
let mut linked = [0];
unsafe {
gl.get_program_iv(program.get(), gl::LINK_STATUS, &mut linked);
}
if linked[0] == 0 {
return ProgramLinkInfo {
linked: false,
active_attribs: vec![].into(),
active_uniforms: vec![].into(),
};
}
let mut num_active_attribs = [0];
unsafe {
gl.get_program_iv(
program.get(),
gl::ACTIVE_ATTRIBUTES,
&mut num_active_attribs,
);
}
let active_attribs = (0..num_active_attribs[0] as u32)
.map(|i| {
// FIXME(nox): This allocates strings sometimes for nothing
// and the gleam method keeps getting ACTIVE_ATTRIBUTE_MAX_LENGTH.
let (size, type_, name) = gl.get_active_attrib(program.get(), i);
let location = if name.starts_with("gl_") {
-1
} else {
gl.get_attrib_location(program.get(), &name)
};
ActiveAttribInfo {
name: from_name_in_compiled_shader(&name),
size,
type_,
location,
}
})
.collect::<Vec<_>>()
.into();
let mut num_active_uniforms = [0];
unsafe {
gl.get_program_iv(program.get(), gl::ACTIVE_UNIFORMS, &mut num_active_uniforms);
}
let active_uniforms = (0..num_active_uniforms[0] as u32)
.map(|i| {
// FIXME(nox): This allocates strings sometimes for nothing
// and the gleam method keeps getting ACTIVE_UNIFORM_MAX_LENGTH.
let (size, type_, mut name) = gl.get_active_uniform(program.get(), i);
let is_array = name.ends_with("[0]");
if is_array {
// FIXME(nox): NLL
let len = name.len();
name.truncate(len - 3);
}
ActiveUniformInfo {
base_name: from_name_in_compiled_shader(&name).into(),
size: if is_array { Some(size) } else { None },
type_,
}
})
.collect::<Vec<_>>()
.into();
ProgramLinkInfo {
linked: true,
active_attribs,
active_uniforms,
}
}
fn finish(gl: &dyn gl::Gl, chan: &WebGLSender<()>) {
gl.finish();
chan.send(()).unwrap();
}
fn shader_precision_format(
gl: &dyn gl::Gl,
shader_type: u32,
precision_type: u32,
chan: &WebGLSender<(i32, i32, i32)>,
) {
let result = gl.get_shader_precision_format(shader_type, precision_type);
chan.send(result).unwrap();
}
fn get_extensions(gl: &dyn gl::Gl, chan: &WebGLSender<String>) {
chan.send(gl.get_string(gl::EXTENSIONS)).unwrap();
}
// https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.14.6
fn get_framebuffer_attachment_parameter(
gl: &dyn gl::Gl,
target: u32,
attachment: u32,
pname: u32,
chan: &WebGLSender<i32>,
) {
let parameter = gl.get_framebuffer_attachment_parameter_iv(target, attachment, pname);
chan.send(parameter).unwrap();
}
// https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.14.7
fn get_renderbuffer_parameter(
gl: &dyn gl::Gl,
target: u32,
pname: u32,
chan: &WebGLSender<i32>,
) {
let parameter = gl.get_renderbuffer_parameter_iv(target, pname);
chan.send(parameter).unwrap();
}
fn uniform_location(
gl: &dyn gl::Gl,
program_id: WebGLProgramId,
name: &str,
chan: &WebGLSender<i32>,
) {
let location = gl.get_uniform_location(program_id.get(), &to_name_in_compiled_shader(name));
assert!(location >= 0);
chan.send(location).unwrap();
}
fn shader_info_log(gl: &dyn gl::Gl, shader_id: WebGLShaderId, chan: &WebGLSender<String>) {
let log = gl.get_shader_info_log(shader_id.get());
chan.send(log).unwrap();
}
fn program_info_log(gl: &dyn gl::Gl, program_id: WebGLProgramId, chan: &WebGLSender<String>) {
let log = gl.get_program_info_log(program_id.get());
chan.send(log).unwrap();
}
#[allow(unsafe_code)]
fn create_buffer(gl: &dyn gl::Gl, chan: &WebGLSender<Option<WebGLBufferId>>) {
let buffer = gl.gen_buffers(1)[0];
let buffer = if buffer == 0 {
None
} else {
Some(unsafe { WebGLBufferId::new(buffer) })
};
chan.send(buffer).unwrap();
}
#[allow(unsafe_code)]
fn create_framebuffer(gl: &dyn gl::Gl, chan: &WebGLSender<Option<WebGLFramebufferId>>) {
let framebuffer = gl.gen_framebuffers(1)[0];
let framebuffer = if framebuffer == 0 {
None
} else {
Some(unsafe { WebGLFramebufferId::new(framebuffer) })
};
chan.send(framebuffer).unwrap();
}
#[allow(unsafe_code)]
fn create_renderbuffer(gl: &dyn gl::Gl, chan: &WebGLSender<Option<WebGLRenderbufferId>>) {
let renderbuffer = gl.gen_renderbuffers(1)[0];
let renderbuffer = if renderbuffer == 0 {
None
} else {
Some(unsafe { WebGLRenderbufferId::new(renderbuffer) })
};
chan.send(renderbuffer).unwrap();
}
#[allow(unsafe_code)]
fn create_texture(gl: &dyn gl::Gl, chan: &WebGLSender<Option<WebGLTextureId>>) {
let texture = gl.gen_textures(1)[0];
let texture = if texture == 0 {
None
} else {
Some(unsafe { WebGLTextureId::new(texture) })
};
chan.send(texture).unwrap();
}
#[allow(unsafe_code)]
fn create_program(gl: &dyn gl::Gl, chan: &WebGLSender<Option<WebGLProgramId>>) {
let program = gl.create_program();
let program = if program == 0 {
None
} else {
Some(unsafe { WebGLProgramId::new(program) })
};
chan.send(program).unwrap();
}
#[allow(unsafe_code)]
fn create_shader(gl: &dyn gl::Gl, shader_type: u32, chan: &WebGLSender<Option<WebGLShaderId>>) {
let shader = gl.create_shader(shader_type);
let shader = if shader == 0 {
None
} else {
Some(unsafe { WebGLShaderId::new(shader) })
};
chan.send(shader).unwrap();
}
#[allow(unsafe_code)]
fn create_vertex_array(gl: &dyn gl::Gl, chan: &WebGLSender<Option<WebGLVertexArrayId>>) {
let vao = gl.gen_vertex_arrays(1)[0];
let vao = if vao == 0 {
None
} else {
Some(unsafe { WebGLVertexArrayId::new(vao) })
};
chan.send(vao).unwrap();
}
#[inline]
fn bind_framebuffer<Native: NativeGLContextMethods>(
gl: &dyn gl::Gl,
target: u32,
request: WebGLFramebufferBindingRequest,
ctx: &GLContext<Native>,
) {
let id = match request {
WebGLFramebufferBindingRequest::Explicit(id) => id.get(),
WebGLFramebufferBindingRequest::Default => {
ctx.borrow_draw_buffer().unwrap().get_framebuffer()
},
};
gl.bind_framebuffer(target, id);
}
#[inline]
fn compile_shader(gl: &dyn gl::Gl, shader_id: WebGLShaderId, source: &str) {
gl.shader_source(shader_id.get(), &[source.as_bytes()]);
gl.compile_shader(shader_id.get());
}
}
/// ANGLE adds a `_u` prefix to variable names:
///
/// https://chromium.googlesource.com/angle/angle/+/855d964bd0d05f6b2cb303f625506cf53d37e94f
///
/// To avoid hard-coding this we would need to use the `sh::GetAttributes` and `sh::GetUniforms`
/// API to look up the `x.name` and `x.mappedName` members.
const ANGLE_NAME_PREFIX: &'static str = "_u";
fn to_name_in_compiled_shader(s: &str) -> String {
map_dot_separated(s, |s, mapped| {
mapped.push_str(ANGLE_NAME_PREFIX);
mapped.push_str(s);
})
}
fn from_name_in_compiled_shader(s: &str) -> String {
map_dot_separated(s, |s, mapped| {
mapped.push_str(if s.starts_with(ANGLE_NAME_PREFIX) {
&s[ANGLE_NAME_PREFIX.len()..]
} else {
s
})
})
}
fn map_dot_separated<F: Fn(&str, &mut String)>(s: &str, f: F) -> String {
let mut iter = s.split('.');
let mut mapped = String::new();
f(iter.next().unwrap(), &mut mapped);
for s in iter {
mapped.push('.');
f(s, &mut mapped);
}
mapped
}
fn prepare_pixels(
internal_format: TexFormat,
data_type: TexDataType,
size: Size2D<u32>,
unpacking_alignment: u32,
alpha_treatment: Option<AlphaTreatment>,
y_axis_treatment: YAxisTreatment,
pixel_format: Option<PixelFormat>,
mut pixels: Cow<[u8]>,
) -> Cow<[u8]> {
match alpha_treatment {
Some(AlphaTreatment::Premultiply) => {
if let Some(pixel_format) = pixel_format {
match pixel_format {
PixelFormat::BGRA8 | PixelFormat::RGBA8 => {},
_ => unimplemented!("unsupported pixel format ({:?})", pixel_format),
}
premultiply_inplace(TexFormat::RGBA, TexDataType::UnsignedByte, pixels.to_mut());
} else {
premultiply_inplace(internal_format, data_type, pixels.to_mut());
}
},
Some(AlphaTreatment::Unmultiply) => {
assert!(pixel_format.is_some());
unmultiply_inplace(pixels.to_mut());
},
None => {},
}
if let Some(pixel_format) = pixel_format {
pixels = image_to_tex_image_data(
pixel_format,
internal_format,
data_type,
pixels.into_owned(),
)
.into();
}
if y_axis_treatment == YAxisTreatment::Flipped {
// FINISHME: Consider doing premultiply and flip in a single mutable Vec.
pixels = flip_pixels_y(
internal_format,
data_type,
size.width as usize,
size.height as usize,
unpacking_alignment as usize,
pixels.into_owned(),
)
.into();
}
pixels
}
/// Translates an image in rgba8 (red in the first byte) format to
/// the format that was requested of TexImage.
fn image_to_tex_image_data(
pixel_format: PixelFormat,
format: TexFormat,
data_type: TexDataType,
mut pixels: Vec<u8>,
) -> Vec<u8> {
// hint for vector allocation sizing.
let pixel_count = pixels.len() / 4;
match pixel_format {
PixelFormat::BGRA8 => pixels::rgba8_byte_swap_colors_inplace(&mut pixels),
PixelFormat::RGBA8 => {},
_ => unimplemented!("unsupported pixel format ({:?})", pixel_format),
}
match (format, data_type) {
(TexFormat::RGBA, TexDataType::UnsignedByte) => pixels,
(TexFormat::RGB, TexDataType::UnsignedByte) => {
for i in 0..pixel_count {
let rgb = {
let rgb = &pixels[i * 4..i * 4 + 3];
[rgb[0], rgb[1], rgb[2]]
};
pixels[i * 3..i * 3 + 3].copy_from_slice(&rgb);
}
pixels.truncate(pixel_count * 3);
pixels
},
(TexFormat::Alpha, TexDataType::UnsignedByte) => {
for i in 0..pixel_count {
let p = pixels[i * 4 + 3];
pixels[i] = p;
}
pixels.truncate(pixel_count);
pixels
},
(TexFormat::Luminance, TexDataType::UnsignedByte) => {
for i in 0..pixel_count {
let p = pixels[i * 4];
pixels[i] = p;
}
pixels.truncate(pixel_count);
pixels
},
(TexFormat::LuminanceAlpha, TexDataType::UnsignedByte) => {
for i in 0..pixel_count {
let (lum, a) = {
let rgba = &pixels[i * 4..i * 4 + 4];
(rgba[0], rgba[3])
};
pixels[i * 2] = lum;
pixels[i * 2 + 1] = a;
}
pixels.truncate(pixel_count * 2);
pixels
},
(TexFormat::RGBA, TexDataType::UnsignedShort4444) => {
for i in 0..pixel_count {
let p = {
let rgba = &pixels[i * 4..i * 4 + 4];
(rgba[0] as u16 & 0xf0) << 8 |
(rgba[1] as u16 & 0xf0) << 4 |
(rgba[2] as u16 & 0xf0) |
(rgba[3] as u16 & 0xf0) >> 4
};
NativeEndian::write_u16(&mut pixels[i * 2..i * 2 + 2], p);
}
pixels.truncate(pixel_count * 2);
pixels
},
(TexFormat::RGBA, TexDataType::UnsignedShort5551) => {
for i in 0..pixel_count {
let p = {
let rgba = &pixels[i * 4..i * 4 + 4];
(rgba[0] as u16 & 0xf8) << 8 |
(rgba[1] as u16 & 0xf8) << 3 |
(rgba[2] as u16 & 0xf8) >> 2 |
(rgba[3] as u16) >> 7
};
NativeEndian::write_u16(&mut pixels[i * 2..i * 2 + 2], p);
}
pixels.truncate(pixel_count * 2);
pixels
},
(TexFormat::RGB, TexDataType::UnsignedShort565) => {
for i in 0..pixel_count {
let p = {
let rgb = &pixels[i * 4..i * 4 + 3];
(rgb[0] as u16 & 0xf8) << 8 |
(rgb[1] as u16 & 0xfc) << 3 |
(rgb[2] as u16 & 0xf8) >> 3
};
NativeEndian::write_u16(&mut pixels[i * 2..i * 2 + 2], p);
}
pixels.truncate(pixel_count * 2);
pixels
},
(TexFormat::RGBA, TexDataType::Float) => {
let mut rgbaf32 = Vec::<u8>::with_capacity(pixel_count * 16);
for rgba8 in pixels.chunks(4) {
rgbaf32.write_f32::<NativeEndian>(rgba8[0] as f32).unwrap();
rgbaf32.write_f32::<NativeEndian>(rgba8[1] as f32).unwrap();
rgbaf32.write_f32::<NativeEndian>(rgba8[2] as f32).unwrap();
rgbaf32.write_f32::<NativeEndian>(rgba8[3] as f32).unwrap();
}
rgbaf32
},
(TexFormat::RGB, TexDataType::Float) => {
let mut rgbf32 = Vec::<u8>::with_capacity(pixel_count * 12);
for rgba8 in pixels.chunks(4) {
rgbf32.write_f32::<NativeEndian>(rgba8[0] as f32).unwrap();
rgbf32.write_f32::<NativeEndian>(rgba8[1] as f32).unwrap();
rgbf32.write_f32::<NativeEndian>(rgba8[2] as f32).unwrap();
}
rgbf32
},
(TexFormat::Alpha, TexDataType::Float) => {
for rgba8 in pixels.chunks_mut(4) {
let p = rgba8[3] as f32;
NativeEndian::write_f32(rgba8, p);
}
pixels
},
(TexFormat::Luminance, TexDataType::Float) => {
for rgba8 in pixels.chunks_mut(4) {
let p = rgba8[0] as f32;
NativeEndian::write_f32(rgba8, p);
}
pixels
},
(TexFormat::LuminanceAlpha, TexDataType::Float) => {
let mut data = Vec::<u8>::with_capacity(pixel_count * 8);
for rgba8 in pixels.chunks(4) {
data.write_f32::<NativeEndian>(rgba8[0] as f32).unwrap();
data.write_f32::<NativeEndian>(rgba8[3] as f32).unwrap();
}
data
},
(TexFormat::RGBA, TexDataType::HalfFloat) => {
let mut rgbaf16 = Vec::<u8>::with_capacity(pixel_count * 8);
for rgba8 in pixels.chunks(4) {
rgbaf16
.write_u16::<NativeEndian>(f16::from_f32(rgba8[0] as f32).as_bits())
.unwrap();
rgbaf16
.write_u16::<NativeEndian>(f16::from_f32(rgba8[1] as f32).as_bits())
.unwrap();
rgbaf16
.write_u16::<NativeEndian>(f16::from_f32(rgba8[2] as f32).as_bits())
.unwrap();
rgbaf16
.write_u16::<NativeEndian>(f16::from_f32(rgba8[3] as f32).as_bits())
.unwrap();
}
rgbaf16
},
(TexFormat::RGB, TexDataType::HalfFloat) => {
let mut rgbf16 = Vec::<u8>::with_capacity(pixel_count * 6);
for rgba8 in pixels.chunks(4) {
rgbf16
.write_u16::<NativeEndian>(f16::from_f32(rgba8[0] as f32).as_bits())
.unwrap();
rgbf16
.write_u16::<NativeEndian>(f16::from_f32(rgba8[1] as f32).as_bits())
.unwrap();
rgbf16
.write_u16::<NativeEndian>(f16::from_f32(rgba8[2] as f32).as_bits())
.unwrap();
}
rgbf16
},
(TexFormat::Alpha, TexDataType::HalfFloat) => {
for i in 0..pixel_count {
let p = f16::from_f32(pixels[i * 4 + 3] as f32).as_bits();
NativeEndian::write_u16(&mut pixels[i * 2..i * 2 + 2], p);
}
pixels.truncate(pixel_count * 2);
pixels
},
(TexFormat::Luminance, TexDataType::HalfFloat) => {
for i in 0..pixel_count {
let p = f16::from_f32(pixels[i * 4] as f32).as_bits();
NativeEndian::write_u16(&mut pixels[i * 2..i * 2 + 2], p);
}
pixels.truncate(pixel_count * 2);
pixels
},
(TexFormat::LuminanceAlpha, TexDataType::HalfFloat) => {
for rgba8 in pixels.chunks_mut(4) {
let lum = f16::from_f32(rgba8[0] as f32).as_bits();
let a = f16::from_f32(rgba8[3] as f32).as_bits();
NativeEndian::write_u16(&mut rgba8[0..2], lum);
NativeEndian::write_u16(&mut rgba8[2..4], a);
}
pixels
},
// Validation should have ensured that we only hit the
// above cases, but we haven't turned the (format, type)
// into an enum yet so there's a default case here.
_ => unreachable!("Unsupported formats {:?} {:?}", format, data_type),
}
}
fn premultiply_inplace(format: TexFormat, data_type: TexDataType, pixels: &mut [u8]) {
match (format, data_type) {
(TexFormat::RGBA, TexDataType::UnsignedByte) => {
pixels::rgba8_premultiply_inplace(pixels);
},
(TexFormat::LuminanceAlpha, TexDataType::UnsignedByte) => {
for la in pixels.chunks_mut(2) {
la[0] = pixels::multiply_u8_color(la[0], la[1]);
}
},
(TexFormat::RGBA, TexDataType::UnsignedShort5551) => {
for rgba in pixels.chunks_mut(2) {
if NativeEndian::read_u16(rgba) & 1 == 0 {
NativeEndian::write_u16(rgba, 0);
}
}
},
(TexFormat::RGBA, TexDataType::UnsignedShort4444) => {
for rgba in pixels.chunks_mut(2) {
let pix = NativeEndian::read_u16(rgba);
let extend_to_8_bits = |val| (val | val << 4) as u8;
let r = extend_to_8_bits(pix >> 12 & 0x0f);
let g = extend_to_8_bits(pix >> 8 & 0x0f);
let b = extend_to_8_bits(pix >> 4 & 0x0f);
let a = extend_to_8_bits(pix & 0x0f);
NativeEndian::write_u16(
rgba,
((pixels::multiply_u8_color(r, a) & 0xf0) as u16) << 8 |
((pixels::multiply_u8_color(g, a) & 0xf0) as u16) << 4 |
((pixels::multiply_u8_color(b, a) & 0xf0) as u16) |
((a & 0x0f) as u16),
);
}
},
// Other formats don't have alpha, so return their data untouched.
_ => {},
}
}
fn unmultiply_inplace(pixels: &mut [u8]) {
for rgba in pixels.chunks_mut(4) {
let a = (rgba[3] as f32) / 255.0;
rgba[0] = (rgba[0] as f32 / a) as u8;
rgba[1] = (rgba[1] as f32 / a) as u8;
rgba[2] = (rgba[2] as f32 / a) as u8;
}
}
/// Flips the pixels in the Vec on the Y axis.
fn flip_pixels_y(
internal_format: TexFormat,
data_type: TexDataType,
width: usize,
height: usize,
unpacking_alignment: usize,
pixels: Vec<u8>,
) -> Vec<u8> {
let cpp = (data_type.element_size() * internal_format.components() /
data_type.components_per_element()) as usize;
let stride = (width * cpp + unpacking_alignment - 1) & !(unpacking_alignment - 1);
let mut flipped = Vec::<u8>::with_capacity(pixels.len());
for y in 0..height {
let flipped_y = height - 1 - y;
let start = flipped_y * stride;
flipped.extend_from_slice(&pixels[start..(start + width * cpp)]);
flipped.extend(vec![0u8; stride - width * cpp]);
}
flipped
}