servo/components/layout_2020/positioned.rs
Martin Robinson e563927718 Layout 2020: Move all Fragment code to the fragment_tree directory
This is a simple code organization change with no behavior change with
the idea of making Layout 2020 easier to understand by new folks to the
project. The idea is that we will have a cleaner separation between the
different parts of layout ie one directory for the fragment tree and one
(currently multiple) directory for the box tree.
2023-06-04 18:12:11 +02:00

806 lines
34 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
use crate::cell::ArcRefCell;
use crate::context::LayoutContext;
use crate::dom::NodeExt;
use crate::dom_traversal::{Contents, NodeAndStyleInfo};
use crate::formatting_contexts::IndependentFormattingContext;
use crate::fragment_tree::{
AbsoluteBoxOffsets, BoxFragment, CollapsedBlockMargins, Fragment, HoistedSharedFragment,
};
use crate::geom::flow_relative::{Rect, Sides, Vec2};
use crate::geom::{LengthOrAuto, LengthPercentageOrAuto};
use crate::style_ext::{ComputedValuesExt, DisplayInside};
use crate::{ContainingBlock, DefiniteContainingBlock};
use rayon::iter::{IntoParallelRefMutIterator, ParallelExtend};
use rayon_croissant::ParallelIteratorExt;
use style::computed_values::position::T as Position;
use style::properties::ComputedValues;
use style::values::computed::{CSSPixelLength, Length};
use style::values::specified::text::TextDecorationLine;
use style::Zero;
#[derive(Debug, Serialize)]
pub(crate) struct AbsolutelyPositionedBox {
pub context: IndependentFormattingContext,
}
pub(crate) struct PositioningContext {
for_nearest_positioned_ancestor: Option<Vec<HoistedAbsolutelyPositionedBox>>,
// For nearest `containing block for all descendants` as defined by the CSS transforms
// spec.
// https://www.w3.org/TR/css-transforms-1/#containing-block-for-all-descendants
for_nearest_containing_block_for_all_descendants: Vec<HoistedAbsolutelyPositionedBox>,
}
pub(crate) struct HoistedAbsolutelyPositionedBox {
absolutely_positioned_box: ArcRefCell<AbsolutelyPositionedBox>,
/// The rank of the child from which this absolutely positioned fragment
/// came from, when doing the layout of a block container. Used to compute
/// static positions when going up the tree.
pub(crate) tree_rank: usize,
/// A reference to a Fragment which is shared between this `HoistedAbsolutelyPositionedBox`
/// and its placeholder `AbsoluteOrFixedPositionedFragment` in the original tree position.
/// This will be used later in order to paint this hoisted box in tree order.
pub fragment: ArcRefCell<HoistedSharedFragment>,
}
impl AbsolutelyPositionedBox {
pub fn construct<'dom>(
context: &LayoutContext,
node_info: &NodeAndStyleInfo<impl NodeExt<'dom>>,
display_inside: DisplayInside,
contents: Contents,
) -> Self {
Self {
context: IndependentFormattingContext::construct(
context,
node_info,
display_inside,
contents,
// Text decorations are not propagated to any out-of-flow descendants.
TextDecorationLine::NONE,
),
}
}
pub(crate) fn to_hoisted(
self_: ArcRefCell<Self>,
initial_start_corner: Vec2<Length>,
tree_rank: usize,
containing_block: &ContainingBlock,
) -> HoistedAbsolutelyPositionedBox {
fn absolute_box_offsets(
initial_static_start: Length,
start: LengthPercentageOrAuto<'_>,
end: LengthPercentageOrAuto<'_>,
) -> AbsoluteBoxOffsets {
match (start.non_auto(), end.non_auto()) {
(None, None) => AbsoluteBoxOffsets::StaticStart {
start: initial_static_start,
},
(Some(start), Some(end)) => AbsoluteBoxOffsets::Both {
start: start.clone(),
end: end.clone(),
},
(None, Some(end)) => AbsoluteBoxOffsets::End { end: end.clone() },
(Some(start), None) => AbsoluteBoxOffsets::Start {
start: start.clone(),
},
}
}
let box_offsets = {
let box_ = self_.borrow();
let box_offsets = box_.context.style().box_offsets(containing_block);
Vec2 {
inline: absolute_box_offsets(
initial_start_corner.inline,
box_offsets.inline_start,
box_offsets.inline_end,
),
block: absolute_box_offsets(
initial_start_corner.block,
box_offsets.block_start,
box_offsets.block_end,
),
}
};
HoistedAbsolutelyPositionedBox {
tree_rank,
fragment: ArcRefCell::new(HoistedSharedFragment::new(box_offsets)),
absolutely_positioned_box: self_,
}
}
}
impl PositioningContext {
pub(crate) fn new_for_containing_block_for_all_descendants() -> Self {
Self {
for_nearest_positioned_ancestor: None,
for_nearest_containing_block_for_all_descendants: Vec::new(),
}
}
pub(crate) fn new_for_rayon(collects_for_nearest_positioned_ancestor: bool) -> Self {
Self {
for_nearest_positioned_ancestor: if collects_for_nearest_positioned_ancestor {
Some(Vec::new())
} else {
None
},
for_nearest_containing_block_for_all_descendants: Vec::new(),
}
}
pub(crate) fn collects_for_nearest_positioned_ancestor(&self) -> bool {
self.for_nearest_positioned_ancestor.is_some()
}
pub(crate) fn new_for_style(style: &ComputedValues) -> Option<Self> {
if style.establishes_containing_block_for_all_descendants() {
Some(Self::new_for_containing_block_for_all_descendants())
} else if style.establishes_containing_block_for_absolute_descendants() {
Some(Self {
for_nearest_positioned_ancestor: Some(Vec::new()),
for_nearest_containing_block_for_all_descendants: Vec::new(),
})
} else {
None
}
}
/// Given `fragment_layout_fn`, a closure which lays out a fragment in a provided
/// `PositioningContext`, create a new positioning context if necessary for the fragment and
/// lay out the fragment and all its children. Returns the newly created `BoxFragment`.
pub(crate) fn layout_maybe_position_relative_fragment(
&mut self,
layout_context: &LayoutContext,
containing_block: &ContainingBlock,
style: &ComputedValues,
fragment_layout_fn: impl FnOnce(&mut Self) -> BoxFragment,
) -> BoxFragment {
// Try to create a context, but if one isn't necessary, simply create the fragment
// using the given closure and the current `PositioningContext`.
let mut new_context = match Self::new_for_style(style) {
Some(new_context) => new_context,
None => return fragment_layout_fn(self),
};
let mut new_fragment = fragment_layout_fn(&mut new_context);
new_context.layout_collected_children(layout_context, &mut new_fragment);
// If the new context has any hoisted boxes for the nearest containing block for
// all descendants than collect them and pass them up the tree.
vec_append_owned(
&mut self.for_nearest_containing_block_for_all_descendants,
new_context.for_nearest_containing_block_for_all_descendants,
);
if style.clone_position() == Position::Relative {
new_fragment.content_rect.start_corner +=
&relative_adjustement(style, containing_block);
}
new_fragment
}
// Lay out the hoisted boxes collected into this `PositioningContext` and add them
// to the given `BoxFragment`.
pub fn layout_collected_children(
&mut self,
layout_context: &LayoutContext,
new_fragment: &mut BoxFragment,
) {
let padding_rect = Rect {
size: new_fragment.content_rect.size.clone(),
// Ignore the content rects position in its own containing block:
start_corner: Vec2::zero(),
}
.inflate(&new_fragment.padding);
let containing_block = DefiniteContainingBlock {
size: padding_rect.size.clone(),
style: &new_fragment.style,
};
let take_hoisted_boxes_pending_layout = |context: &mut Self| match context
.for_nearest_positioned_ancestor
.as_mut()
{
Some(fragments) => std::mem::take(fragments),
None => std::mem::take(&mut context.for_nearest_containing_block_for_all_descendants),
};
// Loop because its possible that we discover (the static position of)
// more absolutely-positioned boxes while doing layout for others.
let mut hoisted_boxes = take_hoisted_boxes_pending_layout(self);
let mut laid_out_child_fragments = Vec::new();
while !hoisted_boxes.is_empty() {
HoistedAbsolutelyPositionedBox::layout_many(
layout_context,
&mut hoisted_boxes,
&mut laid_out_child_fragments,
&mut self.for_nearest_containing_block_for_all_descendants,
&containing_block,
);
hoisted_boxes = take_hoisted_boxes_pending_layout(self);
}
new_fragment.children.extend(laid_out_child_fragments);
}
pub(crate) fn push(&mut self, box_: HoistedAbsolutelyPositionedBox) {
if let Some(nearest) = &mut self.for_nearest_positioned_ancestor {
let position = box_
.absolutely_positioned_box
.borrow()
.context
.style()
.clone_position();
match position {
Position::Fixed => {}, // fall through
Position::Absolute => return nearest.push(box_),
Position::Static | Position::Relative => unreachable!(),
}
}
self.for_nearest_containing_block_for_all_descendants
.push(box_)
}
pub(crate) fn append(&mut self, other: Self) {
vec_append_owned(
&mut self.for_nearest_containing_block_for_all_descendants,
other.for_nearest_containing_block_for_all_descendants,
);
match (
self.for_nearest_positioned_ancestor.as_mut(),
other.for_nearest_positioned_ancestor,
) {
(Some(a), Some(b)) => vec_append_owned(a, b),
(None, None) => {},
_ => unreachable!(),
}
}
pub(crate) fn adjust_static_positions(
&mut self,
tree_rank_in_parent: usize,
f: impl FnOnce(&mut Self) -> Vec<Fragment>,
) -> Vec<Fragment> {
let for_containing_block_for_all_descendants =
self.for_nearest_containing_block_for_all_descendants.len();
let for_nearest_so_far = self
.for_nearest_positioned_ancestor
.as_ref()
.map(|v| v.len());
let fragments = f(self);
adjust_static_positions(
&mut self.for_nearest_containing_block_for_all_descendants
[for_containing_block_for_all_descendants..],
&fragments,
tree_rank_in_parent,
);
if let Some(nearest) = &mut self.for_nearest_positioned_ancestor {
adjust_static_positions(
&mut nearest[for_nearest_so_far.unwrap()..],
&fragments,
tree_rank_in_parent,
);
}
fragments
}
pub(crate) fn layout_initial_containing_block_children(
&mut self,
layout_context: &LayoutContext,
initial_containing_block: &DefiniteContainingBlock,
fragments: &mut Vec<ArcRefCell<Fragment>>,
) {
debug_assert!(self.for_nearest_positioned_ancestor.is_none());
// Loop because its possible that we discover (the static position of)
// more absolutely-positioned boxes while doing layout for others.
while !self
.for_nearest_containing_block_for_all_descendants
.is_empty()
{
HoistedAbsolutelyPositionedBox::layout_many(
layout_context,
&mut std::mem::take(&mut self.for_nearest_containing_block_for_all_descendants),
fragments,
&mut self.for_nearest_containing_block_for_all_descendants,
initial_containing_block,
)
}
}
pub(crate) fn clear(&mut self) {
self.for_nearest_containing_block_for_all_descendants
.clear();
self.for_nearest_positioned_ancestor
.as_mut()
.map(|v| v.clear());
}
}
impl HoistedAbsolutelyPositionedBox {
pub(crate) fn layout_many(
layout_context: &LayoutContext,
boxes: &mut [Self],
fragments: &mut Vec<ArcRefCell<Fragment>>,
for_nearest_containing_block_for_all_descendants: &mut Vec<HoistedAbsolutelyPositionedBox>,
containing_block: &DefiniteContainingBlock,
) {
if layout_context.use_rayon {
fragments.par_extend(boxes.par_iter_mut().mapfold_reduce_into(
for_nearest_containing_block_for_all_descendants,
|for_nearest_containing_block_for_all_descendants, box_| {
let new_fragment = ArcRefCell::new(Fragment::Box(box_.layout(
layout_context,
for_nearest_containing_block_for_all_descendants,
containing_block,
)));
box_.fragment.borrow_mut().fragment = Some(new_fragment.clone());
new_fragment
},
Vec::new,
vec_append_owned,
))
} else {
fragments.extend(boxes.iter_mut().map(|box_| {
let new_fragment = ArcRefCell::new(Fragment::Box(box_.layout(
layout_context,
for_nearest_containing_block_for_all_descendants,
containing_block,
)));
box_.fragment.borrow_mut().fragment = Some(new_fragment.clone());
new_fragment
}))
}
}
pub(crate) fn layout(
&mut self,
layout_context: &LayoutContext,
for_nearest_containing_block_for_all_descendants: &mut Vec<HoistedAbsolutelyPositionedBox>,
containing_block: &DefiniteContainingBlock,
) -> BoxFragment {
let cbis = containing_block.size.inline;
let cbbs = containing_block.size.block;
let mut absolutely_positioned_box = self.absolutely_positioned_box.borrow_mut();
let pbm = absolutely_positioned_box
.context
.style()
.padding_border_margin(&containing_block.into());
let computed_size = match &absolutely_positioned_box.context {
IndependentFormattingContext::Replaced(replaced) => {
// https://drafts.csswg.org/css2/visudet.html#abs-replaced-width
// https://drafts.csswg.org/css2/visudet.html#abs-replaced-height
let used_size = replaced.contents.used_size_as_if_inline_element(
&containing_block.into(),
&replaced.style,
None,
&pbm,
);
Vec2 {
inline: LengthOrAuto::LengthPercentage(used_size.inline),
block: LengthOrAuto::LengthPercentage(used_size.block),
}
},
IndependentFormattingContext::NonReplaced(non_replaced) => non_replaced
.style
.content_box_size(&containing_block.into(), &pbm),
};
let shared_fragment = self.fragment.borrow();
let inline_axis_solver = AbsoluteAxisSolver {
containing_size: cbis,
padding_border_sum: pbm.padding_border_sums.inline,
computed_margin_start: pbm.margin.inline_start,
computed_margin_end: pbm.margin.inline_end,
avoid_negative_margin_start: true,
box_offsets: &shared_fragment.box_offsets.inline,
};
let block_axis_solver = AbsoluteAxisSolver {
containing_size: cbbs,
padding_border_sum: pbm.padding_border_sums.block,
computed_margin_start: pbm.margin.block_start,
computed_margin_end: pbm.margin.block_end,
avoid_negative_margin_start: false,
box_offsets: &shared_fragment.box_offsets.block,
};
let overconstrained = Vec2 {
inline: inline_axis_solver.is_overconstrained_for_size(computed_size.inline),
block: block_axis_solver.is_overconstrained_for_size(computed_size.block),
};
let mut inline_axis = inline_axis_solver.solve_for_size(computed_size.inline);
let mut block_axis = block_axis_solver.solve_for_size(computed_size.block);
let mut positioning_context =
PositioningContext::new_for_style(absolutely_positioned_box.context.style()).unwrap();
let mut new_fragment = {
let content_size;
let fragments;
match &mut absolutely_positioned_box.context {
IndependentFormattingContext::Replaced(replaced) => {
// https://drafts.csswg.org/css2/visudet.html#abs-replaced-width
// https://drafts.csswg.org/css2/visudet.html#abs-replaced-height
let style = &replaced.style;
content_size = computed_size.auto_is(|| unreachable!());
fragments = replaced
.contents
.make_fragments(style, content_size.clone());
},
IndependentFormattingContext::NonReplaced(non_replaced) => {
// https://drafts.csswg.org/css2/#min-max-widths
// https://drafts.csswg.org/css2/#min-max-heights
let min_size = non_replaced
.style
.content_min_box_size(&containing_block.into(), &pbm)
.auto_is(|| Length::zero());
let max_size = non_replaced
.style
.content_max_box_size(&containing_block.into(), &pbm);
// https://drafts.csswg.org/css2/visudet.html#abs-non-replaced-width
// https://drafts.csswg.org/css2/visudet.html#abs-non-replaced-height
let mut inline_size = inline_axis.size.auto_is(|| {
let anchor = match inline_axis.anchor {
Anchor::Start(start) => start,
Anchor::End(end) => end,
};
let margin_sum = inline_axis.margin_start + inline_axis.margin_end;
let available_size =
cbis - anchor - pbm.padding_border_sums.inline - margin_sum;
non_replaced
.inline_content_sizes(layout_context)
.shrink_to_fit(available_size)
});
// If the tentative used inline size is greater than max-inline-size,
// recalculate the inline size and margins with max-inline-size as the
// computed inline-size. We can assume the new inline size wont be auto,
// because a non-auto computed inline-size always becomes the used value.
// https://drafts.csswg.org/css2/#min-max-widths (step 2)
if let Some(max) = max_size.inline {
if inline_size > max {
inline_axis = inline_axis_solver
.solve_for_size(LengthOrAuto::LengthPercentage(max));
inline_size = inline_axis.size.auto_is(|| unreachable!());
}
}
// If the tentative used inline size is less than min-inline-size,
// recalculate the inline size and margins with min-inline-size as the
// computed inline-size. We can assume the new inline size wont be auto,
// because a non-auto computed inline-size always becomes the used value.
// https://drafts.csswg.org/css2/#min-max-widths (step 3)
if inline_size < min_size.inline {
inline_axis = inline_axis_solver
.solve_for_size(LengthOrAuto::LengthPercentage(min_size.inline));
inline_size = inline_axis.size.auto_is(|| unreachable!());
}
struct Result {
content_size: Vec2<CSSPixelLength>,
fragments: Vec<Fragment>,
}
// If we end up recalculating the block size and margins below, we also need
// to relayout the children with a containing block of that size, otherwise
// percentages may be resolved incorrectly.
let mut try_layout = |size| {
let containing_block_for_children = ContainingBlock {
inline_size,
block_size: size,
style: &non_replaced.style,
};
// https://drafts.csswg.org/css-writing-modes/#orthogonal-flows
assert_eq!(
containing_block.style.writing_mode,
containing_block_for_children.style.writing_mode,
"Mixed writing modes are not supported yet"
);
let dummy_tree_rank = 0;
// Clear the context since we will lay out the same descendants
// more than once. Otherwise, absolute descendants will create
// multiple fragments which could later lead to double-borrow
// errors.
positioning_context.clear();
let independent_layout = non_replaced.layout(
layout_context,
&mut positioning_context,
&containing_block_for_children,
dummy_tree_rank,
);
let block_size = size.auto_is(|| independent_layout.content_block_size);
Result {
content_size: Vec2 {
inline: inline_size,
block: block_size,
},
fragments: independent_layout.fragments,
}
};
let mut result = try_layout(block_axis.size);
// If the tentative used block size is greater than max-block-size,
// recalculate the block size and margins with max-block-size as the
// computed block-size. We can assume the new block size wont be auto,
// because a non-auto computed block-size always becomes the used value.
// https://drafts.csswg.org/css2/#min-max-heights (step 2)
if let Some(max) = max_size.block {
if result.content_size.block > max {
block_axis = block_axis_solver
.solve_for_size(LengthOrAuto::LengthPercentage(max));
result = try_layout(LengthOrAuto::LengthPercentage(max));
}
}
// If the tentative used block size is less than min-block-size,
// recalculate the block size and margins with min-block-size as the
// computed block-size. We can assume the new block size wont be auto,
// because a non-auto computed block-size always becomes the used value.
// https://drafts.csswg.org/css2/#min-max-heights (step 3)
if result.content_size.block < min_size.block {
block_axis = block_axis_solver
.solve_for_size(LengthOrAuto::LengthPercentage(min_size.block));
result = try_layout(LengthOrAuto::LengthPercentage(min_size.block));
}
content_size = result.content_size;
fragments = result.fragments;
},
};
let margin = Sides {
inline_start: inline_axis.margin_start,
inline_end: inline_axis.margin_end,
block_start: block_axis.margin_start,
block_end: block_axis.margin_end,
};
let pb = &pbm.padding + &pbm.border;
let inline_start = match inline_axis.anchor {
Anchor::Start(start) => start + pb.inline_start + margin.inline_start,
Anchor::End(end) => {
cbis - end - pb.inline_end - margin.inline_end - content_size.inline
},
};
let block_start = match block_axis.anchor {
Anchor::Start(start) => start + pb.block_start + margin.block_start,
Anchor::End(end) => {
cbbs - end - pb.block_end - margin.block_end - content_size.block
},
};
let content_rect = Rect {
start_corner: Vec2 {
inline: inline_start,
block: block_start,
},
size: content_size,
};
let physical_overconstrained =
overconstrained.to_physical(containing_block.style.writing_mode);
BoxFragment::new_with_overconstrained(
absolutely_positioned_box.context.base_fragment_info(),
absolutely_positioned_box.context.style().clone(),
fragments,
content_rect,
pbm.padding,
pbm.border,
margin,
Length::zero(),
CollapsedBlockMargins::zero(),
physical_overconstrained,
)
};
positioning_context.layout_collected_children(layout_context, &mut new_fragment);
for_nearest_containing_block_for_all_descendants
.extend(positioning_context.for_nearest_containing_block_for_all_descendants);
new_fragment
}
}
enum Anchor {
Start(Length),
End(Length),
}
struct AxisResult {
anchor: Anchor,
size: LengthOrAuto,
margin_start: Length,
margin_end: Length,
}
struct AbsoluteAxisSolver<'a> {
containing_size: Length,
padding_border_sum: Length,
computed_margin_start: LengthOrAuto,
computed_margin_end: LengthOrAuto,
avoid_negative_margin_start: bool,
box_offsets: &'a AbsoluteBoxOffsets,
}
impl<'a> AbsoluteAxisSolver<'a> {
/// This unifies some of the parts in common in:
///
/// * https://drafts.csswg.org/css2/visudet.html#abs-non-replaced-width
/// * https://drafts.csswg.org/css2/visudet.html#abs-non-replaced-height
///
/// … and:
///
/// * https://drafts.csswg.org/css2/visudet.html#abs-replaced-width
/// * https://drafts.csswg.org/css2/visudet.html#abs-replaced-height
///
/// In the replaced case, `size` is never `Auto`.
fn solve_for_size(&self, computed_size: LengthOrAuto) -> AxisResult {
match self.box_offsets {
AbsoluteBoxOffsets::StaticStart { start } => AxisResult {
anchor: Anchor::Start(*start),
size: computed_size,
margin_start: self.computed_margin_start.auto_is(Length::zero),
margin_end: self.computed_margin_end.auto_is(Length::zero),
},
AbsoluteBoxOffsets::Start { start } => AxisResult {
anchor: Anchor::Start(start.percentage_relative_to(self.containing_size)),
size: computed_size,
margin_start: self.computed_margin_start.auto_is(Length::zero),
margin_end: self.computed_margin_end.auto_is(Length::zero),
},
AbsoluteBoxOffsets::End { end } => AxisResult {
anchor: Anchor::End(end.percentage_relative_to(self.containing_size)),
size: computed_size,
margin_start: self.computed_margin_start.auto_is(Length::zero),
margin_end: self.computed_margin_end.auto_is(Length::zero),
},
AbsoluteBoxOffsets::Both { start, end } => {
let start = start.percentage_relative_to(self.containing_size);
let end = end.percentage_relative_to(self.containing_size);
let margin_start;
let margin_end;
let used_size;
if let LengthOrAuto::LengthPercentage(s) = computed_size {
used_size = s;
let margins = self.containing_size - start - end - self.padding_border_sum - s;
match (self.computed_margin_start, self.computed_margin_end) {
(LengthOrAuto::Auto, LengthOrAuto::Auto) => {
if self.avoid_negative_margin_start && margins < Length::zero() {
margin_start = Length::zero();
margin_end = margins;
} else {
margin_start = margins / 2.;
margin_end = margins / 2.;
}
},
(LengthOrAuto::Auto, LengthOrAuto::LengthPercentage(end)) => {
margin_start = margins - end;
margin_end = end;
},
(LengthOrAuto::LengthPercentage(start), LengthOrAuto::Auto) => {
margin_start = start;
margin_end = margins - start;
},
(
LengthOrAuto::LengthPercentage(start),
LengthOrAuto::LengthPercentage(end),
) => {
margin_start = start;
margin_end = end;
},
}
} else {
margin_start = self.computed_margin_start.auto_is(Length::zero);
margin_end = self.computed_margin_end.auto_is(Length::zero);
// This may be negative, but the caller will later effectively
// clamp it to min-inline-size or min-block-size.
used_size = self.containing_size -
start -
end -
self.padding_border_sum -
margin_start -
margin_end;
};
AxisResult {
anchor: Anchor::Start(start),
size: LengthOrAuto::LengthPercentage(used_size),
margin_start,
margin_end,
}
},
}
}
fn is_overconstrained_for_size(&self, computed_size: LengthOrAuto) -> bool {
!computed_size.is_auto() &&
self.box_offsets.both_specified() &&
!self.computed_margin_start.is_auto() &&
!self.computed_margin_end.is_auto()
}
}
fn adjust_static_positions(
absolutely_positioned_fragments: &mut [HoistedAbsolutelyPositionedBox],
child_fragments: &[Fragment],
tree_rank_in_parent: usize,
) {
for abspos_fragment in absolutely_positioned_fragments {
let original_tree_rank = abspos_fragment.tree_rank;
abspos_fragment.tree_rank = tree_rank_in_parent;
let child_fragment_rect = match &child_fragments[original_tree_rank] {
Fragment::Box(b) => &b.content_rect,
Fragment::AbsoluteOrFixedPositioned(_) | Fragment::Float(_) => continue,
Fragment::Anonymous(a) => &a.rect,
_ => unreachable!(),
};
let mut shared_fragment = abspos_fragment.fragment.borrow_mut();
if let AbsoluteBoxOffsets::StaticStart { start } = &mut shared_fragment.box_offsets.inline {
*start += child_fragment_rect.start_corner.inline;
}
if let AbsoluteBoxOffsets::StaticStart { start } = &mut shared_fragment.box_offsets.block {
*start += child_fragment_rect.start_corner.block;
}
}
}
fn vec_append_owned<T>(a: &mut Vec<T>, mut b: Vec<T>) {
if a.is_empty() {
*a = b
} else {
a.append(&mut b)
}
}
/// https://drafts.csswg.org/css2/visuren.html#relative-positioning
pub(crate) fn relative_adjustement(
style: &ComputedValues,
containing_block: &ContainingBlock,
) -> Vec2<Length> {
// "If the height of the containing block is not specified explicitly (i.e.,
// it depends on content height), and this element is not absolutely
// positioned, the value computes to 'auto'.""
// https://www.w3.org/TR/CSS2/visudet.html#the-height-property
let cbis = containing_block.inline_size;
let cbbs = containing_block.block_size.auto_is(Length::zero);
let box_offsets = style
.box_offsets(containing_block)
.map_inline_and_block_axes(
|v| v.percentage_relative_to(cbis),
|v| v.percentage_relative_to(cbbs),
);
fn adjust(start: LengthOrAuto, end: LengthOrAuto) -> Length {
match (start, end) {
(LengthOrAuto::Auto, LengthOrAuto::Auto) => Length::zero(),
(LengthOrAuto::Auto, LengthOrAuto::LengthPercentage(end)) => -end,
(LengthOrAuto::LengthPercentage(start), _) => start,
}
}
Vec2 {
inline: adjust(box_offsets.inline_start, box_offsets.inline_end),
block: adjust(box_offsets.block_start, box_offsets.block_end),
}
}