mirror of
https://github.com/servo/servo.git
synced 2025-06-06 16:45:39 +00:00
1455 lines
58 KiB
Rust
1455 lines
58 KiB
Rust
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
|
|
|
|
//! Animated types for transform.
|
|
// There are still some implementation on Matrix3D in animated_properties.mako.rs
|
|
// because they still need mako to generate the code.
|
|
|
|
use super::animate_multiplicative_factor;
|
|
use super::{Animate, Procedure, ToAnimatedZero};
|
|
use crate::properties::animated_properties::ListAnimation;
|
|
use crate::values::computed::transform::Rotate as ComputedRotate;
|
|
use crate::values::computed::transform::Scale as ComputedScale;
|
|
use crate::values::computed::transform::Transform as ComputedTransform;
|
|
use crate::values::computed::transform::TransformOperation as ComputedTransformOperation;
|
|
use crate::values::computed::transform::Translate as ComputedTranslate;
|
|
use crate::values::computed::transform::{DirectionVector, Matrix, Matrix3D};
|
|
use crate::values::computed::Angle;
|
|
use crate::values::computed::{Length, LengthPercentage};
|
|
use crate::values::computed::{Number, Percentage};
|
|
use crate::values::distance::{ComputeSquaredDistance, SquaredDistance};
|
|
use crate::values::generics::transform::{self, Transform, TransformOperation};
|
|
use crate::values::generics::transform::{Rotate, Scale, Translate};
|
|
use crate::values::CSSFloat;
|
|
use crate::Zero;
|
|
use std::cmp;
|
|
|
|
// ------------------------------------
|
|
// Animations for Matrix/Matrix3D.
|
|
// ------------------------------------
|
|
/// A 2d matrix for interpolation.
|
|
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
#[allow(missing_docs)]
|
|
// FIXME: We use custom derive for ComputeSquaredDistance. However, If possible, we should convert
|
|
// the InnerMatrix2D into types with physical meaning. This custom derive computes the squared
|
|
// distance from each matrix item, and this makes the result different from that in Gecko if we
|
|
// have skew factor in the Matrix3D.
|
|
pub struct InnerMatrix2D {
|
|
pub m11: CSSFloat,
|
|
pub m12: CSSFloat,
|
|
pub m21: CSSFloat,
|
|
pub m22: CSSFloat,
|
|
}
|
|
|
|
impl Animate for InnerMatrix2D {
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
Ok(InnerMatrix2D {
|
|
m11: animate_multiplicative_factor(self.m11, other.m11, procedure)?,
|
|
m12: self.m12.animate(&other.m12, procedure)?,
|
|
m21: self.m21.animate(&other.m21, procedure)?,
|
|
m22: animate_multiplicative_factor(self.m22, other.m22, procedure)?,
|
|
})
|
|
}
|
|
}
|
|
|
|
/// A 2d translation function.
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
#[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug)]
|
|
pub struct Translate2D(f32, f32);
|
|
|
|
/// A 2d scale function.
|
|
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
pub struct Scale2D(f32, f32);
|
|
|
|
impl Animate for Scale2D {
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
Ok(Scale2D(
|
|
animate_multiplicative_factor(self.0, other.0, procedure)?,
|
|
animate_multiplicative_factor(self.1, other.1, procedure)?,
|
|
))
|
|
}
|
|
}
|
|
|
|
/// A decomposed 2d matrix.
|
|
#[derive(Clone, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
pub struct MatrixDecomposed2D {
|
|
/// The translation function.
|
|
pub translate: Translate2D,
|
|
/// The scale function.
|
|
pub scale: Scale2D,
|
|
/// The rotation angle.
|
|
pub angle: f32,
|
|
/// The inner matrix.
|
|
pub matrix: InnerMatrix2D,
|
|
}
|
|
|
|
impl Animate for MatrixDecomposed2D {
|
|
/// <https://drafts.csswg.org/css-transforms/#interpolation-of-decomposed-2d-matrix-values>
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
// If x-axis of one is flipped, and y-axis of the other,
|
|
// convert to an unflipped rotation.
|
|
let mut scale = self.scale;
|
|
let mut angle = self.angle;
|
|
let mut other_angle = other.angle;
|
|
if (scale.0 < 0.0 && other.scale.1 < 0.0) || (scale.1 < 0.0 && other.scale.0 < 0.0) {
|
|
scale.0 = -scale.0;
|
|
scale.1 = -scale.1;
|
|
angle += if angle < 0.0 { 180. } else { -180. };
|
|
}
|
|
|
|
// Don't rotate the long way around.
|
|
if angle == 0.0 {
|
|
angle = 360.
|
|
}
|
|
if other_angle == 0.0 {
|
|
other_angle = 360.
|
|
}
|
|
|
|
if (angle - other_angle).abs() > 180. {
|
|
if angle > other_angle {
|
|
angle -= 360.
|
|
} else {
|
|
other_angle -= 360.
|
|
}
|
|
}
|
|
|
|
// Interpolate all values.
|
|
let translate = self.translate.animate(&other.translate, procedure)?;
|
|
let scale = scale.animate(&other.scale, procedure)?;
|
|
let angle = angle.animate(&other_angle, procedure)?;
|
|
let matrix = self.matrix.animate(&other.matrix, procedure)?;
|
|
|
|
Ok(MatrixDecomposed2D {
|
|
translate,
|
|
scale,
|
|
angle,
|
|
matrix,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl ComputeSquaredDistance for MatrixDecomposed2D {
|
|
#[inline]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
// Use Radian to compute the distance.
|
|
const RAD_PER_DEG: f64 = std::f64::consts::PI / 180.0;
|
|
let angle1 = self.angle as f64 * RAD_PER_DEG;
|
|
let angle2 = other.angle as f64 * RAD_PER_DEG;
|
|
Ok(self.translate.compute_squared_distance(&other.translate)? +
|
|
self.scale.compute_squared_distance(&other.scale)? +
|
|
angle1.compute_squared_distance(&angle2)? +
|
|
self.matrix.compute_squared_distance(&other.matrix)?)
|
|
}
|
|
}
|
|
|
|
impl From<Matrix3D> for MatrixDecomposed2D {
|
|
/// Decompose a 2D matrix.
|
|
/// <https://drafts.csswg.org/css-transforms/#decomposing-a-2d-matrix>
|
|
fn from(matrix: Matrix3D) -> MatrixDecomposed2D {
|
|
let mut row0x = matrix.m11;
|
|
let mut row0y = matrix.m12;
|
|
let mut row1x = matrix.m21;
|
|
let mut row1y = matrix.m22;
|
|
|
|
let translate = Translate2D(matrix.m41, matrix.m42);
|
|
let mut scale = Scale2D(
|
|
(row0x * row0x + row0y * row0y).sqrt(),
|
|
(row1x * row1x + row1y * row1y).sqrt(),
|
|
);
|
|
|
|
// If determinant is negative, one axis was flipped.
|
|
let determinant = row0x * row1y - row0y * row1x;
|
|
if determinant < 0. {
|
|
if row0x < row1y {
|
|
scale.0 = -scale.0;
|
|
} else {
|
|
scale.1 = -scale.1;
|
|
}
|
|
}
|
|
|
|
// Renormalize matrix to remove scale.
|
|
if scale.0 != 0.0 {
|
|
row0x *= 1. / scale.0;
|
|
row0y *= 1. / scale.0;
|
|
}
|
|
if scale.1 != 0.0 {
|
|
row1x *= 1. / scale.1;
|
|
row1y *= 1. / scale.1;
|
|
}
|
|
|
|
// Compute rotation and renormalize matrix.
|
|
let mut angle = row0y.atan2(row0x);
|
|
if angle != 0.0 {
|
|
let sn = -row0y;
|
|
let cs = row0x;
|
|
let m11 = row0x;
|
|
let m12 = row0y;
|
|
let m21 = row1x;
|
|
let m22 = row1y;
|
|
row0x = cs * m11 + sn * m21;
|
|
row0y = cs * m12 + sn * m22;
|
|
row1x = -sn * m11 + cs * m21;
|
|
row1y = -sn * m12 + cs * m22;
|
|
}
|
|
|
|
let m = InnerMatrix2D {
|
|
m11: row0x,
|
|
m12: row0y,
|
|
m21: row1x,
|
|
m22: row1y,
|
|
};
|
|
|
|
// Convert into degrees because our rotation functions expect it.
|
|
angle = angle.to_degrees();
|
|
MatrixDecomposed2D {
|
|
translate: translate,
|
|
scale: scale,
|
|
angle: angle,
|
|
matrix: m,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<MatrixDecomposed2D> for Matrix3D {
|
|
/// Recompose a 2D matrix.
|
|
/// <https://drafts.csswg.org/css-transforms/#recomposing-to-a-2d-matrix>
|
|
fn from(decomposed: MatrixDecomposed2D) -> Matrix3D {
|
|
let mut computed_matrix = Matrix3D::identity();
|
|
computed_matrix.m11 = decomposed.matrix.m11;
|
|
computed_matrix.m12 = decomposed.matrix.m12;
|
|
computed_matrix.m21 = decomposed.matrix.m21;
|
|
computed_matrix.m22 = decomposed.matrix.m22;
|
|
|
|
// Translate matrix.
|
|
computed_matrix.m41 = decomposed.translate.0;
|
|
computed_matrix.m42 = decomposed.translate.1;
|
|
|
|
// Rotate matrix.
|
|
let angle = decomposed.angle.to_radians();
|
|
let cos_angle = angle.cos();
|
|
let sin_angle = angle.sin();
|
|
|
|
let mut rotate_matrix = Matrix3D::identity();
|
|
rotate_matrix.m11 = cos_angle;
|
|
rotate_matrix.m12 = sin_angle;
|
|
rotate_matrix.m21 = -sin_angle;
|
|
rotate_matrix.m22 = cos_angle;
|
|
|
|
// Multiplication of computed_matrix and rotate_matrix
|
|
computed_matrix = rotate_matrix.multiply(&computed_matrix);
|
|
|
|
// Scale matrix.
|
|
computed_matrix.m11 *= decomposed.scale.0;
|
|
computed_matrix.m12 *= decomposed.scale.0;
|
|
computed_matrix.m21 *= decomposed.scale.1;
|
|
computed_matrix.m22 *= decomposed.scale.1;
|
|
computed_matrix
|
|
}
|
|
}
|
|
|
|
impl Animate for Matrix {
|
|
#[cfg(feature = "servo")]
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
let this = Matrix3D::from(*self);
|
|
let other = Matrix3D::from(*other);
|
|
let this = MatrixDecomposed2D::from(this);
|
|
let other = MatrixDecomposed2D::from(other);
|
|
Ok(Matrix3D::from(this.animate(&other, procedure)?).into_2d()?)
|
|
}
|
|
|
|
#[cfg(feature = "gecko")]
|
|
// Gecko doesn't exactly follow the spec here; we use a different procedure
|
|
// to match it
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
let from = decompose_2d_matrix(&(*self).into());
|
|
let to = decompose_2d_matrix(&(*other).into());
|
|
match (from, to) {
|
|
(Ok(from), Ok(to)) => Matrix3D::from(from.animate(&to, procedure)?).into_2d(),
|
|
// Matrices can be undecomposable due to couple reasons, e.g.,
|
|
// non-invertible matrices. In this case, we should report Err here,
|
|
// and let the caller do the fallback procedure.
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A 3d translation.
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
#[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug)]
|
|
pub struct Translate3D(pub f32, pub f32, pub f32);
|
|
|
|
/// A 3d scale function.
|
|
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
pub struct Scale3D(pub f32, pub f32, pub f32);
|
|
|
|
impl Scale3D {
|
|
/// Negate self.
|
|
fn negate(&mut self) {
|
|
self.0 *= -1.0;
|
|
self.1 *= -1.0;
|
|
self.2 *= -1.0;
|
|
}
|
|
}
|
|
|
|
impl Animate for Scale3D {
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
Ok(Scale3D(
|
|
animate_multiplicative_factor(self.0, other.0, procedure)?,
|
|
animate_multiplicative_factor(self.1, other.1, procedure)?,
|
|
animate_multiplicative_factor(self.2, other.2, procedure)?,
|
|
))
|
|
}
|
|
}
|
|
|
|
/// A 3d skew function.
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
#[derive(Animate, Clone, Copy, Debug)]
|
|
pub struct Skew(f32, f32, f32);
|
|
|
|
impl ComputeSquaredDistance for Skew {
|
|
// We have to use atan() to convert the skew factors into skew angles, so implement
|
|
// ComputeSquaredDistance manually.
|
|
#[inline]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
Ok(self.0.atan().compute_squared_distance(&other.0.atan())? +
|
|
self.1.atan().compute_squared_distance(&other.1.atan())? +
|
|
self.2.atan().compute_squared_distance(&other.2.atan())?)
|
|
}
|
|
}
|
|
|
|
/// A 3d perspective transformation.
|
|
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
pub struct Perspective(pub f32, pub f32, pub f32, pub f32);
|
|
|
|
impl Animate for Perspective {
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
Ok(Perspective(
|
|
self.0.animate(&other.0, procedure)?,
|
|
self.1.animate(&other.1, procedure)?,
|
|
self.2.animate(&other.2, procedure)?,
|
|
animate_multiplicative_factor(self.3, other.3, procedure)?,
|
|
))
|
|
}
|
|
}
|
|
|
|
/// A quaternion used to represent a rotation.
|
|
#[derive(Clone, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
pub struct Quaternion(f64, f64, f64, f64);
|
|
|
|
impl Quaternion {
|
|
/// Return a quaternion from a unit direction vector and angle (unit: radian).
|
|
#[inline]
|
|
fn from_direction_and_angle(vector: &DirectionVector, angle: f64) -> Self {
|
|
debug_assert!(
|
|
(vector.length() - 1.).abs() < 0.0001,
|
|
"Only accept an unit direction vector to create a quaternion"
|
|
);
|
|
// Reference:
|
|
// https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
|
|
//
|
|
// if the direction axis is (x, y, z) = xi + yj + zk,
|
|
// and the angle is |theta|, this formula can be done using
|
|
// an extension of Euler's formula:
|
|
// q = cos(theta/2) + (xi + yj + zk)(sin(theta/2))
|
|
// = cos(theta/2) +
|
|
// x*sin(theta/2)i + y*sin(theta/2)j + z*sin(theta/2)k
|
|
Quaternion(
|
|
vector.x as f64 * (angle / 2.).sin(),
|
|
vector.y as f64 * (angle / 2.).sin(),
|
|
vector.z as f64 * (angle / 2.).sin(),
|
|
(angle / 2.).cos(),
|
|
)
|
|
}
|
|
|
|
/// Calculate the dot product.
|
|
#[inline]
|
|
fn dot(&self, other: &Self) -> f64 {
|
|
self.0 * other.0 + self.1 * other.1 + self.2 * other.2 + self.3 * other.3
|
|
}
|
|
|
|
/// Return the scaled quaternion by a factor.
|
|
#[inline]
|
|
fn scale(&self, factor: f64) -> Self {
|
|
Quaternion(
|
|
self.0 * factor,
|
|
self.1 * factor,
|
|
self.2 * factor,
|
|
self.3 * factor,
|
|
)
|
|
}
|
|
}
|
|
|
|
impl Animate for Quaternion {
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
use std::f64;
|
|
|
|
let (this_weight, other_weight) = procedure.weights();
|
|
debug_assert!(
|
|
// Doule EPSILON since both this_weight and other_weght have calculation errors
|
|
// which are approximately equal to EPSILON.
|
|
(this_weight + other_weight - 1.0f64).abs() <= f64::EPSILON * 2.0 ||
|
|
other_weight == 1.0f64 ||
|
|
other_weight == 0.0f64,
|
|
"animate should only be used for interpolating or accumulating transforms"
|
|
);
|
|
|
|
// We take a specialized code path for accumulation (where other_weight
|
|
// is 1).
|
|
if let Procedure::Accumulate { .. } = procedure {
|
|
debug_assert_eq!(other_weight, 1.0);
|
|
if this_weight == 0.0 {
|
|
return Ok(*other);
|
|
}
|
|
|
|
let clamped_w = self.3.min(1.0).max(-1.0);
|
|
|
|
// Determine the scale factor.
|
|
let mut theta = clamped_w.acos();
|
|
let mut scale = if theta == 0.0 { 0.0 } else { 1.0 / theta.sin() };
|
|
theta *= this_weight;
|
|
scale *= theta.sin();
|
|
|
|
// Scale the self matrix by this_weight.
|
|
let mut scaled_self = *self;
|
|
scaled_self.0 *= scale;
|
|
scaled_self.1 *= scale;
|
|
scaled_self.2 *= scale;
|
|
scaled_self.3 = theta.cos();
|
|
|
|
// Multiply scaled-self by other.
|
|
let a = &scaled_self;
|
|
let b = other;
|
|
return Ok(Quaternion(
|
|
a.3 * b.0 + a.0 * b.3 + a.1 * b.2 - a.2 * b.1,
|
|
a.3 * b.1 - a.0 * b.2 + a.1 * b.3 + a.2 * b.0,
|
|
a.3 * b.2 + a.0 * b.1 - a.1 * b.0 + a.2 * b.3,
|
|
a.3 * b.3 - a.0 * b.0 - a.1 * b.1 - a.2 * b.2,
|
|
));
|
|
}
|
|
|
|
// Straight from gfxQuaternion::Slerp.
|
|
//
|
|
// Dot product, clamped between -1 and 1.
|
|
let dot = (self.0 * other.0 + self.1 * other.1 + self.2 * other.2 + self.3 * other.3)
|
|
.min(1.0)
|
|
.max(-1.0);
|
|
|
|
if dot.abs() == 1.0 {
|
|
return Ok(*self);
|
|
}
|
|
|
|
let theta = dot.acos();
|
|
let rsintheta = 1.0 / (1.0 - dot * dot).sqrt();
|
|
|
|
let right_weight = (other_weight * theta).sin() * rsintheta;
|
|
let left_weight = (other_weight * theta).cos() - dot * right_weight;
|
|
|
|
let left = self.scale(left_weight);
|
|
let right = other.scale(right_weight);
|
|
|
|
Ok(Quaternion(
|
|
left.0 + right.0,
|
|
left.1 + right.1,
|
|
left.2 + right.2,
|
|
left.3 + right.3,
|
|
))
|
|
}
|
|
}
|
|
|
|
impl ComputeSquaredDistance for Quaternion {
|
|
#[inline]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
// Use quaternion vectors to get the angle difference. Both q1 and q2 are unit vectors,
|
|
// so we can get their angle difference by:
|
|
// cos(theta/2) = (q1 dot q2) / (|q1| * |q2|) = q1 dot q2.
|
|
let distance = self.dot(other).max(-1.0).min(1.0).acos() * 2.0;
|
|
Ok(SquaredDistance::from_sqrt(distance))
|
|
}
|
|
}
|
|
|
|
/// A decomposed 3d matrix.
|
|
#[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
pub struct MatrixDecomposed3D {
|
|
/// A translation function.
|
|
pub translate: Translate3D,
|
|
/// A scale function.
|
|
pub scale: Scale3D,
|
|
/// The skew component of the transformation.
|
|
pub skew: Skew,
|
|
/// The perspective component of the transformation.
|
|
pub perspective: Perspective,
|
|
/// The quaternion used to represent the rotation.
|
|
pub quaternion: Quaternion,
|
|
}
|
|
|
|
impl From<MatrixDecomposed3D> for Matrix3D {
|
|
/// Recompose a 3D matrix.
|
|
/// <https://drafts.csswg.org/css-transforms/#recomposing-to-a-3d-matrix>
|
|
fn from(decomposed: MatrixDecomposed3D) -> Matrix3D {
|
|
let mut matrix = Matrix3D::identity();
|
|
|
|
// Apply perspective
|
|
matrix.set_perspective(&decomposed.perspective);
|
|
|
|
// Apply translation
|
|
matrix.apply_translate(&decomposed.translate);
|
|
|
|
// Apply rotation
|
|
{
|
|
let x = decomposed.quaternion.0;
|
|
let y = decomposed.quaternion.1;
|
|
let z = decomposed.quaternion.2;
|
|
let w = decomposed.quaternion.3;
|
|
|
|
// Construct a composite rotation matrix from the quaternion values
|
|
// rotationMatrix is a identity 4x4 matrix initially
|
|
let mut rotation_matrix = Matrix3D::identity();
|
|
rotation_matrix.m11 = 1.0 - 2.0 * (y * y + z * z) as f32;
|
|
rotation_matrix.m12 = 2.0 * (x * y + z * w) as f32;
|
|
rotation_matrix.m13 = 2.0 * (x * z - y * w) as f32;
|
|
rotation_matrix.m21 = 2.0 * (x * y - z * w) as f32;
|
|
rotation_matrix.m22 = 1.0 - 2.0 * (x * x + z * z) as f32;
|
|
rotation_matrix.m23 = 2.0 * (y * z + x * w) as f32;
|
|
rotation_matrix.m31 = 2.0 * (x * z + y * w) as f32;
|
|
rotation_matrix.m32 = 2.0 * (y * z - x * w) as f32;
|
|
rotation_matrix.m33 = 1.0 - 2.0 * (x * x + y * y) as f32;
|
|
|
|
matrix = rotation_matrix.multiply(&matrix);
|
|
}
|
|
|
|
// Apply skew
|
|
{
|
|
let mut temp = Matrix3D::identity();
|
|
if decomposed.skew.2 != 0.0 {
|
|
temp.m32 = decomposed.skew.2;
|
|
matrix = temp.multiply(&matrix);
|
|
temp.m32 = 0.0;
|
|
}
|
|
|
|
if decomposed.skew.1 != 0.0 {
|
|
temp.m31 = decomposed.skew.1;
|
|
matrix = temp.multiply(&matrix);
|
|
temp.m31 = 0.0;
|
|
}
|
|
|
|
if decomposed.skew.0 != 0.0 {
|
|
temp.m21 = decomposed.skew.0;
|
|
matrix = temp.multiply(&matrix);
|
|
}
|
|
}
|
|
|
|
// Apply scale
|
|
matrix.apply_scale(&decomposed.scale);
|
|
|
|
matrix
|
|
}
|
|
}
|
|
|
|
/// Decompose a 3D matrix.
|
|
/// https://drafts.csswg.org/css-transforms-2/#decomposing-a-3d-matrix
|
|
/// http://www.realtimerendering.com/resources/GraphicsGems/gemsii/unmatrix.c
|
|
fn decompose_3d_matrix(mut matrix: Matrix3D) -> Result<MatrixDecomposed3D, ()> {
|
|
// Combine 2 point.
|
|
let combine = |a: [f32; 3], b: [f32; 3], ascl: f32, bscl: f32| {
|
|
[
|
|
(ascl * a[0]) + (bscl * b[0]),
|
|
(ascl * a[1]) + (bscl * b[1]),
|
|
(ascl * a[2]) + (bscl * b[2]),
|
|
]
|
|
};
|
|
// Dot product.
|
|
let dot = |a: [f32; 3], b: [f32; 3]| a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
|
|
// Cross product.
|
|
let cross = |row1: [f32; 3], row2: [f32; 3]| {
|
|
[
|
|
row1[1] * row2[2] - row1[2] * row2[1],
|
|
row1[2] * row2[0] - row1[0] * row2[2],
|
|
row1[0] * row2[1] - row1[1] * row2[0],
|
|
]
|
|
};
|
|
|
|
if matrix.m44 == 0.0 {
|
|
return Err(());
|
|
}
|
|
|
|
let scaling_factor = matrix.m44;
|
|
|
|
// Normalize the matrix.
|
|
matrix.scale_by_factor(1.0 / scaling_factor);
|
|
|
|
// perspective_matrix is used to solve for perspective, but it also provides
|
|
// an easy way to test for singularity of the upper 3x3 component.
|
|
let mut perspective_matrix = matrix;
|
|
|
|
perspective_matrix.m14 = 0.0;
|
|
perspective_matrix.m24 = 0.0;
|
|
perspective_matrix.m34 = 0.0;
|
|
perspective_matrix.m44 = 1.0;
|
|
|
|
if perspective_matrix.determinant() == 0.0 {
|
|
return Err(());
|
|
}
|
|
|
|
// First, isolate perspective.
|
|
let perspective = if matrix.m14 != 0.0 || matrix.m24 != 0.0 || matrix.m34 != 0.0 {
|
|
let right_hand_side: [f32; 4] = [matrix.m14, matrix.m24, matrix.m34, matrix.m44];
|
|
|
|
perspective_matrix = perspective_matrix.inverse().unwrap().transpose();
|
|
let perspective = perspective_matrix.pre_mul_point4(&right_hand_side);
|
|
// NOTE(emilio): Even though the reference algorithm clears the
|
|
// fourth column here (matrix.m14..matrix.m44), they're not used below
|
|
// so it's not really needed.
|
|
Perspective(
|
|
perspective[0],
|
|
perspective[1],
|
|
perspective[2],
|
|
perspective[3],
|
|
)
|
|
} else {
|
|
Perspective(0.0, 0.0, 0.0, 1.0)
|
|
};
|
|
|
|
// Next take care of translation (easy).
|
|
let translate = Translate3D(matrix.m41, matrix.m42, matrix.m43);
|
|
|
|
// Now get scale and shear. 'row' is a 3 element array of 3 component vectors
|
|
let mut row = matrix.get_matrix_3x3_part();
|
|
|
|
// Compute X scale factor and normalize first row.
|
|
let row0len = (row[0][0] * row[0][0] + row[0][1] * row[0][1] + row[0][2] * row[0][2]).sqrt();
|
|
let mut scale = Scale3D(row0len, 0.0, 0.0);
|
|
row[0] = [
|
|
row[0][0] / row0len,
|
|
row[0][1] / row0len,
|
|
row[0][2] / row0len,
|
|
];
|
|
|
|
// Compute XY shear factor and make 2nd row orthogonal to 1st.
|
|
let mut skew = Skew(dot(row[0], row[1]), 0.0, 0.0);
|
|
row[1] = combine(row[1], row[0], 1.0, -skew.0);
|
|
|
|
// Now, compute Y scale and normalize 2nd row.
|
|
let row1len = (row[1][0] * row[1][0] + row[1][1] * row[1][1] + row[1][2] * row[1][2]).sqrt();
|
|
scale.1 = row1len;
|
|
row[1] = [
|
|
row[1][0] / row1len,
|
|
row[1][1] / row1len,
|
|
row[1][2] / row1len,
|
|
];
|
|
skew.0 /= scale.1;
|
|
|
|
// Compute XZ and YZ shears, orthogonalize 3rd row
|
|
skew.1 = dot(row[0], row[2]);
|
|
row[2] = combine(row[2], row[0], 1.0, -skew.1);
|
|
skew.2 = dot(row[1], row[2]);
|
|
row[2] = combine(row[2], row[1], 1.0, -skew.2);
|
|
|
|
// Next, get Z scale and normalize 3rd row.
|
|
let row2len = (row[2][0] * row[2][0] + row[2][1] * row[2][1] + row[2][2] * row[2][2]).sqrt();
|
|
scale.2 = row2len;
|
|
row[2] = [
|
|
row[2][0] / row2len,
|
|
row[2][1] / row2len,
|
|
row[2][2] / row2len,
|
|
];
|
|
skew.1 /= scale.2;
|
|
skew.2 /= scale.2;
|
|
|
|
// At this point, the matrix (in rows) is orthonormal.
|
|
// Check for a coordinate system flip. If the determinant
|
|
// is -1, then negate the matrix and the scaling factors.
|
|
if dot(row[0], cross(row[1], row[2])) < 0.0 {
|
|
scale.negate();
|
|
for i in 0..3 {
|
|
row[i][0] *= -1.0;
|
|
row[i][1] *= -1.0;
|
|
row[i][2] *= -1.0;
|
|
}
|
|
}
|
|
|
|
// Now, get the rotations out.
|
|
let mut quaternion = Quaternion(
|
|
0.5 * ((1.0 + row[0][0] - row[1][1] - row[2][2]).max(0.0) as f64).sqrt(),
|
|
0.5 * ((1.0 - row[0][0] + row[1][1] - row[2][2]).max(0.0) as f64).sqrt(),
|
|
0.5 * ((1.0 - row[0][0] - row[1][1] + row[2][2]).max(0.0) as f64).sqrt(),
|
|
0.5 * ((1.0 + row[0][0] + row[1][1] + row[2][2]).max(0.0) as f64).sqrt(),
|
|
);
|
|
|
|
if row[2][1] > row[1][2] {
|
|
quaternion.0 = -quaternion.0
|
|
}
|
|
if row[0][2] > row[2][0] {
|
|
quaternion.1 = -quaternion.1
|
|
}
|
|
if row[1][0] > row[0][1] {
|
|
quaternion.2 = -quaternion.2
|
|
}
|
|
|
|
Ok(MatrixDecomposed3D {
|
|
translate,
|
|
scale,
|
|
skew,
|
|
perspective,
|
|
quaternion,
|
|
})
|
|
}
|
|
|
|
/// Decompose a 2D matrix for Gecko.
|
|
// Use the algorithm from nsStyleTransformMatrix::Decompose2DMatrix() in Gecko.
|
|
#[cfg(feature = "gecko")]
|
|
fn decompose_2d_matrix(matrix: &Matrix3D) -> Result<MatrixDecomposed3D, ()> {
|
|
// The index is column-major, so the equivalent transform matrix is:
|
|
// | m11 m21 0 m41 | => | m11 m21 | and translate(m41, m42)
|
|
// | m12 m22 0 m42 | | m12 m22 |
|
|
// | 0 0 1 0 |
|
|
// | 0 0 0 1 |
|
|
let (mut m11, mut m12) = (matrix.m11, matrix.m12);
|
|
let (mut m21, mut m22) = (matrix.m21, matrix.m22);
|
|
// Check if this is a singular matrix.
|
|
if m11 * m22 == m12 * m21 {
|
|
return Err(());
|
|
}
|
|
|
|
let mut scale_x = (m11 * m11 + m12 * m12).sqrt();
|
|
m11 /= scale_x;
|
|
m12 /= scale_x;
|
|
|
|
let mut shear_xy = m11 * m21 + m12 * m22;
|
|
m21 -= m11 * shear_xy;
|
|
m22 -= m12 * shear_xy;
|
|
|
|
let scale_y = (m21 * m21 + m22 * m22).sqrt();
|
|
m21 /= scale_y;
|
|
m22 /= scale_y;
|
|
shear_xy /= scale_y;
|
|
|
|
let determinant = m11 * m22 - m12 * m21;
|
|
// Determinant should now be 1 or -1.
|
|
if 0.99 > determinant.abs() || determinant.abs() > 1.01 {
|
|
return Err(());
|
|
}
|
|
|
|
if determinant < 0. {
|
|
m11 = -m11;
|
|
m12 = -m12;
|
|
shear_xy = -shear_xy;
|
|
scale_x = -scale_x;
|
|
}
|
|
|
|
Ok(MatrixDecomposed3D {
|
|
translate: Translate3D(matrix.m41, matrix.m42, 0.),
|
|
scale: Scale3D(scale_x, scale_y, 1.),
|
|
skew: Skew(shear_xy, 0., 0.),
|
|
perspective: Perspective(0., 0., 0., 1.),
|
|
quaternion: Quaternion::from_direction_and_angle(
|
|
&DirectionVector::new(0., 0., 1.),
|
|
m12.atan2(m11) as f64,
|
|
),
|
|
})
|
|
}
|
|
|
|
impl Animate for Matrix3D {
|
|
#[cfg(feature = "servo")]
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
if self.is_3d() || other.is_3d() {
|
|
let decomposed_from = decompose_3d_matrix(*self);
|
|
let decomposed_to = decompose_3d_matrix(*other);
|
|
match (decomposed_from, decomposed_to) {
|
|
(Ok(this), Ok(other)) => Ok(Matrix3D::from(this.animate(&other, procedure)?)),
|
|
// Matrices can be undecomposable due to couple reasons, e.g.,
|
|
// non-invertible matrices. In this case, we should report Err
|
|
// here, and let the caller do the fallback procedure.
|
|
_ => Err(()),
|
|
}
|
|
} else {
|
|
let this = MatrixDecomposed2D::from(*self);
|
|
let other = MatrixDecomposed2D::from(*other);
|
|
Ok(Matrix3D::from(this.animate(&other, procedure)?))
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "gecko")]
|
|
// Gecko doesn't exactly follow the spec here; we use a different procedure
|
|
// to match it
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
let (from, to) = if self.is_3d() || other.is_3d() {
|
|
(decompose_3d_matrix(*self), decompose_3d_matrix(*other))
|
|
} else {
|
|
(decompose_2d_matrix(self), decompose_2d_matrix(other))
|
|
};
|
|
match (from, to) {
|
|
(Ok(from), Ok(to)) => Ok(Matrix3D::from(from.animate(&to, procedure)?)),
|
|
// Matrices can be undecomposable due to couple reasons, e.g.,
|
|
// non-invertible matrices. In this case, we should report Err here,
|
|
// and let the caller do the fallback procedure.
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ComputeSquaredDistance for Matrix3D {
|
|
#[inline]
|
|
#[cfg(feature = "servo")]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
if self.is_3d() || other.is_3d() {
|
|
let from = decompose_3d_matrix(*self)?;
|
|
let to = decompose_3d_matrix(*other)?;
|
|
from.compute_squared_distance(&to)
|
|
} else {
|
|
let from = MatrixDecomposed2D::from(*self);
|
|
let to = MatrixDecomposed2D::from(*other);
|
|
from.compute_squared_distance(&to)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
#[cfg(feature = "gecko")]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
let (from, to) = if self.is_3d() || other.is_3d() {
|
|
(decompose_3d_matrix(*self)?, decompose_3d_matrix(*other)?)
|
|
} else {
|
|
(decompose_2d_matrix(self)?, decompose_2d_matrix(other)?)
|
|
};
|
|
from.compute_squared_distance(&to)
|
|
}
|
|
}
|
|
|
|
// ------------------------------------
|
|
// Animation for Transform list.
|
|
// ------------------------------------
|
|
fn is_matched_operation(
|
|
first: &ComputedTransformOperation,
|
|
second: &ComputedTransformOperation,
|
|
) -> bool {
|
|
match (first, second) {
|
|
(&TransformOperation::Matrix(..), &TransformOperation::Matrix(..)) |
|
|
(&TransformOperation::Matrix3D(..), &TransformOperation::Matrix3D(..)) |
|
|
(&TransformOperation::Skew(..), &TransformOperation::Skew(..)) |
|
|
(&TransformOperation::SkewX(..), &TransformOperation::SkewX(..)) |
|
|
(&TransformOperation::SkewY(..), &TransformOperation::SkewY(..)) |
|
|
(&TransformOperation::Rotate(..), &TransformOperation::Rotate(..)) |
|
|
(&TransformOperation::Rotate3D(..), &TransformOperation::Rotate3D(..)) |
|
|
(&TransformOperation::RotateX(..), &TransformOperation::RotateX(..)) |
|
|
(&TransformOperation::RotateY(..), &TransformOperation::RotateY(..)) |
|
|
(&TransformOperation::RotateZ(..), &TransformOperation::RotateZ(..)) |
|
|
(&TransformOperation::Perspective(..), &TransformOperation::Perspective(..)) => true,
|
|
// Match functions that have the same primitive transform function
|
|
(a, b) if a.is_translate() && b.is_translate() => true,
|
|
(a, b) if a.is_scale() && b.is_scale() => true,
|
|
(a, b) if a.is_rotate() && b.is_rotate() => true,
|
|
// InterpolateMatrix and AccumulateMatrix are for mismatched transforms
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
/// <https://drafts.csswg.org/css-transforms/#interpolation-of-transforms>
|
|
impl Animate for ComputedTransform {
|
|
#[inline]
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
use std::borrow::Cow;
|
|
|
|
// Addition for transforms simply means appending to the list of
|
|
// transform functions. This is different to how we handle the other
|
|
// animation procedures so we treat it separately here rather than
|
|
// handling it in TransformOperation.
|
|
if procedure == Procedure::Add {
|
|
let result = self.0.iter().chain(&*other.0).cloned().collect();
|
|
return Ok(Transform(result));
|
|
}
|
|
|
|
let this = Cow::Borrowed(&self.0);
|
|
let other = Cow::Borrowed(&other.0);
|
|
|
|
// Interpolate the common prefix
|
|
let mut result = this
|
|
.iter()
|
|
.zip(other.iter())
|
|
.take_while(|(this, other)| is_matched_operation(this, other))
|
|
.map(|(this, other)| this.animate(other, procedure))
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
// Deal with the remainders
|
|
let this_remainder = if this.len() > result.len() {
|
|
Some(&this[result.len()..])
|
|
} else {
|
|
None
|
|
};
|
|
let other_remainder = if other.len() > result.len() {
|
|
Some(&other[result.len()..])
|
|
} else {
|
|
None
|
|
};
|
|
|
|
match (this_remainder, other_remainder) {
|
|
// If there is a remainder from *both* lists we must have had mismatched functions.
|
|
// => Add the remainders to a suitable ___Matrix function.
|
|
(Some(this_remainder), Some(other_remainder)) => match procedure {
|
|
Procedure::Add => {
|
|
debug_assert!(false, "Should have already dealt with add by the point");
|
|
return Err(());
|
|
},
|
|
Procedure::Interpolate { progress } => {
|
|
result.push(TransformOperation::InterpolateMatrix {
|
|
from_list: Transform(this_remainder.to_vec().into()),
|
|
to_list: Transform(other_remainder.to_vec().into()),
|
|
progress: Percentage(progress as f32),
|
|
});
|
|
},
|
|
Procedure::Accumulate { count } => {
|
|
result.push(TransformOperation::AccumulateMatrix {
|
|
from_list: Transform(this_remainder.to_vec().into()),
|
|
to_list: Transform(other_remainder.to_vec().into()),
|
|
count: cmp::min(count, i32::max_value() as u64) as i32,
|
|
});
|
|
},
|
|
},
|
|
// If there is a remainder from just one list, then one list must be shorter but
|
|
// completely match the type of the corresponding functions in the longer list.
|
|
// => Interpolate the remainder with identity transforms.
|
|
(Some(remainder), None) | (None, Some(remainder)) => {
|
|
let fill_right = this_remainder.is_some();
|
|
result.append(
|
|
&mut remainder
|
|
.iter()
|
|
.map(|transform| {
|
|
let identity = transform.to_animated_zero().unwrap();
|
|
|
|
match transform {
|
|
// We can't interpolate/accumulate ___Matrix types directly with a
|
|
// matrix. Instead we need to wrap it in another ___Matrix type.
|
|
TransformOperation::AccumulateMatrix { .. } |
|
|
TransformOperation::InterpolateMatrix { .. } => {
|
|
let transform_list = Transform(vec![transform.clone()].into());
|
|
let identity_list = Transform(vec![identity].into());
|
|
let (from_list, to_list) = if fill_right {
|
|
(transform_list, identity_list)
|
|
} else {
|
|
(identity_list, transform_list)
|
|
};
|
|
|
|
match procedure {
|
|
Procedure::Add => Err(()),
|
|
Procedure::Interpolate { progress } => {
|
|
Ok(TransformOperation::InterpolateMatrix {
|
|
from_list,
|
|
to_list,
|
|
progress: Percentage(progress as f32),
|
|
})
|
|
},
|
|
Procedure::Accumulate { count } => {
|
|
Ok(TransformOperation::AccumulateMatrix {
|
|
from_list,
|
|
to_list,
|
|
count: cmp::min(count, i32::max_value() as u64)
|
|
as i32,
|
|
})
|
|
},
|
|
}
|
|
},
|
|
_ => {
|
|
let (lhs, rhs) = if fill_right {
|
|
(transform, &identity)
|
|
} else {
|
|
(&identity, transform)
|
|
};
|
|
lhs.animate(rhs, procedure)
|
|
},
|
|
}
|
|
})
|
|
.collect::<Result<Vec<_>, _>>()?,
|
|
);
|
|
},
|
|
(None, None) => {},
|
|
}
|
|
|
|
Ok(Transform(result.into()))
|
|
}
|
|
}
|
|
|
|
impl ComputeSquaredDistance for ComputedTransform {
|
|
#[inline]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
let squared_dist = self.0.squared_distance_with_zero(&other.0);
|
|
|
|
// Roll back to matrix interpolation if there is any Err(()) in the
|
|
// transform lists, such as mismatched transform functions.
|
|
if squared_dist.is_err() {
|
|
let matrix1: Matrix3D = self.to_transform_3d_matrix(None)?.0.into();
|
|
let matrix2: Matrix3D = other.to_transform_3d_matrix(None)?.0.into();
|
|
return matrix1.compute_squared_distance(&matrix2);
|
|
}
|
|
|
|
squared_dist
|
|
}
|
|
}
|
|
|
|
/// <http://dev.w3.org/csswg/css-transforms/#interpolation-of-transforms>
|
|
impl Animate for ComputedTransformOperation {
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
match (self, other) {
|
|
(&TransformOperation::Matrix3D(ref this), &TransformOperation::Matrix3D(ref other)) => {
|
|
Ok(TransformOperation::Matrix3D(
|
|
this.animate(other, procedure)?,
|
|
))
|
|
},
|
|
(&TransformOperation::Matrix(ref this), &TransformOperation::Matrix(ref other)) => {
|
|
Ok(TransformOperation::Matrix(this.animate(other, procedure)?))
|
|
},
|
|
(
|
|
&TransformOperation::Skew(ref fx, ref fy),
|
|
&TransformOperation::Skew(ref tx, ref ty),
|
|
) => Ok(TransformOperation::Skew(
|
|
fx.animate(tx, procedure)?,
|
|
fy.animate(ty, procedure)?,
|
|
)),
|
|
(&TransformOperation::SkewX(ref f), &TransformOperation::SkewX(ref t)) => {
|
|
Ok(TransformOperation::SkewX(f.animate(t, procedure)?))
|
|
},
|
|
(&TransformOperation::SkewY(ref f), &TransformOperation::SkewY(ref t)) => {
|
|
Ok(TransformOperation::SkewY(f.animate(t, procedure)?))
|
|
},
|
|
(
|
|
&TransformOperation::Translate3D(ref fx, ref fy, ref fz),
|
|
&TransformOperation::Translate3D(ref tx, ref ty, ref tz),
|
|
) => Ok(TransformOperation::Translate3D(
|
|
fx.animate(tx, procedure)?,
|
|
fy.animate(ty, procedure)?,
|
|
fz.animate(tz, procedure)?,
|
|
)),
|
|
(
|
|
&TransformOperation::Translate(ref fx, ref fy),
|
|
&TransformOperation::Translate(ref tx, ref ty),
|
|
) => Ok(TransformOperation::Translate(
|
|
fx.animate(tx, procedure)?,
|
|
fy.animate(ty, procedure)?,
|
|
)),
|
|
(&TransformOperation::TranslateX(ref f), &TransformOperation::TranslateX(ref t)) => {
|
|
Ok(TransformOperation::TranslateX(f.animate(t, procedure)?))
|
|
},
|
|
(&TransformOperation::TranslateY(ref f), &TransformOperation::TranslateY(ref t)) => {
|
|
Ok(TransformOperation::TranslateY(f.animate(t, procedure)?))
|
|
},
|
|
(&TransformOperation::TranslateZ(ref f), &TransformOperation::TranslateZ(ref t)) => {
|
|
Ok(TransformOperation::TranslateZ(f.animate(t, procedure)?))
|
|
},
|
|
(
|
|
&TransformOperation::Scale3D(ref fx, ref fy, ref fz),
|
|
&TransformOperation::Scale3D(ref tx, ref ty, ref tz),
|
|
) => Ok(TransformOperation::Scale3D(
|
|
animate_multiplicative_factor(*fx, *tx, procedure)?,
|
|
animate_multiplicative_factor(*fy, *ty, procedure)?,
|
|
animate_multiplicative_factor(*fz, *tz, procedure)?,
|
|
)),
|
|
(&TransformOperation::ScaleX(ref f), &TransformOperation::ScaleX(ref t)) => Ok(
|
|
TransformOperation::ScaleX(animate_multiplicative_factor(*f, *t, procedure)?),
|
|
),
|
|
(&TransformOperation::ScaleY(ref f), &TransformOperation::ScaleY(ref t)) => Ok(
|
|
TransformOperation::ScaleY(animate_multiplicative_factor(*f, *t, procedure)?),
|
|
),
|
|
(&TransformOperation::ScaleZ(ref f), &TransformOperation::ScaleZ(ref t)) => Ok(
|
|
TransformOperation::ScaleZ(animate_multiplicative_factor(*f, *t, procedure)?),
|
|
),
|
|
(
|
|
&TransformOperation::Scale(ref fx, ref fy),
|
|
&TransformOperation::Scale(ref tx, ref ty),
|
|
) => Ok(TransformOperation::Scale(
|
|
animate_multiplicative_factor(*fx, *tx, procedure)?,
|
|
animate_multiplicative_factor(*fy, *ty, procedure)?,
|
|
)),
|
|
(
|
|
&TransformOperation::Rotate3D(fx, fy, fz, fa),
|
|
&TransformOperation::Rotate3D(tx, ty, tz, ta),
|
|
) => {
|
|
let animated = Rotate::Rotate3D(fx, fy, fz, fa)
|
|
.animate(&Rotate::Rotate3D(tx, ty, tz, ta), procedure)?;
|
|
let (fx, fy, fz, fa) = ComputedRotate::resolve(&animated);
|
|
Ok(TransformOperation::Rotate3D(fx, fy, fz, fa))
|
|
},
|
|
(&TransformOperation::RotateX(fa), &TransformOperation::RotateX(ta)) => {
|
|
Ok(TransformOperation::RotateX(fa.animate(&ta, procedure)?))
|
|
},
|
|
(&TransformOperation::RotateY(fa), &TransformOperation::RotateY(ta)) => {
|
|
Ok(TransformOperation::RotateY(fa.animate(&ta, procedure)?))
|
|
},
|
|
(&TransformOperation::RotateZ(fa), &TransformOperation::RotateZ(ta)) => {
|
|
Ok(TransformOperation::RotateZ(fa.animate(&ta, procedure)?))
|
|
},
|
|
(&TransformOperation::Rotate(fa), &TransformOperation::Rotate(ta)) => {
|
|
Ok(TransformOperation::Rotate(fa.animate(&ta, procedure)?))
|
|
},
|
|
(&TransformOperation::Rotate(fa), &TransformOperation::RotateZ(ta)) => {
|
|
Ok(TransformOperation::Rotate(fa.animate(&ta, procedure)?))
|
|
},
|
|
(&TransformOperation::RotateZ(fa), &TransformOperation::Rotate(ta)) => {
|
|
Ok(TransformOperation::Rotate(fa.animate(&ta, procedure)?))
|
|
},
|
|
(
|
|
&TransformOperation::Perspective(ref fd),
|
|
&TransformOperation::Perspective(ref td),
|
|
) => {
|
|
use crate::values::computed::CSSPixelLength;
|
|
use crate::values::generics::transform::create_perspective_matrix;
|
|
|
|
// From https://drafts.csswg.org/css-transforms-2/#interpolation-of-transform-functions:
|
|
//
|
|
// The transform functions matrix(), matrix3d() and
|
|
// perspective() get converted into 4x4 matrices first and
|
|
// interpolated as defined in section Interpolation of
|
|
// Matrices afterwards.
|
|
//
|
|
let from = create_perspective_matrix(fd.px());
|
|
let to = create_perspective_matrix(td.px());
|
|
|
|
let interpolated = Matrix3D::from(from).animate(&Matrix3D::from(to), procedure)?;
|
|
|
|
let decomposed = decompose_3d_matrix(interpolated)?;
|
|
let perspective_z = decomposed.perspective.2;
|
|
let used_value = if perspective_z == 0. {
|
|
0.
|
|
} else {
|
|
-1. / perspective_z
|
|
};
|
|
Ok(TransformOperation::Perspective(CSSPixelLength::new(
|
|
used_value,
|
|
)))
|
|
},
|
|
_ if self.is_translate() && other.is_translate() => self
|
|
.to_translate_3d()
|
|
.animate(&other.to_translate_3d(), procedure),
|
|
_ if self.is_scale() && other.is_scale() => {
|
|
self.to_scale_3d().animate(&other.to_scale_3d(), procedure)
|
|
},
|
|
_ if self.is_rotate() && other.is_rotate() => self
|
|
.to_rotate_3d()
|
|
.animate(&other.to_rotate_3d(), procedure),
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
// This might not be the most useful definition of distance. It might be better, for example,
|
|
// to trace the distance travelled by a point as its transform is interpolated between the two
|
|
// lists. That, however, proves to be quite complicated so we take a simple approach for now.
|
|
// See https://bugzilla.mozilla.org/show_bug.cgi?id=1318591#c0.
|
|
impl ComputeSquaredDistance for ComputedTransformOperation {
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
match (self, other) {
|
|
(&TransformOperation::Matrix3D(ref this), &TransformOperation::Matrix3D(ref other)) => {
|
|
this.compute_squared_distance(other)
|
|
},
|
|
(&TransformOperation::Matrix(ref this), &TransformOperation::Matrix(ref other)) => {
|
|
let this: Matrix3D = (*this).into();
|
|
let other: Matrix3D = (*other).into();
|
|
this.compute_squared_distance(&other)
|
|
},
|
|
(
|
|
&TransformOperation::Skew(ref fx, ref fy),
|
|
&TransformOperation::Skew(ref tx, ref ty),
|
|
) => Ok(fx.compute_squared_distance(&tx)? + fy.compute_squared_distance(&ty)?),
|
|
(&TransformOperation::SkewX(ref f), &TransformOperation::SkewX(ref t)) |
|
|
(&TransformOperation::SkewY(ref f), &TransformOperation::SkewY(ref t)) => {
|
|
f.compute_squared_distance(&t)
|
|
},
|
|
(
|
|
&TransformOperation::Translate3D(ref fx, ref fy, ref fz),
|
|
&TransformOperation::Translate3D(ref tx, ref ty, ref tz),
|
|
) => {
|
|
// For translate, We don't want to require doing layout in order
|
|
// to calculate the result, so drop the percentage part.
|
|
//
|
|
// However, dropping percentage makes us impossible to compute
|
|
// the distance for the percentage-percentage case, but Gecko
|
|
// uses the same formula, so it's fine for now.
|
|
let fx = fx.length_component().px();
|
|
let fy = fy.length_component().px();
|
|
let tx = tx.length_component().px();
|
|
let ty = ty.length_component().px();
|
|
|
|
Ok(fx.compute_squared_distance(&tx)? +
|
|
fy.compute_squared_distance(&ty)? +
|
|
fz.compute_squared_distance(&tz)?)
|
|
},
|
|
(
|
|
&TransformOperation::Scale3D(ref fx, ref fy, ref fz),
|
|
&TransformOperation::Scale3D(ref tx, ref ty, ref tz),
|
|
) => Ok(fx.compute_squared_distance(&tx)? +
|
|
fy.compute_squared_distance(&ty)? +
|
|
fz.compute_squared_distance(&tz)?),
|
|
(
|
|
&TransformOperation::Rotate3D(fx, fy, fz, fa),
|
|
&TransformOperation::Rotate3D(tx, ty, tz, ta),
|
|
) => Rotate::Rotate3D(fx, fy, fz, fa)
|
|
.compute_squared_distance(&Rotate::Rotate3D(tx, ty, tz, ta)),
|
|
(&TransformOperation::RotateX(fa), &TransformOperation::RotateX(ta)) |
|
|
(&TransformOperation::RotateY(fa), &TransformOperation::RotateY(ta)) |
|
|
(&TransformOperation::RotateZ(fa), &TransformOperation::RotateZ(ta)) |
|
|
(&TransformOperation::Rotate(fa), &TransformOperation::Rotate(ta)) => {
|
|
fa.compute_squared_distance(&ta)
|
|
},
|
|
(
|
|
&TransformOperation::Perspective(ref fd),
|
|
&TransformOperation::Perspective(ref td),
|
|
) => fd.compute_squared_distance(td),
|
|
(&TransformOperation::Perspective(ref p), &TransformOperation::Matrix3D(ref m)) |
|
|
(&TransformOperation::Matrix3D(ref m), &TransformOperation::Perspective(ref p)) => {
|
|
// FIXME(emilio): Is this right? Why interpolating this with
|
|
// Perspective but not with anything else?
|
|
let mut p_matrix = Matrix3D::identity();
|
|
if p.px() > 0. {
|
|
p_matrix.m34 = -1. / p.px();
|
|
}
|
|
p_matrix.compute_squared_distance(&m)
|
|
},
|
|
// Gecko cross-interpolates amongst all translate and all scale
|
|
// functions (See ToPrimitive in layout/style/StyleAnimationValue.cpp)
|
|
// without falling back to InterpolateMatrix
|
|
_ if self.is_translate() && other.is_translate() => self
|
|
.to_translate_3d()
|
|
.compute_squared_distance(&other.to_translate_3d()),
|
|
_ if self.is_scale() && other.is_scale() => self
|
|
.to_scale_3d()
|
|
.compute_squared_distance(&other.to_scale_3d()),
|
|
_ if self.is_rotate() && other.is_rotate() => self
|
|
.to_rotate_3d()
|
|
.compute_squared_distance(&other.to_rotate_3d()),
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------
|
|
// Individual transforms.
|
|
// ------------------------------------
|
|
/// <https://drafts.csswg.org/css-transforms-2/#propdef-rotate>
|
|
impl ComputedRotate {
|
|
fn resolve(&self) -> (Number, Number, Number, Angle) {
|
|
// According to the spec:
|
|
// https://drafts.csswg.org/css-transforms-2/#individual-transforms
|
|
//
|
|
// If the axis is unspecified, it defaults to "0 0 1"
|
|
match *self {
|
|
Rotate::None => (0., 0., 1., Angle::zero()),
|
|
Rotate::Rotate3D(rx, ry, rz, angle) => (rx, ry, rz, angle),
|
|
Rotate::Rotate(angle) => (0., 0., 1., angle),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Animate for ComputedRotate {
|
|
#[inline]
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
match (self, other) {
|
|
(&Rotate::None, &Rotate::None) => Ok(Rotate::None),
|
|
(&Rotate::Rotate3D(fx, fy, fz, fa), &Rotate::None) => {
|
|
// We always normalize direction vector for rotate3d() first, so we should also
|
|
// apply the same rule for rotate property. In other words, we promote none into
|
|
// a 3d rotate, and normalize both direction vector first, and then do
|
|
// interpolation.
|
|
let (fx, fy, fz, fa) = transform::get_normalized_vector_and_angle(fx, fy, fz, fa);
|
|
Ok(Rotate::Rotate3D(
|
|
fx,
|
|
fy,
|
|
fz,
|
|
fa.animate(&Angle::zero(), procedure)?,
|
|
))
|
|
},
|
|
(&Rotate::None, &Rotate::Rotate3D(tx, ty, tz, ta)) => {
|
|
// Normalize direction vector first.
|
|
let (tx, ty, tz, ta) = transform::get_normalized_vector_and_angle(tx, ty, tz, ta);
|
|
Ok(Rotate::Rotate3D(
|
|
tx,
|
|
ty,
|
|
tz,
|
|
Angle::zero().animate(&ta, procedure)?,
|
|
))
|
|
},
|
|
(&Rotate::Rotate3D(_, ..), _) | (_, &Rotate::Rotate3D(_, ..)) => {
|
|
let (from, to) = (self.resolve(), other.resolve());
|
|
let (mut fx, mut fy, mut fz, fa) =
|
|
transform::get_normalized_vector_and_angle(from.0, from.1, from.2, from.3);
|
|
let (mut tx, mut ty, mut tz, ta) =
|
|
transform::get_normalized_vector_and_angle(to.0, to.1, to.2, to.3);
|
|
|
|
if fa == Angle::from_degrees(0.) {
|
|
fx = tx;
|
|
fy = ty;
|
|
fz = tz;
|
|
} else if ta == Angle::from_degrees(0.) {
|
|
tx = fx;
|
|
ty = fy;
|
|
tz = fz;
|
|
}
|
|
|
|
if (fx, fy, fz) == (tx, ty, tz) {
|
|
return Ok(Rotate::Rotate3D(fx, fy, fz, fa.animate(&ta, procedure)?));
|
|
}
|
|
|
|
let fv = DirectionVector::new(fx, fy, fz);
|
|
let tv = DirectionVector::new(tx, ty, tz);
|
|
let fq = Quaternion::from_direction_and_angle(&fv, fa.radians64());
|
|
let tq = Quaternion::from_direction_and_angle(&tv, ta.radians64());
|
|
|
|
let rq = Quaternion::animate(&fq, &tq, procedure)?;
|
|
let (x, y, z, angle) = transform::get_normalized_vector_and_angle(
|
|
rq.0 as f32,
|
|
rq.1 as f32,
|
|
rq.2 as f32,
|
|
rq.3.acos() as f32 * 2.0,
|
|
);
|
|
|
|
Ok(Rotate::Rotate3D(x, y, z, Angle::from_radians(angle)))
|
|
},
|
|
(&Rotate::Rotate(_), _) | (_, &Rotate::Rotate(_)) => {
|
|
// If this is a 2D rotation, we just animate the <angle>
|
|
let (from, to) = (self.resolve().3, other.resolve().3);
|
|
Ok(Rotate::Rotate(from.animate(&to, procedure)?))
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ComputeSquaredDistance for ComputedRotate {
|
|
#[inline]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
match (self, other) {
|
|
(&Rotate::None, &Rotate::None) => Ok(SquaredDistance::from_sqrt(0.)),
|
|
(&Rotate::Rotate3D(_, _, _, a), &Rotate::None) |
|
|
(&Rotate::None, &Rotate::Rotate3D(_, _, _, a)) => {
|
|
a.compute_squared_distance(&Angle::zero())
|
|
},
|
|
(&Rotate::Rotate3D(_, ..), _) | (_, &Rotate::Rotate3D(_, ..)) => {
|
|
let (from, to) = (self.resolve(), other.resolve());
|
|
let (mut fx, mut fy, mut fz, angle1) =
|
|
transform::get_normalized_vector_and_angle(from.0, from.1, from.2, from.3);
|
|
let (mut tx, mut ty, mut tz, angle2) =
|
|
transform::get_normalized_vector_and_angle(to.0, to.1, to.2, to.3);
|
|
|
|
if angle1 == Angle::zero() {
|
|
fx = tx;
|
|
fy = ty;
|
|
fz = tz;
|
|
} else if angle2 == Angle::zero() {
|
|
tx = fx;
|
|
ty = fy;
|
|
tz = fz;
|
|
}
|
|
|
|
if (fx, fy, fz) == (tx, ty, tz) {
|
|
angle1.compute_squared_distance(&angle2)
|
|
} else {
|
|
let v1 = DirectionVector::new(fx, fy, fz);
|
|
let v2 = DirectionVector::new(tx, ty, tz);
|
|
let q1 = Quaternion::from_direction_and_angle(&v1, angle1.radians64());
|
|
let q2 = Quaternion::from_direction_and_angle(&v2, angle2.radians64());
|
|
q1.compute_squared_distance(&q2)
|
|
}
|
|
},
|
|
(&Rotate::Rotate(_), _) | (_, &Rotate::Rotate(_)) => self
|
|
.resolve()
|
|
.3
|
|
.compute_squared_distance(&other.resolve().3),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <https://drafts.csswg.org/css-transforms-2/#propdef-translate>
|
|
impl ComputedTranslate {
|
|
fn resolve(&self) -> (LengthPercentage, LengthPercentage, Length) {
|
|
// According to the spec:
|
|
// https://drafts.csswg.org/css-transforms-2/#individual-transforms
|
|
//
|
|
// Unspecified translations default to 0px
|
|
match *self {
|
|
Translate::None => (
|
|
LengthPercentage::zero(),
|
|
LengthPercentage::zero(),
|
|
Length::zero(),
|
|
),
|
|
Translate::Translate(ref tx, ref ty, ref tz) => (tx.clone(), ty.clone(), tz.clone()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Animate for ComputedTranslate {
|
|
#[inline]
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
match (self, other) {
|
|
(&Translate::None, &Translate::None) => Ok(Translate::None),
|
|
(&Translate::Translate(_, ..), _) | (_, &Translate::Translate(_, ..)) => {
|
|
let (from, to) = (self.resolve(), other.resolve());
|
|
Ok(Translate::Translate(
|
|
from.0.animate(&to.0, procedure)?,
|
|
from.1.animate(&to.1, procedure)?,
|
|
from.2.animate(&to.2, procedure)?,
|
|
))
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ComputeSquaredDistance for ComputedTranslate {
|
|
#[inline]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
let (from, to) = (self.resolve(), other.resolve());
|
|
Ok(from.0.compute_squared_distance(&to.0)? +
|
|
from.1.compute_squared_distance(&to.1)? +
|
|
from.2.compute_squared_distance(&to.2)?)
|
|
}
|
|
}
|
|
|
|
/// <https://drafts.csswg.org/css-transforms-2/#propdef-scale>
|
|
impl ComputedScale {
|
|
fn resolve(&self) -> (Number, Number, Number) {
|
|
// According to the spec:
|
|
// https://drafts.csswg.org/css-transforms-2/#individual-transforms
|
|
//
|
|
// Unspecified scales default to 1
|
|
match *self {
|
|
Scale::None => (1.0, 1.0, 1.0),
|
|
Scale::Scale(sx, sy, sz) => (sx, sy, sz),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Animate for ComputedScale {
|
|
#[inline]
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
match (self, other) {
|
|
(&Scale::None, &Scale::None) => Ok(Scale::None),
|
|
(&Scale::Scale(_, ..), _) | (_, &Scale::Scale(_, ..)) => {
|
|
let (from, to) = (self.resolve(), other.resolve());
|
|
// For transform lists, we add by appending to the list of
|
|
// transform functions. However, ComputedScale cannot be
|
|
// simply concatenated, so we have to calculate the additive
|
|
// result here.
|
|
if procedure == Procedure::Add {
|
|
// scale(x1,y1,z1)*scale(x2,y2,z2) = scale(x1*x2, y1*y2, z1*z2)
|
|
return Ok(Scale::Scale(from.0 * to.0, from.1 * to.1, from.2 * to.2));
|
|
}
|
|
Ok(Scale::Scale(
|
|
animate_multiplicative_factor(from.0, to.0, procedure)?,
|
|
animate_multiplicative_factor(from.1, to.1, procedure)?,
|
|
animate_multiplicative_factor(from.2, to.2, procedure)?,
|
|
))
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ComputeSquaredDistance for ComputedScale {
|
|
#[inline]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
let (from, to) = (self.resolve(), other.resolve());
|
|
Ok(from.0.compute_squared_distance(&to.0)? +
|
|
from.1.compute_squared_distance(&to.1)? +
|
|
from.2.compute_squared_distance(&to.2)?)
|
|
}
|
|
}
|