servo/components/layout_2020/geom.rs
Martin Robinson 59f5414ca8
Split line layout into two phases (#30089)
In the first phase, we gather LineItems and then when we have enough to
form a line we turn them into Fragments. This will make it possible to
more simply implement `vertical-align` and `text-align: justify` because
we need to measure the different aspects of the candidate line and then
produce a Fragments.

This is a general refactor of the way that inline layout works, so comes
with some progressions. In addition there are some new failures.

New failures:

Some tests are now failing because only the test or reference is getting
proper line height when it wasn't before. These should be fixed in a
followup change that properly calculate line-height in more cases:

 - /_mozilla/css/list_style_position_a.html
 - /css/CSS2/floats/float-no-content-beside-001.html
 - /css/css-content/pseudo-element-inline-box.html
 - /css/css-flexbox/flexbox_flex-none-wrappable-content.html

Some tests are now failing because floats are now placed properly, but
are no longer in their inline box stacking contexts. These will be fixed
by a followup change which properly parents them:

- /css/filter-effects/filtered-inline-applies-to-float.html.ini
- /css/css-color/inline-opacity-float-child.html.ini

One test is failing due to floating point precision errors:

- /css/CSS2/floats-clear/floats-141.xht.ini

Signed-off-by: Martin Robinson <mrobinson@igalia.com>
Co-authored-by: Mukilan Thiyagarajan <mukilan@igalia.com>
2023-08-11 07:19:50 +00:00

402 lines
12 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
use crate::ContainingBlock;
use std::fmt;
use std::ops::{Add, AddAssign, Sub};
use style::logical_geometry::{BlockFlowDirection, InlineBaseDirection};
use style::logical_geometry::{PhysicalCorner, WritingMode};
use style::values::computed::{Length, LengthPercentage};
use style::values::generics::length::GenericLengthPercentageOrAuto as AutoOr;
use style::Zero;
use style_traits::CSSPixel;
pub type PhysicalPoint<U> = euclid::Point2D<U, CSSPixel>;
pub type PhysicalSize<U> = euclid::Size2D<U, CSSPixel>;
pub type PhysicalRect<U> = euclid::Rect<U, CSSPixel>;
pub type PhysicalSides<U> = euclid::SideOffsets2D<U, CSSPixel>;
pub type LengthOrAuto = AutoOr<Length>;
pub type LengthPercentageOrAuto<'a> = AutoOr<&'a LengthPercentage>;
pub mod flow_relative {
#[derive(Clone, Serialize)]
pub struct Vec2<T> {
pub inline: T,
pub block: T,
}
#[derive(Clone, Serialize)]
pub struct Rect<T> {
pub start_corner: Vec2<T>,
pub size: Vec2<T>,
}
#[derive(Clone, Debug, Serialize)]
pub struct Sides<T> {
pub inline_start: T,
pub inline_end: T,
pub block_start: T,
pub block_end: T,
}
}
impl<T: fmt::Debug> fmt::Debug for flow_relative::Vec2<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// Not using f.debug_struct on purpose here, to keep {:?} output somewhat compact
f.write_str("Vec2 { i: ")?;
self.inline.fmt(f)?;
f.write_str(", b: ")?;
self.block.fmt(f)?;
f.write_str(" }")
}
}
impl<T: Clone> flow_relative::Vec2<T> {
pub fn from_physical_size(physical_size: &PhysicalSize<T>, mode: WritingMode) -> Self {
// https://drafts.csswg.org/css-writing-modes/#logical-to-physical
let (i, b) = if mode.is_horizontal() {
(&physical_size.width, &physical_size.height)
} else {
(&physical_size.height, &physical_size.width)
};
flow_relative::Vec2 {
inline: i.clone(),
block: b.clone(),
}
}
}
impl<T> Add<&'_ flow_relative::Vec2<T>> for &'_ flow_relative::Vec2<T>
where
T: Add<Output = T> + Copy,
{
type Output = flow_relative::Vec2<T>;
fn add(self, other: &'_ flow_relative::Vec2<T>) -> Self::Output {
flow_relative::Vec2 {
inline: self.inline + other.inline,
block: self.block + other.block,
}
}
}
impl<T> Sub<&'_ flow_relative::Vec2<T>> for &'_ flow_relative::Vec2<T>
where
T: Sub<Output = T> + Copy,
{
type Output = flow_relative::Vec2<T>;
fn sub(self, other: &'_ flow_relative::Vec2<T>) -> Self::Output {
flow_relative::Vec2 {
inline: self.inline - other.inline,
block: self.block - other.block,
}
}
}
impl<T> AddAssign<&'_ flow_relative::Vec2<T>> for flow_relative::Vec2<T>
where
T: AddAssign<T> + Copy,
{
fn add_assign(&mut self, other: &'_ flow_relative::Vec2<T>) {
self.inline += other.inline;
self.block += other.block;
}
}
impl flow_relative::Vec2<Length> {
pub fn zero() -> Self {
Self {
inline: Length::zero(),
block: Length::zero(),
}
}
}
impl flow_relative::Vec2<LengthOrAuto> {
pub fn auto_is(&self, f: impl Fn() -> Length) -> flow_relative::Vec2<Length> {
flow_relative::Vec2 {
inline: self.inline.auto_is(&f),
block: self.block.auto_is(&f),
}
}
}
impl flow_relative::Vec2<LengthPercentageOrAuto<'_>> {
pub fn percentages_relative_to(
&self,
containing_block: &ContainingBlock,
) -> flow_relative::Vec2<LengthOrAuto> {
flow_relative::Vec2 {
inline: self
.inline
.percentage_relative_to(containing_block.inline_size),
block: self
.block
.maybe_percentage_relative_to(containing_block.block_size.non_auto()),
}
}
}
impl flow_relative::Vec2<Option<&'_ LengthPercentage>> {
pub fn percentages_relative_to(
&self,
containing_block: &ContainingBlock,
) -> flow_relative::Vec2<Option<Length>> {
flow_relative::Vec2 {
inline: self
.inline
.map(|lp| lp.percentage_relative_to(containing_block.inline_size)),
block: self.block.and_then(|lp| {
lp.maybe_percentage_relative_to(containing_block.block_size.non_auto())
}),
}
}
}
impl flow_relative::Rect<Length> {
pub fn zero() -> Self {
Self {
start_corner: flow_relative::Vec2::zero(),
size: flow_relative::Vec2::zero(),
}
}
}
impl fmt::Debug for flow_relative::Rect<Length> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"Rect(i{}×b{} @ (i{},b{}))",
self.size.inline.px(),
self.size.block.px(),
self.start_corner.inline.px(),
self.start_corner.block.px(),
)
}
}
impl<T: Clone> flow_relative::Vec2<T> {
pub fn to_physical(&self, mode: WritingMode) -> PhysicalSize<T> {
// https://drafts.csswg.org/css-writing-modes/#logical-to-physical
let (x, y) = if mode.is_horizontal() {
(&self.inline, &self.block)
} else {
(&self.block, &self.inline)
};
PhysicalSize::new(x.clone(), y.clone())
}
}
impl<T: Clone> flow_relative::Sides<T> {
pub fn from_physical(sides: &PhysicalSides<T>, mode: WritingMode) -> Self {
// https://drafts.csswg.org/css-writing-modes/#logical-to-physical
let block_flow = mode.block_flow_direction();
let (bs, be) = match mode.block_flow_direction() {
BlockFlowDirection::TopToBottom => (&sides.top, &sides.bottom),
BlockFlowDirection::RightToLeft => (&sides.right, &sides.left),
BlockFlowDirection::LeftToRight => (&sides.left, &sides.right),
};
use BlockFlowDirection::TopToBottom;
let (is, ie) = match (block_flow, mode.inline_base_direction()) {
(TopToBottom, InlineBaseDirection::LeftToRight) => (&sides.left, &sides.right),
(TopToBottom, InlineBaseDirection::RightToLeft) => (&sides.right, &sides.left),
(_, InlineBaseDirection::LeftToRight) => (&sides.top, &sides.bottom),
(_, InlineBaseDirection::RightToLeft) => (&sides.bottom, &sides.top),
};
flow_relative::Sides {
inline_start: is.clone(),
inline_end: ie.clone(),
block_start: bs.clone(),
block_end: be.clone(),
}
}
}
impl<T> flow_relative::Sides<T> {
pub fn map<U>(&self, f: impl Fn(&T) -> U) -> flow_relative::Sides<U> {
flow_relative::Sides {
inline_start: f(&self.inline_start),
inline_end: f(&self.inline_end),
block_start: f(&self.block_start),
block_end: f(&self.block_end),
}
}
pub fn map_inline_and_block_axes<U>(
&self,
inline_f: impl Fn(&T) -> U,
block_f: impl Fn(&T) -> U,
) -> flow_relative::Sides<U> {
flow_relative::Sides {
inline_start: inline_f(&self.inline_start),
inline_end: inline_f(&self.inline_end),
block_start: block_f(&self.block_start),
block_end: block_f(&self.block_end),
}
}
pub fn inline_sum(&self) -> T::Output
where
T: Add + Copy,
{
self.inline_start + self.inline_end
}
pub fn block_sum(&self) -> T::Output
where
T: Add + Copy,
{
self.block_start + self.block_end
}
pub fn sum(&self) -> flow_relative::Vec2<T::Output>
where
T: Add + Copy,
{
flow_relative::Vec2 {
inline: self.inline_sum(),
block: self.block_sum(),
}
}
pub fn to_physical(&self, mode: WritingMode) -> PhysicalSides<T>
where
T: Clone,
{
let top;
let right;
let bottom;
let left;
if mode.is_vertical() {
if mode.is_vertical_lr() {
left = self.block_start.clone();
right = self.block_end.clone();
} else {
right = self.block_start.clone();
left = self.block_end.clone();
}
if mode.is_inline_tb() {
top = self.inline_start.clone();
bottom = self.inline_end.clone();
} else {
bottom = self.inline_start.clone();
top = self.inline_end.clone();
}
} else {
top = self.block_start.clone();
bottom = self.block_end.clone();
if mode.is_bidi_ltr() {
left = self.inline_start.clone();
right = self.inline_end.clone();
} else {
right = self.inline_start.clone();
left = self.inline_end.clone();
}
}
PhysicalSides::new(top, right, bottom, left)
}
}
impl<T> flow_relative::Sides<T>
where
T: Copy,
{
pub fn start_offset(&self) -> flow_relative::Vec2<T> {
flow_relative::Vec2 {
inline: self.inline_start,
block: self.block_start,
}
}
}
impl flow_relative::Sides<&'_ LengthPercentage> {
pub fn percentages_relative_to(&self, basis: Length) -> flow_relative::Sides<Length> {
self.map(|s| s.percentage_relative_to(basis))
}
}
impl flow_relative::Sides<LengthPercentageOrAuto<'_>> {
pub fn percentages_relative_to(&self, basis: Length) -> flow_relative::Sides<LengthOrAuto> {
self.map(|s| s.percentage_relative_to(basis))
}
}
impl flow_relative::Sides<LengthOrAuto> {
pub fn auto_is(&self, f: impl Fn() -> Length) -> flow_relative::Sides<Length> {
self.map(|s| s.auto_is(&f))
}
}
impl<T> Add<&'_ flow_relative::Sides<T>> for &'_ flow_relative::Sides<T>
where
T: Add<Output = T> + Copy,
{
type Output = flow_relative::Sides<T>;
fn add(self, other: &'_ flow_relative::Sides<T>) -> Self::Output {
flow_relative::Sides {
inline_start: self.inline_start + other.inline_start,
inline_end: self.inline_end + other.inline_end,
block_start: self.block_start + other.block_start,
block_end: self.block_end + other.block_end,
}
}
}
impl<T> flow_relative::Rect<T> {
pub fn max_inline_position(&self) -> T
where
T: Add<Output = T> + Copy,
{
self.start_corner.inline + self.size.inline
}
pub fn max_block_position(&self) -> T
where
T: Add<Output = T> + Copy,
{
self.start_corner.block + self.size.block
}
pub fn inflate(&self, sides: &flow_relative::Sides<T>) -> Self
where
T: Add<Output = T> + Copy,
T: Sub<Output = T> + Copy,
{
flow_relative::Rect {
start_corner: flow_relative::Vec2 {
inline: self.start_corner.inline - sides.inline_start,
block: self.start_corner.block - sides.block_start,
},
size: flow_relative::Vec2 {
inline: self.size.inline + sides.inline_sum(),
block: self.size.block + sides.block_sum(),
},
}
}
pub fn to_physical(
&self,
mode: WritingMode,
// Will be needed for other writing modes
// FIXME: what if the containing block has a different mode?
// https://drafts.csswg.org/css-writing-modes/#orthogonal-flows
_containing_block: &PhysicalRect<T>,
) -> PhysicalRect<T>
where
T: Clone,
{
// Top-left corner
let (tl_x, tl_y) = match mode.start_start_physical_corner() {
PhysicalCorner::TopLeft => (&self.start_corner.inline, &self.start_corner.block),
_ => unimplemented!(),
};
PhysicalRect::new(
PhysicalPoint::new(tl_x.clone(), tl_y.clone()),
self.size.to_physical(mode),
)
}
}