servo/components/layout/layout_task.rs
Patrick Walton f10c076180 profile: Make the time and memory profilers run over IPC.
Uses the `Router` abstraction inside `ipc-channel` to avoid spawning new
threads.
2015-07-24 17:02:17 -07:00

1436 lines
62 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! The layout task. Performs layout on the DOM, builds display lists and sends them to be
//! painted.
#![allow(unsafe_code)]
use animation;
use construct::ConstructionResult;
use context::{SharedLayoutContext, heap_size_of_local_context};
use css::node_style::StyledNode;
use data::LayoutDataWrapper;
use display_list_builder::ToGfxColor;
use flow::{self, Flow, ImmutableFlowUtils, MutableFlowUtils, MutableOwnedFlowUtils};
use flow_ref::FlowRef;
use fragment::{Fragment, FragmentBorderBoxIterator};
use incremental::{LayoutDamageComputation, REFLOW, REFLOW_ENTIRE_DOCUMENT, REPAINT};
use layout_debug;
use opaque_node::OpaqueNodeMethods;
use parallel::{self, WorkQueueData};
use sequential;
use wrapper::LayoutNode;
use azure::azure::AzColor;
use canvas_traits::CanvasMsg;
use encoding::EncodingRef;
use encoding::all::UTF_8;
use fnv::FnvHasher;
use euclid::Matrix4;
use euclid::point::Point2D;
use euclid::rect::Rect;
use euclid::scale_factor::ScaleFactor;
use euclid::size::Size2D;
use gfx_traits::color;
use gfx::display_list::{ClippingRegion, DisplayItemMetadata, DisplayList, OpaqueNode};
use gfx::display_list::StackingContext;
use gfx::font_cache_task::FontCacheTask;
use gfx::paint_task::Msg as PaintMsg;
use gfx::paint_task::{PaintChan, PaintLayer};
use ipc_channel::ipc::{self, IpcReceiver};
use ipc_channel::router::ROUTER;
use layout_traits::LayoutTaskFactory;
use log;
use msg::compositor_msg::{Epoch, ScrollPolicy, LayerId};
use msg::constellation_msg::Msg as ConstellationMsg;
use msg::constellation_msg::{ConstellationChan, Failure, PipelineExitType, PipelineId};
use profile_traits::mem::{self, Report, Reporter, ReporterRequest, ReportsChan};
use profile_traits::time::{self, ProfilerMetadata, profile};
use profile_traits::time::{TimerMetadataFrameType, TimerMetadataReflowType};
use net_traits::{load_bytes_iter, PendingAsyncLoad};
use net_traits::image_cache_task::{ImageCacheTask, ImageCacheResult, ImageCacheChan};
use script::dom::bindings::js::LayoutJS;
use script::dom::node::{LayoutData, Node};
use script::layout_interface::{Animation, ContentBoxResponse, ContentBoxesResponse};
use script::layout_interface::{HitTestResponse, LayoutChan, LayoutRPC, MouseOverResponse};
use script::layout_interface::{NewLayoutTaskInfo, Msg, Reflow, ReflowGoal, ReflowQueryType};
use script::layout_interface::{ScriptLayoutChan, ScriptReflow, TrustedNodeAddress};
use script_traits::{ConstellationControlMsg, LayoutControlMsg, OpaqueScriptLayoutChannel};
use script_traits::{ScriptControlChan, StylesheetLoadResponder};
use serde::json;
use std::borrow::ToOwned;
use std::cell::Cell;
use std::collections::HashMap;
use std::collections::hash_state::DefaultState;
use std::mem::transmute;
use std::ops::{Deref, DerefMut};
use std::sync::mpsc::{channel, Sender, Receiver, Select};
use std::sync::{Arc, Mutex, MutexGuard};
use std::thread;
use style::computed_values::{filter, mix_blend_mode};
use style::media_queries::{MediaType, MediaQueryList, Device};
use style::selector_matching::Stylist;
use style::stylesheets::{Origin, Stylesheet, CSSRuleIteratorExt};
use url::Url;
use util::cursor::Cursor;
use util::geometry::{Au, MAX_RECT};
use util::logical_geometry::LogicalPoint;
use util::mem::HeapSizeOf;
use util::opts;
use util::task::spawn_named_with_send_on_failure;
use util::task_state;
use util::workqueue::WorkQueue;
/// The number of screens of data we're allowed to generate display lists for in each direction.
pub const DISPLAY_PORT_SIZE_FACTOR: i32 = 8;
/// The number of screens we have to traverse before we decide to generate new display lists.
const DISPLAY_PORT_THRESHOLD_SIZE_FACTOR: i32 = 4;
/// Mutable data belonging to the LayoutTask.
///
/// This needs to be protected by a mutex so we can do fast RPCs.
pub struct LayoutTaskData {
/// The root of the flow tree.
pub root_flow: Option<FlowRef>,
/// The image cache.
pub image_cache_task: ImageCacheTask,
/// The channel on which messages can be sent to the constellation.
pub constellation_chan: ConstellationChan,
/// The size of the viewport.
pub screen_size: Size2D<Au>,
/// The root stacking context.
pub stacking_context: Option<Arc<StackingContext>>,
/// Performs CSS selector matching and style resolution.
pub stylist: Box<Stylist>,
/// The workers that we use for parallel operation.
pub parallel_traversal: Option<WorkQueue<SharedLayoutContext, WorkQueueData>>,
/// The dirty rect. Used during display list construction.
pub dirty: Rect<Au>,
/// Starts at zero, and increased by one every time a layout completes.
/// This can be used to easily check for invalid stale data.
pub generation: u32,
/// A queued response for the union of the content boxes of a node.
pub content_box_response: Rect<Au>,
/// A queued response for the content boxes of a node.
pub content_boxes_response: Vec<Rect<Au>>,
/// The list of currently-running animations.
pub running_animations: Vec<Animation>,
/// Receives newly-discovered animations.
pub new_animations_receiver: Receiver<Animation>,
/// A channel on which new animations that have been triggered by style recalculation can be
/// sent.
pub new_animations_sender: Sender<Animation>,
/// A counter for epoch messages
epoch: Epoch,
/// The position and size of the visible rect for each layer. We do not build display lists
/// for any areas more than `DISPLAY_PORT_SIZE_FACTOR` screens away from this area.
pub visible_rects: Arc<HashMap<LayerId, Rect<Au>, DefaultState<FnvHasher>>>,
}
/// Information needed by the layout task.
pub struct LayoutTask {
/// The ID of the pipeline that we belong to.
pub id: PipelineId,
/// The URL of the pipeline that we belong to.
pub url: Url,
/// Is the current reflow of an iframe, as opposed to a root window?
pub is_iframe: bool,
/// The port on which we receive messages from the script task.
pub port: Receiver<Msg>,
/// The port on which we receive messages from the constellation.
pub pipeline_port: Receiver<LayoutControlMsg>,
/// The port on which we receive messages from the image cache
image_cache_receiver: Receiver<ImageCacheResult>,
/// The channel on which the image cache can send messages to ourself.
image_cache_sender: ImageCacheChan,
/// The channel on which we or others can send messages to ourselves.
pub chan: LayoutChan,
/// The channel on which messages can be sent to the constellation.
pub constellation_chan: ConstellationChan,
/// The channel on which messages can be sent to the script task.
pub script_chan: ScriptControlChan,
/// The channel on which messages can be sent to the painting task.
pub paint_chan: PaintChan,
/// The channel on which messages can be sent to the time profiler.
pub time_profiler_chan: time::ProfilerChan,
/// The channel on which messages can be sent to the memory profiler.
pub mem_profiler_chan: mem::ProfilerChan,
/// The channel on which messages can be sent to the image cache.
pub image_cache_task: ImageCacheTask,
/// Public interface to the font cache task.
pub font_cache_task: FontCacheTask,
/// Is this the first reflow in this LayoutTask?
pub first_reflow: Cell<bool>,
/// To receive a canvas renderer associated to a layer, this message is propagated
/// to the paint chan
pub canvas_layers_receiver: Receiver<(LayerId, Option<Arc<Mutex<Sender<CanvasMsg>>>>)>,
pub canvas_layers_sender: Sender<(LayerId, Option<Arc<Mutex<Sender<CanvasMsg>>>>)>,
/// A mutex to allow for fast, read-only RPC of layout's internal data
/// structures, while still letting the LayoutTask modify them.
///
/// All the other elements of this struct are read-only.
pub rw_data: Arc<Mutex<LayoutTaskData>>,
}
impl LayoutTaskFactory for LayoutTask {
/// Spawns a new layout task.
fn create(_phantom: Option<&mut LayoutTask>,
id: PipelineId,
url: Url,
is_iframe: bool,
chan: OpaqueScriptLayoutChannel,
pipeline_port: IpcReceiver<LayoutControlMsg>,
constellation_chan: ConstellationChan,
failure_msg: Failure,
script_chan: ScriptControlChan,
paint_chan: PaintChan,
image_cache_task: ImageCacheTask,
font_cache_task: FontCacheTask,
time_profiler_chan: time::ProfilerChan,
mem_profiler_chan: mem::ProfilerChan,
shutdown_chan: Sender<()>) {
let ConstellationChan(con_chan) = constellation_chan.clone();
spawn_named_with_send_on_failure(format!("LayoutTask {:?}", id), task_state::LAYOUT, move || {
{ // Ensures layout task is destroyed before we send shutdown message
let sender = chan.sender();
let layout_chan = LayoutChan(sender);
let layout = LayoutTask::new(id,
url,
is_iframe,
chan.receiver(),
layout_chan.clone(),
pipeline_port,
constellation_chan,
script_chan,
paint_chan,
image_cache_task,
font_cache_task,
time_profiler_chan,
mem_profiler_chan.clone());
// Create a memory reporter thread.
let reporter_name = format!("layout-reporter-{}", id.0);
let (reporter_sender, reporter_receiver) =
ipc::channel::<ReporterRequest>().unwrap();
let layout_chan_for_reporter = layout_chan.clone();
ROUTER.add_route(reporter_receiver.to_opaque(), box move |message| {
// Just injects an appropriate event into the layout task's queue.
let request: ReporterRequest = message.to().unwrap();
layout_chan_for_reporter.0.send(Msg::CollectReports(request.reports_channel))
.unwrap();
});
mem_profiler_chan.send(mem::ProfilerMsg::RegisterReporter(
reporter_name.clone(),
Reporter(reporter_sender)));
layout.start();
let msg = mem::ProfilerMsg::UnregisterReporter(reporter_name);
mem_profiler_chan.send(msg);
}
shutdown_chan.send(()).unwrap();
}, ConstellationMsg::Failure(failure_msg), con_chan);
}
}
/// The `LayoutTask` `rw_data` lock must remain locked until the first reflow,
/// as RPC calls don't make sense until then. Use this in combination with
/// `LayoutTask::lock_rw_data` and `LayoutTask::return_rw_data`.
enum RWGuard<'a> {
/// If the lock was previously held, from when the task started.
Held(MutexGuard<'a, LayoutTaskData>),
/// If the lock was just used, and has been returned since there has been
/// a reflow already.
Used(MutexGuard<'a, LayoutTaskData>),
}
impl<'a> Deref for RWGuard<'a> {
type Target = LayoutTaskData;
fn deref(&self) -> &LayoutTaskData {
match *self {
RWGuard::Held(ref x) => &**x,
RWGuard::Used(ref x) => &**x,
}
}
}
impl<'a> DerefMut for RWGuard<'a> {
fn deref_mut(&mut self) -> &mut LayoutTaskData {
match *self {
RWGuard::Held(ref mut x) => &mut **x,
RWGuard::Used(ref mut x) => &mut **x,
}
}
}
impl LayoutTask {
/// Creates a new `LayoutTask` structure.
fn new(id: PipelineId,
url: Url,
is_iframe: bool,
port: Receiver<Msg>,
chan: LayoutChan,
pipeline_port: IpcReceiver<LayoutControlMsg>,
constellation_chan: ConstellationChan,
script_chan: ScriptControlChan,
paint_chan: PaintChan,
image_cache_task: ImageCacheTask,
font_cache_task: FontCacheTask,
time_profiler_chan: time::ProfilerChan,
mem_profiler_chan: mem::ProfilerChan)
-> LayoutTask {
let screen_size = Size2D::new(Au(0), Au(0));
let device = Device::new(
MediaType::Screen,
opts::get().initial_window_size.as_f32() * ScaleFactor::new(1.0));
let parallel_traversal = if opts::get().layout_threads != 1 {
Some(WorkQueue::new("LayoutWorker", task_state::LAYOUT,
opts::get().layout_threads))
} else {
None
};
// Create the channel on which new animations can be sent.
let (new_animations_sender, new_animations_receiver) = channel();
let (image_cache_sender, image_cache_receiver) = channel();
let (canvas_layers_sender, canvas_layers_receiver) = channel();
// Start a thread to proxy IPC messages from the layout thread to us.
let (pipeline_sender, pipeline_receiver) = channel();
thread::spawn(move || {
while let Ok(message) = pipeline_port.recv() {
pipeline_sender.send(message).unwrap()
}
});
LayoutTask {
id: id,
url: url,
is_iframe: is_iframe,
port: port,
pipeline_port: pipeline_receiver,
chan: chan,
script_chan: script_chan,
constellation_chan: constellation_chan.clone(),
paint_chan: paint_chan,
time_profiler_chan: time_profiler_chan,
mem_profiler_chan: mem_profiler_chan,
image_cache_task: image_cache_task.clone(),
font_cache_task: font_cache_task,
first_reflow: Cell::new(true),
image_cache_receiver: image_cache_receiver,
image_cache_sender: ImageCacheChan(image_cache_sender),
canvas_layers_receiver: canvas_layers_receiver,
canvas_layers_sender: canvas_layers_sender,
rw_data: Arc::new(Mutex::new(
LayoutTaskData {
root_flow: None,
image_cache_task: image_cache_task,
constellation_chan: constellation_chan,
screen_size: screen_size,
stacking_context: None,
stylist: box Stylist::new(device),
parallel_traversal: parallel_traversal,
dirty: Rect::zero(),
generation: 0,
content_box_response: Rect::zero(),
content_boxes_response: Vec::new(),
running_animations: Vec::new(),
visible_rects: Arc::new(HashMap::with_hash_state(Default::default())),
new_animations_receiver: new_animations_receiver,
new_animations_sender: new_animations_sender,
epoch: Epoch(0),
})),
}
}
/// Starts listening on the port.
fn start(self) {
let mut possibly_locked_rw_data = Some((*self.rw_data).lock().unwrap());
while self.handle_request(&mut possibly_locked_rw_data) {
// Loop indefinitely.
}
}
// Create a layout context for use in building display lists, hit testing, &c.
fn build_shared_layout_context(&self,
rw_data: &LayoutTaskData,
screen_size_changed: bool,
reflow_root: Option<&LayoutNode>,
url: &Url,
goal: ReflowGoal)
-> SharedLayoutContext {
SharedLayoutContext {
image_cache_task: rw_data.image_cache_task.clone(),
image_cache_sender: self.image_cache_sender.clone(),
screen_size: rw_data.screen_size.clone(),
screen_size_changed: screen_size_changed,
constellation_chan: rw_data.constellation_chan.clone(),
layout_chan: self.chan.clone(),
font_cache_task: self.font_cache_task.clone(),
canvas_layers_sender: self.canvas_layers_sender.clone(),
stylist: &*rw_data.stylist,
url: (*url).clone(),
reflow_root: reflow_root.map(|node| node.opaque()),
dirty: Rect::zero(),
visible_rects: rw_data.visible_rects.clone(),
generation: rw_data.generation,
new_animations_sender: rw_data.new_animations_sender.clone(),
goal: goal,
}
}
/// Receives and dispatches messages from the script and constellation tasks
fn handle_request<'a>(&'a self,
possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>)
-> bool {
enum PortToRead {
Pipeline,
Script,
ImageCache,
}
let port_to_read = {
let sel = Select::new();
let mut port1 = sel.handle(&self.port);
let mut port2 = sel.handle(&self.pipeline_port);
let mut port3 = sel.handle(&self.image_cache_receiver);
unsafe {
port1.add();
port2.add();
port3.add();
}
let ret = sel.wait();
if ret == port1.id() {
PortToRead::Script
} else if ret == port2.id() {
PortToRead::Pipeline
} else if ret == port3.id() {
PortToRead::ImageCache
} else {
panic!("invalid select result");
}
};
match port_to_read {
PortToRead::Pipeline => {
match self.pipeline_port.recv().unwrap() {
LayoutControlMsg::SetVisibleRects(new_visible_rects) => {
self.handle_request_helper(Msg::SetVisibleRects(new_visible_rects),
possibly_locked_rw_data)
}
LayoutControlMsg::TickAnimations => {
self.handle_request_helper(Msg::TickAnimations, possibly_locked_rw_data)
}
LayoutControlMsg::GetCurrentEpoch(sender) => {
self.handle_request_helper(Msg::GetCurrentEpoch(sender),
possibly_locked_rw_data)
}
LayoutControlMsg::ExitNow(exit_type) => {
self.handle_request_helper(Msg::ExitNow(exit_type),
possibly_locked_rw_data)
}
}
}
PortToRead::Script => {
let msg = self.port.recv().unwrap();
self.handle_request_helper(msg, possibly_locked_rw_data)
}
PortToRead::ImageCache => {
let _ = self.image_cache_receiver.recv().unwrap();
self.repaint(possibly_locked_rw_data)
}
}
}
/// If no reflow has happened yet, this will just return the lock in
/// `possibly_locked_rw_data`. Otherwise, it will acquire the `rw_data` lock.
///
/// If you do not wish RPCs to remain blocked, just drop the `RWGuard`
/// returned from this function. If you _do_ wish for them to remain blocked,
/// use `return_rw_data`.
fn lock_rw_data<'a>(&'a self,
possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>)
-> RWGuard<'a> {
match possibly_locked_rw_data.take() {
None => RWGuard::Used((*self.rw_data).lock().unwrap()),
Some(x) => RWGuard::Held(x),
}
}
/// If no reflow has ever been triggered, this will keep the lock, locked
/// (and saved in `possibly_locked_rw_data`). If it has been, the lock will
/// be unlocked.
fn return_rw_data<'a>(possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>,
rw_data: RWGuard<'a>) {
match rw_data {
RWGuard::Used(x) => drop(x),
RWGuard::Held(x) => *possibly_locked_rw_data = Some(x),
}
}
/// Repaint the scene, without performing style matching. This is typically
/// used when an image arrives asynchronously and triggers a relayout and
/// repaint.
/// TODO: In the future we could detect if the image size hasn't changed
/// since last time and avoid performing a complete layout pass.
fn repaint<'a>(&'a self,
possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) -> bool {
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
let reflow_info = Reflow {
goal: ReflowGoal::ForDisplay,
page_clip_rect: MAX_RECT,
};
let mut layout_context = self.build_shared_layout_context(&*rw_data,
false,
None,
&self.url,
reflow_info.goal);
self.perform_post_style_recalc_layout_passes(&reflow_info,
&mut *rw_data,
&mut layout_context);
true
}
/// Receives and dispatches messages from other tasks.
fn handle_request_helper<'a>(&'a self,
request: Msg,
possibly_locked_rw_data: &mut Option<MutexGuard<'a,
LayoutTaskData>>)
-> bool {
match request {
Msg::AddStylesheet(sheet, mq) => {
self.handle_add_stylesheet(sheet, mq, possibly_locked_rw_data)
}
Msg::LoadStylesheet(url, mq, pending, link_element) => {
self.handle_load_stylesheet(url, mq, pending, link_element, possibly_locked_rw_data)
}
Msg::SetQuirksMode => self.handle_set_quirks_mode(possibly_locked_rw_data),
Msg::GetRPC(response_chan) => {
response_chan.send(box LayoutRPCImpl(self.rw_data.clone()) as
Box<LayoutRPC + Send>).unwrap();
},
Msg::Reflow(data) => {
profile(time::ProfilerCategory::LayoutPerform,
self.profiler_metadata(),
self.time_profiler_chan.clone(),
|| self.handle_reflow(&*data, possibly_locked_rw_data));
},
Msg::TickAnimations => self.tick_all_animations(possibly_locked_rw_data),
Msg::SetVisibleRects(new_visible_rects) => {
self.set_visible_rects(new_visible_rects, possibly_locked_rw_data);
}
Msg::ReapLayoutData(dead_layout_data) => {
unsafe {
self.handle_reap_layout_data(dead_layout_data)
}
},
Msg::CollectReports(reports_chan) => {
self.collect_reports(reports_chan, possibly_locked_rw_data);
},
Msg::GetCurrentEpoch(sender) => {
let rw_data = self.lock_rw_data(possibly_locked_rw_data);
sender.send(rw_data.epoch).unwrap();
},
Msg::CreateLayoutTask(info) => {
self.create_layout_task(info)
}
Msg::PrepareToExit(response_chan) => {
self.prepare_to_exit(response_chan, possibly_locked_rw_data);
return false
},
Msg::ExitNow(exit_type) => {
debug!("layout: ExitNow received");
self.exit_now(possibly_locked_rw_data, exit_type);
return false
}
}
true
}
fn collect_reports<'a>(&'a self,
reports_chan: ReportsChan,
possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) {
let mut reports = vec![];
// FIXME(njn): Just measuring the display tree for now.
let rw_data = self.lock_rw_data(possibly_locked_rw_data);
let stacking_context = rw_data.stacking_context.as_ref();
reports.push(Report {
path: path!["pages", format!("url({})", self.url), "layout-task", "display-list"],
size: stacking_context.map_or(0, |sc| sc.heap_size_of_children()),
});
// The LayoutTask has a context in TLS...
reports.push(Report {
path: path!["pages", format!("url({})", self.url), "layout-task", "local-context"],
size: heap_size_of_local_context(),
});
// ... as do each of the LayoutWorkers, if present.
if let Some(ref traversal) = rw_data.parallel_traversal {
let sizes = traversal.heap_size_of_tls(heap_size_of_local_context);
for (i, size) in sizes.iter().enumerate() {
reports.push(Report {
path: path!["pages", format!("url({})", self.url),
format!("layout-worker-{}-local-context", i)],
size: *size
});
}
}
reports_chan.send(reports);
}
fn create_layout_task(&self, info: NewLayoutTaskInfo) {
LayoutTaskFactory::create(None::<&mut LayoutTask>,
info.id,
info.url.clone(),
info.is_parent,
info.layout_pair,
info.pipeline_port,
info.constellation_chan,
info.failure,
ScriptControlChan(info.script_chan.clone()),
*info.paint_chan.downcast::<PaintChan>().unwrap(),
self.image_cache_task.clone(),
self.font_cache_task.clone(),
self.time_profiler_chan.clone(),
self.mem_profiler_chan.clone(),
info.layout_shutdown_chan);
}
/// Enters a quiescent state in which no new messages except for
/// `layout_interface::Msg::ReapLayoutData` will be processed until an `ExitNow` is
/// received. A pong is immediately sent on the given response channel.
fn prepare_to_exit<'a>(&'a self,
response_chan: Sender<()>,
possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) {
response_chan.send(()).unwrap();
loop {
match self.port.recv().unwrap() {
Msg::ReapLayoutData(dead_layout_data) => {
unsafe {
self.handle_reap_layout_data(dead_layout_data)
}
}
Msg::ExitNow(exit_type) => {
debug!("layout task is exiting...");
self.exit_now(possibly_locked_rw_data, exit_type);
break
}
Msg::CollectReports(_) => {
// Just ignore these messages at this point.
}
_ => {
panic!("layout: unexpected message received after `PrepareToExitMsg`")
}
}
}
}
/// Shuts down the layout task now. If there are any DOM nodes left, layout will now (safely)
/// crash.
fn exit_now<'a>(&'a self,
possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>,
exit_type: PipelineExitType) {
let (response_chan, response_port) = channel();
{
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
if let Some(ref mut traversal) = (&mut *rw_data).parallel_traversal {
traversal.shutdown()
}
LayoutTask::return_rw_data(possibly_locked_rw_data, rw_data);
}
self.paint_chan.send(PaintMsg::Exit(Some(response_chan), exit_type));
response_port.recv().unwrap()
}
fn handle_load_stylesheet<'a>(&'a self,
url: Url,
mq: MediaQueryList,
pending: PendingAsyncLoad,
responder: Box<StylesheetLoadResponder+Send>,
possibly_locked_rw_data:
&mut Option<MutexGuard<'a, LayoutTaskData>>) {
// TODO: Get the actual value. http://dev.w3.org/csswg/css-syntax/#environment-encoding
let environment_encoding = UTF_8 as EncodingRef;
// TODO we don't really even need to load this if mq does not match
let (metadata, iter) = load_bytes_iter(pending);
let protocol_encoding_label = metadata.charset.as_ref().map(|s| &**s);
let final_url = metadata.final_url;
let sheet = Stylesheet::from_bytes_iter(iter,
final_url,
protocol_encoding_label,
Some(environment_encoding),
Origin::Author);
//TODO: mark critical subresources as blocking load as well (#5974)
let ScriptControlChan(ref chan) = self.script_chan;
chan.send(ConstellationControlMsg::StylesheetLoadComplete(self.id, url, responder)).unwrap();
self.handle_add_stylesheet(sheet, mq, possibly_locked_rw_data);
}
fn handle_add_stylesheet<'a>(&'a self,
sheet: Stylesheet,
mq: MediaQueryList,
possibly_locked_rw_data:
&mut Option<MutexGuard<'a, LayoutTaskData>>) {
// Find all font-face rules and notify the font cache of them.
// GWTODO: Need to handle unloading web fonts (when we handle unloading stylesheets!)
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
if mq.evaluate(&rw_data.stylist.device) {
for font_face in sheet.effective_rules(&rw_data.stylist.device).font_face() {
for source in font_face.sources.iter() {
self.font_cache_task.add_web_font(font_face.family.clone(), source.clone());
}
}
rw_data.stylist.add_stylesheet(sheet);
}
LayoutTask::return_rw_data(possibly_locked_rw_data, rw_data);
}
/// Sets quirks mode for the document, causing the quirks mode stylesheet to be loaded.
fn handle_set_quirks_mode<'a>(&'a self,
possibly_locked_rw_data:
&mut Option<MutexGuard<'a, LayoutTaskData>>) {
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
rw_data.stylist.add_quirks_mode_stylesheet();
LayoutTask::return_rw_data(possibly_locked_rw_data, rw_data);
}
fn try_get_layout_root(&self, node: LayoutNode) -> Option<FlowRef> {
let mut layout_data_ref = node.mutate_layout_data();
let layout_data =
match layout_data_ref.as_mut() {
None => return None,
Some(layout_data) => layout_data,
};
let result = layout_data.data.flow_construction_result.swap_out();
let mut flow = match result {
ConstructionResult::Flow(mut flow, abs_descendants) => {
// Note: Assuming that the root has display 'static' (as per
// CSS Section 9.3.1). Otherwise, if it were absolutely
// positioned, it would return a reference to itself in
// `abs_descendants` and would lead to a circular reference.
// Set Root as CB for any remaining absolute descendants.
flow.set_absolute_descendants(abs_descendants);
flow
}
_ => return None,
};
flow.mark_as_root();
Some(flow)
}
fn get_layout_root(&self, node: LayoutNode) -> FlowRef {
self.try_get_layout_root(node).expect("no layout root")
}
/// Performs layout constraint solving.
///
/// This corresponds to `Reflow()` in Gecko and `layout()` in WebKit/Blink and should be
/// benchmarked against those two. It is marked `#[inline(never)]` to aid profiling.
#[inline(never)]
fn solve_constraints<'a>(&self,
layout_root: &mut FlowRef,
shared_layout_context: &SharedLayoutContext) {
let _scope = layout_debug_scope!("solve_constraints");
sequential::traverse_flow_tree_preorder(layout_root, shared_layout_context);
}
/// Performs layout constraint solving in parallel.
///
/// This corresponds to `Reflow()` in Gecko and `layout()` in WebKit/Blink and should be
/// benchmarked against those two. It is marked `#[inline(never)]` to aid profiling.
#[inline(never)]
fn solve_constraints_parallel(&self,
traversal: &mut WorkQueue<SharedLayoutContext, WorkQueueData>,
layout_root: &mut FlowRef,
shared_layout_context: &SharedLayoutContext) {
let _scope = layout_debug_scope!("solve_constraints_parallel");
// NOTE: this currently computes borders, so any pruning should separate that
// operation out.
parallel::traverse_flow_tree_preorder(layout_root,
self.profiler_metadata(),
self.time_profiler_chan.clone(),
shared_layout_context,
traversal);
}
/// Verifies that every node was either marked as a leaf or as a nonleaf in the flow tree.
/// This is only on in debug builds.
#[inline(never)]
#[cfg(debug)]
fn verify_flow_tree(&self, layout_root: &mut FlowRef) {
let mut traversal = traversal::FlowTreeVerification;
layout_root.traverse_preorder(&mut traversal);
}
#[cfg(not(debug))]
fn verify_flow_tree(&self, _: &mut FlowRef) {
}
fn process_content_box_request<'a>(&'a self,
requested_node: TrustedNodeAddress,
layout_root: &mut FlowRef,
rw_data: &mut RWGuard<'a>) {
// FIXME(pcwalton): This has not been updated to handle the stacking context relative
// stuff. So the position is wrong in most cases.
let requested_node: OpaqueNode = OpaqueNodeMethods::from_script_node(requested_node);
let mut iterator = UnioningFragmentBorderBoxIterator::new(requested_node);
sequential::iterate_through_flow_tree_fragment_border_boxes(layout_root, &mut iterator);
rw_data.content_box_response = match iterator.rect {
Some(rect) => rect,
None => Rect::zero()
};
}
fn process_content_boxes_request<'a>(&'a self,
requested_node: TrustedNodeAddress,
layout_root: &mut FlowRef,
rw_data: &mut RWGuard<'a>) {
// FIXME(pcwalton): This has not been updated to handle the stacking context relative
// stuff. So the position is wrong in most cases.
let requested_node: OpaqueNode = OpaqueNodeMethods::from_script_node(requested_node);
let mut iterator = CollectingFragmentBorderBoxIterator::new(requested_node);
sequential::iterate_through_flow_tree_fragment_border_boxes(layout_root, &mut iterator);
rw_data.content_boxes_response = iterator.rects;
}
fn compute_abs_pos_and_build_display_list<'a>(&'a self,
data: &Reflow,
layout_root: &mut FlowRef,
shared_layout_context: &mut SharedLayoutContext,
rw_data: &mut LayoutTaskData) {
let writing_mode = flow::base(&**layout_root).writing_mode;
profile(time::ProfilerCategory::LayoutDispListBuild,
self.profiler_metadata(),
self.time_profiler_chan.clone(),
|| {
shared_layout_context.dirty =
flow::base(&**layout_root).position.to_physical(writing_mode,
rw_data.screen_size);
flow::mut_base(&mut **layout_root).stacking_relative_position =
LogicalPoint::zero(writing_mode).to_physical(writing_mode,
rw_data.screen_size);
flow::mut_base(&mut **layout_root).clip =
ClippingRegion::from_rect(&data.page_clip_rect);
match (&mut rw_data.parallel_traversal, opts::get().parallel_display_list_building) {
(&mut Some(ref mut traversal), true) => {
parallel::build_display_list_for_subtree(layout_root,
self.profiler_metadata(),
self.time_profiler_chan.clone(),
shared_layout_context,
traversal);
}
_ => {
sequential::build_display_list_for_subtree(layout_root,
shared_layout_context);
}
}
if data.goal == ReflowGoal::ForDisplay {
debug!("Done building display list.");
let root_background_color = get_root_flow_background_color(&mut **layout_root);
let root_size = {
let root_flow = flow::base(&**layout_root);
root_flow.position.size.to_physical(root_flow.writing_mode)
};
let mut display_list = box DisplayList::new();
flow::mut_base(&mut **layout_root).display_list_building_result
.add_to(&mut *display_list);
let paint_layer = Arc::new(PaintLayer::new(layout_root.layer_id(0),
root_background_color,
ScrollPolicy::Scrollable));
let origin = Rect::new(Point2D::new(Au(0), Au(0)), root_size);
let stacking_context = Arc::new(StackingContext::new(display_list,
&origin,
&origin,
0,
filter::T::new(Vec::new()),
mix_blend_mode::T::normal,
Some(paint_layer),
Matrix4::identity(),
Matrix4::identity(),
true));
if opts::get().dump_display_list {
println!("#### start printing display list.");
stacking_context.print("#".to_owned());
}
if opts::get().dump_display_list_json {
println!("{}", json::to_string_pretty(&stacking_context).unwrap());
}
rw_data.stacking_context = Some(stacking_context.clone());
debug!("Layout done!");
rw_data.epoch.next();
self.paint_chan.send(PaintMsg::PaintInit(rw_data.epoch, stacking_context));
}
});
}
/// The high-level routine that performs layout tasks.
fn handle_reflow<'a>(&'a self,
data: &ScriptReflow,
possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>) {
// FIXME: Isolate this transmutation into a "bridge" module.
// FIXME(rust#16366): The following line had to be moved because of a
// rustc bug. It should be in the next unsafe block.
let mut node: LayoutJS<Node> = unsafe {
LayoutJS::from_trusted_node_address(data.document_root)
};
let node: &mut LayoutNode = unsafe {
transmute(&mut node)
};
debug!("layout: received layout request for: {}", self.url.serialize());
if log_enabled!(log::LogLevel::Debug) {
node.dump();
}
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
let initial_viewport = data.window_size.initial_viewport;
let old_screen_size = rw_data.screen_size;
let current_screen_size = Size2D::new(Au::from_f32_px(initial_viewport.width.get()),
Au::from_f32_px(initial_viewport.height.get()));
rw_data.screen_size = current_screen_size;
// Handle conditions where the entire flow tree is invalid.
let screen_size_changed = current_screen_size != old_screen_size;
if screen_size_changed {
// Calculate the actual viewport as per DEVICE-ADAPT § 6
let device = Device::new(MediaType::Screen, initial_viewport);
rw_data.stylist.set_device(device);
if let Some(constraints) = rw_data.stylist.constrain_viewport() {
debug!("Viewport constraints: {:?}", constraints);
// other rules are evaluated against the actual viewport
rw_data.screen_size = Size2D::new(Au::from_f32_px(constraints.size.width.get()),
Au::from_f32_px(constraints.size.height.get()));
let device = Device::new(MediaType::Screen, constraints.size);
rw_data.stylist.set_device(device);
// let the constellation know about the viewport constraints
let ConstellationChan(ref constellation_chan) = rw_data.constellation_chan;
constellation_chan.send(ConstellationMsg::ViewportConstrained(
self.id, constraints)).unwrap();
}
}
// If the entire flow tree is invalid, then it will be reflowed anyhow.
let needs_dirtying = rw_data.stylist.update();
let needs_reflow = screen_size_changed && !needs_dirtying;
unsafe {
if needs_dirtying {
LayoutTask::dirty_all_nodes(node);
}
}
if needs_reflow {
if let Some(mut flow) = self.try_get_layout_root(*node) {
LayoutTask::reflow_all_nodes(&mut *flow);
}
}
// Create a layout context for use throughout the following passes.
let mut shared_layout_context = self.build_shared_layout_context(&*rw_data,
screen_size_changed,
Some(&node),
&self.url,
data.reflow_info.goal);
if node.is_dirty() || node.has_dirty_descendants() || rw_data.stylist.is_dirty() {
// Recalculate CSS styles and rebuild flows and fragments.
profile(time::ProfilerCategory::LayoutStyleRecalc,
self.profiler_metadata(),
self.time_profiler_chan.clone(),
|| {
// Perform CSS selector matching and flow construction.
let rw_data = &mut *rw_data;
match rw_data.parallel_traversal {
None => {
sequential::traverse_dom_preorder(*node, &shared_layout_context);
}
Some(ref mut traversal) => {
parallel::traverse_dom_preorder(*node, &shared_layout_context, traversal);
}
}
});
// Retrieve the (possibly rebuilt) root flow.
rw_data.root_flow = Some(self.get_layout_root((*node).clone()));
// Kick off animations if any were triggered.
animation::process_new_animations(&mut *rw_data, self.id);
}
// Send new canvas renderers to the paint task
while let Ok((layer_id, renderer)) = self.canvas_layers_receiver.try_recv() {
// Just send if there's an actual renderer
if let Some(renderer) = renderer {
self.paint_chan.send(PaintMsg::CanvasLayer(layer_id, renderer));
}
}
// Perform post-style recalculation layout passes.
self.perform_post_style_recalc_layout_passes(&data.reflow_info,
&mut rw_data,
&mut shared_layout_context);
let mut root_flow = (*rw_data.root_flow.as_ref().unwrap()).clone();
match data.query_type {
ReflowQueryType::ContentBoxQuery(node) => {
self.process_content_box_request(node, &mut root_flow, &mut rw_data)
}
ReflowQueryType::ContentBoxesQuery(node) => {
self.process_content_boxes_request(node, &mut root_flow, &mut rw_data)
}
ReflowQueryType::NoQuery => {}
}
// Tell script that we're done.
//
// FIXME(pcwalton): This should probably be *one* channel, but we can't fix this without
// either select or a filtered recv() that only looks for messages of a given type.
data.script_join_chan.send(()).unwrap();
let ScriptControlChan(ref chan) = data.script_chan;
chan.send(ConstellationControlMsg::ReflowComplete(self.id, data.id)).unwrap();
}
fn set_visible_rects<'a>(&'a self,
new_visible_rects: Vec<(LayerId, Rect<Au>)>,
possibly_locked_rw_data: &mut Option<MutexGuard<'a, LayoutTaskData>>)
-> bool {
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
// First, determine if we need to regenerate the display lists. This will happen if the
// layers have moved more than `DISPLAY_PORT_THRESHOLD_SIZE_FACTOR` away from their last
// positions.
let mut must_regenerate_display_lists = false;
let mut old_visible_rects = HashMap::with_hash_state(Default::default());
let inflation_amount =
Size2D::new(rw_data.screen_size.width * DISPLAY_PORT_THRESHOLD_SIZE_FACTOR,
rw_data.screen_size.height * DISPLAY_PORT_THRESHOLD_SIZE_FACTOR);
for &(ref layer_id, ref new_visible_rect) in new_visible_rects.iter() {
match rw_data.visible_rects.get(layer_id) {
None => {
old_visible_rects.insert(*layer_id, *new_visible_rect);
}
Some(old_visible_rect) => {
old_visible_rects.insert(*layer_id, *old_visible_rect);
if !old_visible_rect.inflate(inflation_amount.width, inflation_amount.height)
.intersects(new_visible_rect) {
must_regenerate_display_lists = true;
}
}
}
}
if !must_regenerate_display_lists {
// Update `visible_rects` in case there are new layers that were discovered.
rw_data.visible_rects = Arc::new(old_visible_rects);
return true
}
debug!("regenerating display lists!");
for &(ref layer_id, ref new_visible_rect) in new_visible_rects.iter() {
old_visible_rects.insert(*layer_id, *new_visible_rect);
}
rw_data.visible_rects = Arc::new(old_visible_rects);
// Regenerate the display lists.
let reflow_info = Reflow {
goal: ReflowGoal::ForDisplay,
page_clip_rect: MAX_RECT,
};
let mut layout_context = self.build_shared_layout_context(&*rw_data,
false,
None,
&self.url,
reflow_info.goal);
self.perform_post_main_layout_passes(&reflow_info, &mut *rw_data, &mut layout_context);
true
}
fn tick_all_animations<'a>(&'a self,
possibly_locked_rw_data: &mut Option<MutexGuard<'a,
LayoutTaskData>>) {
let mut rw_data = self.lock_rw_data(possibly_locked_rw_data);
animation::tick_all_animations(self, &mut rw_data)
}
pub fn tick_animation<'a>(&'a self, animation: &Animation, rw_data: &mut LayoutTaskData) {
let reflow_info = Reflow {
goal: ReflowGoal::ForDisplay,
page_clip_rect: MAX_RECT,
};
// Perform an abbreviated style recalc that operates without access to the DOM.
let mut layout_context = self.build_shared_layout_context(&*rw_data,
false,
None,
&self.url,
reflow_info.goal);
let mut root_flow = (*rw_data.root_flow.as_ref().unwrap()).clone();
profile(time::ProfilerCategory::LayoutStyleRecalc,
self.profiler_metadata(),
self.time_profiler_chan.clone(),
|| animation::recalc_style_for_animation(root_flow.deref_mut(), &animation));
self.perform_post_style_recalc_layout_passes(&reflow_info,
&mut *rw_data,
&mut layout_context);
}
fn perform_post_style_recalc_layout_passes<'a>(&'a self,
data: &Reflow,
rw_data: &mut LayoutTaskData,
layout_context: &mut SharedLayoutContext) {
let mut root_flow = (*rw_data.root_flow.as_ref().unwrap()).clone();
profile(time::ProfilerCategory::LayoutRestyleDamagePropagation,
self.profiler_metadata(),
self.time_profiler_chan.clone(),
|| {
if opts::get().nonincremental_layout || root_flow.deref_mut()
.compute_layout_damage()
.contains(REFLOW_ENTIRE_DOCUMENT) {
root_flow.deref_mut().reflow_entire_document()
}
});
// Verification of the flow tree, which ensures that all nodes were either marked as leaves
// or as non-leaves. This becomes a no-op in release builds. (It is inconsequential to
// memory safety but is a useful debugging tool.)
self.verify_flow_tree(&mut root_flow);
if opts::get().trace_layout {
layout_debug::begin_trace(root_flow.clone());
}
// Resolve generated content.
profile(time::ProfilerCategory::LayoutGeneratedContent,
self.profiler_metadata(),
self.time_profiler_chan.clone(),
|| sequential::resolve_generated_content(&mut root_flow, &layout_context));
// Perform the primary layout passes over the flow tree to compute the locations of all
// the boxes.
profile(time::ProfilerCategory::LayoutMain,
self.profiler_metadata(),
self.time_profiler_chan.clone(),
|| {
match rw_data.parallel_traversal {
None => {
// Sequential mode.
self.solve_constraints(&mut root_flow, &layout_context)
}
Some(ref mut parallel) => {
// Parallel mode.
self.solve_constraints_parallel(parallel,
&mut root_flow,
&mut *layout_context);
}
}
});
self.perform_post_main_layout_passes(data, rw_data, layout_context);
}
fn perform_post_main_layout_passes<'a>(&'a self,
data: &Reflow,
rw_data: &mut LayoutTaskData,
layout_context: &mut SharedLayoutContext) {
// Build the display list if necessary, and send it to the painter.
let mut root_flow = (*rw_data.root_flow.as_ref().unwrap()).clone();
self.compute_abs_pos_and_build_display_list(data,
&mut root_flow,
&mut *layout_context,
rw_data);
self.first_reflow.set(false);
if opts::get().trace_layout {
layout_debug::end_trace();
}
if opts::get().dump_flow_tree {
root_flow.dump();
}
rw_data.generation += 1;
}
unsafe fn dirty_all_nodes(node: &mut LayoutNode) {
for node in node.traverse_preorder() {
// TODO(cgaebel): mark nodes which are sensitive to media queries as
// "changed":
// > node.set_changed(true);
node.set_dirty(true);
node.set_dirty_siblings(true);
node.set_dirty_descendants(true);
}
}
fn reflow_all_nodes(flow: &mut Flow) {
debug!("reflowing all nodes!");
flow::mut_base(flow).restyle_damage.insert(REFLOW | REPAINT);
for child in flow::child_iter(flow) {
LayoutTask::reflow_all_nodes(child);
}
}
/// Handles a message to destroy layout data. Layout data must be destroyed on *this* task
/// because the struct type is transmuted to a different type on the script side.
unsafe fn handle_reap_layout_data(&self, layout_data: LayoutData) {
let layout_data_wrapper: LayoutDataWrapper = transmute(layout_data);
layout_data_wrapper.remove_compositor_layers(self.constellation_chan.clone());
}
/// Returns profiling information which is passed to the time profiler.
fn profiler_metadata(&self) -> ProfilerMetadata {
Some((&self.url,
if self.is_iframe {
TimerMetadataFrameType::IFrame
} else {
TimerMetadataFrameType::RootWindow
},
if self.first_reflow.get() {
TimerMetadataReflowType::FirstReflow
} else {
TimerMetadataReflowType::Incremental
}))
}
}
struct LayoutRPCImpl(Arc<Mutex<LayoutTaskData>>);
impl LayoutRPC for LayoutRPCImpl {
// The neat thing here is that in order to answer the following two queries we only
// need to compare nodes for equality. Thus we can safely work only with `OpaqueNode`.
fn content_box(&self) -> ContentBoxResponse {
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock().unwrap();
ContentBoxResponse(rw_data.content_box_response)
}
/// Requests the dimensions of all the content boxes, as in the `getClientRects()` call.
fn content_boxes(&self) -> ContentBoxesResponse {
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock().unwrap();
ContentBoxesResponse(rw_data.content_boxes_response.clone())
}
/// Requests the node containing the point of interest.
fn hit_test(&self, _: TrustedNodeAddress, point: Point2D<f32>) -> Result<HitTestResponse, ()> {
let point = Point2D::new(Au::from_f32_px(point.x), Au::from_f32_px(point.y));
let resp = {
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock().unwrap();
match rw_data.stacking_context {
None => panic!("no root stacking context!"),
Some(ref stacking_context) => {
let mut result = Vec::new();
stacking_context.hit_test(point, &mut result, true);
if !result.is_empty() {
Some(HitTestResponse(result[0].node.to_untrusted_node_address()))
} else {
None
}
}
}
};
if resp.is_some() {
return Ok(resp.unwrap());
}
Err(())
}
fn mouse_over(&self, _: TrustedNodeAddress, point: Point2D<f32>)
-> Result<MouseOverResponse, ()> {
let mut mouse_over_list: Vec<DisplayItemMetadata> = vec!();
let point = Point2D::new(Au::from_f32_px(point.x), Au::from_f32_px(point.y));
{
let &LayoutRPCImpl(ref rw_data) = self;
let rw_data = rw_data.lock().unwrap();
match rw_data.stacking_context {
None => panic!("no root stacking context!"),
Some(ref stacking_context) => {
stacking_context.hit_test(point, &mut mouse_over_list, false);
}
}
// Compute the new cursor.
let cursor = if !mouse_over_list.is_empty() {
mouse_over_list[0].pointing.unwrap()
} else {
Cursor::DefaultCursor
};
let ConstellationChan(ref constellation_chan) = rw_data.constellation_chan;
constellation_chan.send(ConstellationMsg::SetCursor(cursor)).unwrap();
}
if mouse_over_list.is_empty() {
Err(())
} else {
let response_list =
mouse_over_list.iter()
.map(|metadata| metadata.node.to_untrusted_node_address())
.collect();
Ok(MouseOverResponse(response_list))
}
}
}
struct UnioningFragmentBorderBoxIterator {
node_address: OpaqueNode,
rect: Option<Rect<Au>>,
}
impl UnioningFragmentBorderBoxIterator {
fn new(node_address: OpaqueNode) -> UnioningFragmentBorderBoxIterator {
UnioningFragmentBorderBoxIterator {
node_address: node_address,
rect: None
}
}
}
impl FragmentBorderBoxIterator for UnioningFragmentBorderBoxIterator {
fn process(&mut self, _: &Fragment, border_box: &Rect<Au>) {
self.rect = match self.rect {
Some(rect) => {
Some(rect.union(border_box))
}
None => {
Some(*border_box)
}
};
}
fn should_process(&mut self, fragment: &Fragment) -> bool {
fragment.contains_node(self.node_address)
}
}
struct CollectingFragmentBorderBoxIterator {
node_address: OpaqueNode,
rects: Vec<Rect<Au>>,
}
impl CollectingFragmentBorderBoxIterator {
fn new(node_address: OpaqueNode) -> CollectingFragmentBorderBoxIterator {
CollectingFragmentBorderBoxIterator {
node_address: node_address,
rects: Vec::new(),
}
}
}
impl FragmentBorderBoxIterator for CollectingFragmentBorderBoxIterator {
fn process(&mut self, _: &Fragment, border_box: &Rect<Au>) {
self.rects.push(*border_box);
}
fn should_process(&mut self, fragment: &Fragment) -> bool {
fragment.contains_node(self.node_address)
}
}
// The default computed value for background-color is transparent (see
// http://dev.w3.org/csswg/css-backgrounds/#background-color). However, we
// need to propagate the background color from the root HTML/Body
// element (http://dev.w3.org/csswg/css-backgrounds/#special-backgrounds) if
// it is non-transparent. The phrase in the spec "If the canvas background
// is not opaque, what shows through is UA-dependent." is handled by rust-layers
// clearing the frame buffer to white. This ensures that setting a background
// color on an iframe element, while the iframe content itself has a default
// transparent background color is handled correctly.
fn get_root_flow_background_color(flow: &mut Flow) -> AzColor {
if !flow.is_block_like() {
return color::transparent()
}
let block_flow = flow.as_block();
let kid = match block_flow.base.children.iter_mut().next() {
None => return color::transparent(),
Some(kid) => kid,
};
if !kid.is_block_like() {
return color::transparent()
}
let kid_block_flow = kid.as_block();
kid_block_flow.fragment
.style
.resolve_color(kid_block_flow.fragment.style.get_background().background_color)
.to_gfx_color()
}