servo/components/layout/traversal.rs
Martin Robinson 5937f62352 Wait as late as possible to assign ClipIds
This will allow Servo to create ClipScrollNodes later during display
list construction, which will be necessary once rounded rectangles
are removed from the LocalClip structure. Instead of keeping track
of the ClipId of each ClipScrollNode, we keep track of its index in an
array of ClipScrollNodes. This will allow us to access them without a
hash lookup.
2017-10-24 16:28:07 +02:00

329 lines
11 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Traversals over the DOM and flow trees, running the layout computations.
use construct::FlowConstructor;
use context::LayoutContext;
use display_list_builder::DisplayListBuildState;
use flow::{self, CAN_BE_FRAGMENTED, Flow, ImmutableFlowUtils};
use script_layout_interface::wrapper_traits::{LayoutNode, ThreadSafeLayoutNode};
use servo_config::opts;
use style::context::{SharedStyleContext, StyleContext};
use style::data::ElementData;
use style::dom::{NodeInfo, TElement, TNode};
use style::selector_parser::RestyleDamage;
use style::servo::restyle_damage::{BUBBLE_ISIZES, REFLOW, REFLOW_OUT_OF_FLOW, REPAINT, REPOSITION};
use style::traversal::{DomTraversal, recalc_style_at};
use style::traversal::PerLevelTraversalData;
use wrapper::{GetRawData, LayoutNodeLayoutData};
use wrapper::ThreadSafeLayoutNodeHelpers;
pub struct RecalcStyleAndConstructFlows<'a> {
context: LayoutContext<'a>,
}
impl<'a> RecalcStyleAndConstructFlows<'a> {
pub fn layout_context(&self) -> &LayoutContext<'a> {
&self.context
}
}
impl<'a> RecalcStyleAndConstructFlows<'a> {
/// Creates a traversal context, taking ownership of the shared layout context.
pub fn new(context: LayoutContext<'a>) -> Self {
RecalcStyleAndConstructFlows {
context: context,
}
}
/// Consumes this traversal context, returning ownership of the shared layout
/// context to the caller.
pub fn destroy(self) -> LayoutContext<'a> {
self.context
}
}
#[allow(unsafe_code)]
impl<'a, E> DomTraversal<E> for RecalcStyleAndConstructFlows<'a>
where E: TElement,
E::ConcreteNode: LayoutNode,
E::FontMetricsProvider: Send,
{
fn process_preorder<F>(&self, traversal_data: &PerLevelTraversalData,
context: &mut StyleContext<E>, node: E::ConcreteNode,
note_child: F)
where F: FnMut(E::ConcreteNode)
{
// FIXME(pcwalton): Stop allocating here. Ideally this should just be
// done by the HTML parser.
unsafe { node.initialize_data() };
if !node.is_text_node() {
let el = node.as_element().unwrap();
let mut data = el.mutate_data().unwrap();
recalc_style_at(self, traversal_data, context, el, &mut data, note_child);
}
}
fn process_postorder(&self, _style_context: &mut StyleContext<E>, node: E::ConcreteNode) {
construct_flows_at(&self.context, node);
}
fn text_node_needs_traversal(node: E::ConcreteNode, parent_data: &ElementData) -> bool {
// Text nodes never need styling. However, there are two cases they may need
// flow construction:
// (1) They child doesn't yet have layout data (preorder traversal initializes it).
// (2) The parent element has restyle damage (so the text flow also needs fixup).
node.get_raw_data().is_none() ||
parent_data.damage != RestyleDamage::empty()
}
fn shared_context(&self) -> &SharedStyleContext {
&self.context.style_context
}
}
/// A top-down traversal.
pub trait PreorderFlowTraversal {
/// The operation to perform. Return true to continue or false to stop.
fn process(&self, flow: &mut Flow);
/// Returns true if this node should be processed and false if neither this node nor its
/// descendants should be processed.
fn should_process_subtree(&self, _flow: &mut Flow) -> bool {
true
}
/// Returns true if this node must be processed in-order. If this returns false,
/// we skip the operation for this node, but continue processing the descendants.
/// This is called *after* parent nodes are visited.
fn should_process(&self, _flow: &mut Flow) -> bool {
true
}
/// Traverses the tree in preorder.
fn traverse(&self, flow: &mut Flow) {
if !self.should_process_subtree(flow) {
return;
}
if self.should_process(flow) {
self.process(flow);
}
for kid in flow::child_iter_mut(flow) {
self.traverse(kid);
}
}
/// Traverse the Absolute flow tree in preorder.
///
/// Traverse all your direct absolute descendants, who will then traverse
/// their direct absolute descendants.
///
/// Return true if the traversal is to continue or false to stop.
fn traverse_absolute_flows(&self, flow: &mut Flow) {
if self.should_process(flow) {
self.process(flow);
}
for descendant_link in flow::mut_base(flow).abs_descendants.iter() {
self.traverse_absolute_flows(descendant_link)
}
}
}
/// A bottom-up traversal, with a optional in-order pass.
pub trait PostorderFlowTraversal {
/// The operation to perform. Return true to continue or false to stop.
fn process(&self, flow: &mut Flow);
/// Returns false if this node must be processed in-order. If this returns false, we skip the
/// operation for this node, but continue processing the ancestors. This is called *after*
/// child nodes are visited.
fn should_process(&self, _flow: &mut Flow) -> bool {
true
}
/// Traverses the tree in postorder.
fn traverse(&self, flow: &mut Flow) {
for kid in flow::child_iter_mut(flow) {
self.traverse(kid);
}
if self.should_process(flow) {
self.process(flow);
}
}
}
/// An in-order (sequential only) traversal.
pub trait InorderFlowTraversal {
/// The operation to perform. Returns the level of the tree we're at.
fn process(&mut self, flow: &mut Flow, level: u32);
/// Returns true if this node should be processed and false if neither this node nor its
/// descendants should be processed.
fn should_process_subtree(&mut self, _flow: &mut Flow) -> bool {
true
}
/// Traverses the tree in-order.
fn traverse(&mut self, flow: &mut Flow, level: u32) {
if !self.should_process_subtree(flow) {
return;
}
self.process(flow, level);
for kid in flow::child_iter_mut(flow) {
self.traverse(kid, level + 1);
}
}
}
/// A bottom-up, parallelizable traversal.
pub trait PostorderNodeMutTraversal<ConcreteThreadSafeLayoutNode: ThreadSafeLayoutNode> {
/// The operation to perform. Return true to continue or false to stop.
fn process(&mut self, node: &ConcreteThreadSafeLayoutNode);
}
/// The flow construction traversal, which builds flows for styled nodes.
#[inline]
#[allow(unsafe_code)]
fn construct_flows_at<N>(context: &LayoutContext, node: N)
where N: LayoutNode,
{
debug!("construct_flows_at: {:?}", node);
// Construct flows for this node.
{
let tnode = node.to_threadsafe();
// Always reconstruct if incremental layout is turned off.
let nonincremental_layout = opts::get().nonincremental_layout;
if nonincremental_layout || tnode.restyle_damage() != RestyleDamage::empty() ||
node.as_element().map_or(false, |el| el.has_dirty_descendants()) {
let mut flow_constructor = FlowConstructor::new(context);
if nonincremental_layout || !flow_constructor.repair_if_possible(&tnode) {
flow_constructor.process(&tnode);
debug!("Constructed flow for {:?}: {:x}",
tnode,
tnode.flow_debug_id());
}
}
tnode.mutate_layout_data().unwrap().flags.insert(::data::HAS_BEEN_TRAVERSED);
}
if let Some(el) = node.as_element() {
unsafe { el.unset_dirty_descendants(); }
}
}
/// The bubble-inline-sizes traversal, the first part of layout computation. This computes
/// preferred and intrinsic inline-sizes and bubbles them up the tree.
pub struct BubbleISizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for BubbleISizes<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
flow.bubble_inline_sizes();
flow::mut_base(flow).restyle_damage.remove(BUBBLE_ISIZES);
}
#[inline]
fn should_process(&self, flow: &mut Flow) -> bool {
flow::base(flow).restyle_damage.contains(BUBBLE_ISIZES)
}
}
/// The assign-inline-sizes traversal. In Gecko this corresponds to `Reflow`.
#[derive(Clone, Copy)]
pub struct AssignISizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PreorderFlowTraversal for AssignISizes<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
flow.assign_inline_sizes(self.layout_context);
}
#[inline]
fn should_process(&self, flow: &mut Flow) -> bool {
flow::base(flow).restyle_damage.intersects(REFLOW_OUT_OF_FLOW | REFLOW)
}
}
/// The assign-block-sizes-and-store-overflow traversal, the last (and most expensive) part of
/// layout computation. Determines the final block-sizes for all layout objects and computes
/// positions. In Gecko this corresponds to `Reflow`.
#[derive(Clone, Copy)]
pub struct AssignBSizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for AssignBSizes<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
// Can't do anything with anything that floats might flow through until we reach their
// inorder parent.
//
// NB: We must return without resetting the restyle bits for these, as we haven't actually
// reflowed anything!
if flow.floats_might_flow_through() {
return
}
flow.assign_block_size(self.layout_context);
}
#[inline]
fn should_process(&self, flow: &mut Flow) -> bool {
let base = flow::base(flow);
base.restyle_damage.intersects(REFLOW_OUT_OF_FLOW | REFLOW) &&
// The fragmentation countainer is responsible for calling Flow::fragment recursively
!base.flags.contains(CAN_BE_FRAGMENTED)
}
}
pub struct ComputeStackingRelativePositions<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PreorderFlowTraversal for ComputeStackingRelativePositions<'a> {
#[inline]
fn should_process_subtree(&self, flow: &mut Flow) -> bool {
flow::base(flow).restyle_damage.contains(REPOSITION)
}
#[inline]
fn process(&self, flow: &mut Flow) {
flow.compute_stacking_relative_position(self.layout_context);
flow::mut_base(flow).restyle_damage.remove(REPOSITION)
}
}
pub struct BuildDisplayList<'a> {
pub state: DisplayListBuildState<'a>,
}
impl<'a> BuildDisplayList<'a> {
#[inline]
pub fn traverse(&mut self, flow: &mut Flow) {
let parent_stacking_context_id = self.state.current_stacking_context_id;
self.state.current_stacking_context_id = flow::base(flow).stacking_context_id;
let parent_clipping_and_scrolling = self.state.current_clipping_and_scrolling;
self.state.current_clipping_and_scrolling = flow.clipping_and_scrolling();
flow.build_display_list(&mut self.state);
flow::mut_base(flow).restyle_damage.remove(REPAINT);
for kid in flow::child_iter_mut(flow) {
self.traverse(kid);
}
self.state.current_stacking_context_id = parent_stacking_context_id;
self.state.current_clipping_and_scrolling = parent_clipping_and_scrolling;
}
}