servo/components/layout_2020/flow/text_run.rs
Oriol Brufau 99c14c83ed
Obey white-space when intrinsically sizing an IFC (#31660)
The old logic was assuming that all whitespace was a break opportunity,
and that no newlines would be preserved.

Note that text shaping considers the advance of a newline to be the same
as a space. This was problematic because if we have a segment with a
preserved space and newline, only the advance of the space should
contrinute to the size of the block container. Therefore, I'm changing
the breaker logic in other to have newline characters in their own
segment.

Then glyph_run_is_whitespace_ending_with_preserved_newline can just be
renamed to glyph_run_is_preserved_newline.

This patch is still not perfect because it doesn't check allow_wrap(),
so `nowrap` is treated like `normal`, and `pre-wrap` like `pre`.
2024-03-15 12:45:23 +00:00

791 lines
31 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
use std::char::{ToLowercase, ToUppercase};
use std::mem;
use app_units::Au;
use gfx::font::{FontRef, ShapingFlags, ShapingOptions};
use gfx::font_cache_thread::FontCacheThread;
use gfx::font_context::FontContext;
use gfx::text::text_run::GlyphRun;
use gfx_traits::ByteIndex;
use log::warn;
use range::Range;
use serde::Serialize;
use servo_arc::Arc;
use style::computed_values::text_rendering::T as TextRendering;
use style::computed_values::white_space::T as WhiteSpace;
use style::computed_values::word_break::T as WordBreak;
use style::properties::ComputedValues;
use style::values::specified::text::TextTransformCase;
use style::values::specified::TextTransform;
use unicode_script::Script;
use unicode_segmentation::UnicodeSegmentation;
use xi_unicode::{linebreak_property, LineBreakLeafIter};
use super::inline::{FontKeyAndMetrics, InlineFormattingContextState};
use crate::fragment_tree::BaseFragmentInfo;
// These constants are the xi-unicode line breaking classes that are defined in
// `table.rs`. Unfortunately, they are only identified by number.
const XI_LINE_BREAKING_CLASS_CM: u8 = 9;
const XI_LINE_BREAKING_CLASS_GL: u8 = 12;
const XI_LINE_BREAKING_CLASS_ZW: u8 = 28;
const XI_LINE_BREAKING_CLASS_WJ: u8 = 30;
const XI_LINE_BREAKING_CLASS_ZWJ: u8 = 40;
/// <https://www.w3.org/TR/css-display-3/#css-text-run>
#[derive(Debug, Serialize)]
pub(crate) struct TextRun {
pub base_fragment_info: BaseFragmentInfo,
#[serde(skip_serializing)]
pub parent_style: Arc<ComputedValues>,
pub text: String,
/// The text of this [`TextRun`] with a font selected, broken into unbreakable
/// segments, and shaped.
pub shaped_text: Vec<TextRunSegment>,
/// Whether or not to prevent a soft wrap opportunity at the start of this [`TextRun`].
/// This depends on the whether the first character in the run prevents a soft wrap
/// opportunity.
prevent_soft_wrap_opportunity_at_start: bool,
/// Whether or not to prevent a soft wrap opportunity at the end of this [`TextRun`].
/// This depends on the whether the last character in the run prevents a soft wrap
/// opportunity.
prevent_soft_wrap_opportunity_at_end: bool,
}
// There are two reasons why we might want to break at the start:
//
// 1. The line breaker told us that a break was necessary between two separate
// instances of sending text to it.
// 2. We are following replaced content ie `have_deferred_soft_wrap_opportunity`.
//
// In both cases, we don't want to do this if the first character prevents a
// soft wrap opportunity.
#[derive(PartialEq)]
enum SegmentStartSoftWrapPolicy {
Force,
Prevent,
FollowLinebreaker,
}
#[derive(Debug, Serialize)]
pub(crate) struct TextRunSegment {
/// The index of this font in the parent [`super::InlineFormattingContext`]'s collection of font
/// information.
pub font_index: usize,
/// The [`Script`] of this segment.
#[serde(skip_serializing)]
pub script: Script,
/// The range of bytes in the [`TextRun`]'s text that this segment covers.
pub range: Range<ByteIndex>,
/// Whether or not the linebreaker said that we should allow a line break at the start of this
/// segment.
pub break_at_start: bool,
/// The shaped runs within this segment.
pub runs: Vec<GlyphRun>,
}
impl TextRunSegment {
fn new(font_index: usize, script: Script, byte_index: ByteIndex) -> Self {
Self {
script,
font_index,
range: Range::new(byte_index, ByteIndex(0)),
runs: Vec::new(),
break_at_start: false,
}
}
/// Update this segment if the Font and Script are compatible. The update will only
/// ever make the Script specific. Returns true if the new Font and Script are
/// compatible with this segment or false otherwise.
fn update_if_compatible(
&mut self,
font: &FontRef,
script: Script,
fonts: &[FontKeyAndMetrics],
) -> bool {
fn is_specific(script: Script) -> bool {
script != Script::Common && script != Script::Inherited
}
let current_font_key_and_metrics = &fonts[self.font_index];
let new_font = font.borrow();
if new_font.font_key != current_font_key_and_metrics.key ||
new_font.descriptor.pt_size != current_font_key_and_metrics.pt_size
{
return false;
}
if !is_specific(self.script) && is_specific(script) {
self.script = script;
}
script == self.script || !is_specific(script)
}
fn layout_into_line_items(
&self,
text_run: &TextRun,
mut soft_wrap_policy: SegmentStartSoftWrapPolicy,
ifc: &mut InlineFormattingContextState,
) {
if self.break_at_start && soft_wrap_policy == SegmentStartSoftWrapPolicy::FollowLinebreaker
{
soft_wrap_policy = SegmentStartSoftWrapPolicy::Force;
}
for (run_index, run) in self.runs.iter().enumerate() {
ifc.possibly_flush_deferred_forced_line_break();
// If this whitespace forces a line break, queue up a hard line break the next time we
// see any content. We don't line break immediately, because we'd like to finish processing
// any ongoing inline boxes before ending the line.
if text_run.glyph_run_is_preserved_newline(run) {
ifc.defer_forced_line_break();
continue;
}
// Break before each unbreakable run in this TextRun, except the first unless the
// linebreaker was set to break before the first run.
if run_index != 0 || soft_wrap_policy == SegmentStartSoftWrapPolicy::Force {
ifc.process_soft_wrap_opportunity();
}
ifc.push_glyph_store_to_unbreakable_segment(
run.glyph_store.clone(),
text_run,
self.font_index,
);
}
}
}
impl TextRun {
pub(crate) fn new(
base_fragment_info: BaseFragmentInfo,
parent_style: Arc<ComputedValues>,
text: String,
) -> Self {
Self {
base_fragment_info,
parent_style,
text,
shaped_text: Vec::new(),
prevent_soft_wrap_opportunity_at_start: false,
prevent_soft_wrap_opportunity_at_end: false,
}
}
/// Whether or not this [`TextRun`] has uncollapsible content. This is used
/// to determine if an [`super::InlineFormattingContext`] is considered empty or not.
pub(super) fn has_uncollapsible_content(&self) -> bool {
let white_space = self.parent_style.clone_white_space();
if white_space.preserve_spaces() && !self.text.is_empty() {
return true;
}
for character in self.text.chars() {
if !character.is_ascii_whitespace() {
return true;
}
if character == '\n' && white_space.preserve_newlines() {
return true;
}
}
false
}
pub(super) fn break_and_shape(
&mut self,
font_context: &mut FontContext<FontCacheThread>,
linebreaker: &mut Option<LineBreakLeafIter>,
font_cache: &mut Vec<FontKeyAndMetrics>,
last_inline_box_ended_with_white_space: &mut bool,
on_word_boundary: &mut bool,
) {
let segment_results = self.segment_text(
font_context,
font_cache,
last_inline_box_ended_with_white_space,
on_word_boundary,
);
let inherited_text_style = self.parent_style.get_inherited_text().clone();
let letter_spacing = if inherited_text_style.letter_spacing.0.px() != 0. {
Some(app_units::Au::from(inherited_text_style.letter_spacing.0))
} else {
None
};
let mut flags = ShapingFlags::empty();
if letter_spacing.is_some() {
flags.insert(ShapingFlags::IGNORE_LIGATURES_SHAPING_FLAG);
}
if inherited_text_style.text_rendering == TextRendering::Optimizespeed {
flags.insert(ShapingFlags::IGNORE_LIGATURES_SHAPING_FLAG);
flags.insert(ShapingFlags::DISABLE_KERNING_SHAPING_FLAG)
}
if inherited_text_style.word_break == WordBreak::KeepAll {
flags.insert(ShapingFlags::KEEP_ALL_FLAG);
}
let specified_word_spacing = &inherited_text_style.word_spacing;
let style_word_spacing: Option<Au> = specified_word_spacing.to_length().map(|l| l.into());
let segments = segment_results
.into_iter()
.map(|(mut segment, font)| {
let mut font = font.borrow_mut();
let word_spacing = style_word_spacing.unwrap_or_else(|| {
let space_width = font
.glyph_index(' ')
.map(|glyph_id| font.glyph_h_advance(glyph_id))
.unwrap_or(gfx::font::LAST_RESORT_GLYPH_ADVANCE);
specified_word_spacing.to_used_value(Au::from_f64_px(space_width))
});
let shaping_options = ShapingOptions {
letter_spacing,
word_spacing,
script: segment.script,
flags,
};
(segment.runs, segment.break_at_start) =
gfx::text::text_run::TextRun::break_and_shape(
&mut font,
&self.text
[segment.range.begin().0 as usize..segment.range.end().0 as usize],
&shaping_options,
linebreaker,
);
segment
})
.collect();
let _ = std::mem::replace(&mut self.shaped_text, segments);
}
/// Take the [`TextRun`]'s text and turn it into [`TextRunSegment`]s. Each segment has a matched
/// font and script. Fonts may differ when glyphs are found in fallback fonts. Fonts are stored
/// in the `font_cache` which is a cache of all font keys and metrics used in this
/// [`super::InlineFormattingContext`].
fn segment_text(
&mut self,
font_context: &mut FontContext<FontCacheThread>,
font_cache: &mut Vec<FontKeyAndMetrics>,
last_inline_box_ended_with_white_space: &mut bool,
on_word_boundary: &mut bool,
) -> Vec<(TextRunSegment, FontRef)> {
let font_group = font_context.font_group(self.parent_style.clone_font());
let mut current: Option<(TextRunSegment, FontRef)> = None;
let mut results = Vec::new();
// TODO: Eventually the text should come directly from the Cow strings of the DOM nodes.
let text = std::mem::take(&mut self.text);
let collapsed = WhitespaceCollapse::new(
text.as_str().chars(),
self.parent_style.clone_white_space(),
*last_inline_box_ended_with_white_space,
);
let text_transform = self.parent_style.clone_text_transform();
let collected_text: String;
let char_iterator: Box<dyn Iterator<Item = char>> =
if text_transform.case_ == TextTransformCase::Capitalize {
// `TextTransformation` doesn't support capitalization, so we must capitalize the whole
// string at once and make a copy. Here `on_word_boundary` indicates whether or not the
// inline formatting context as a whole is on a word boundary. This is different from
// `last_inline_box_ended_with_white_space` because the word boundaries are between
// atomic inlines and at the start of the IFC.
let collapsed_string: String = collapsed.collect();
collected_text = capitalize_string(&collapsed_string, *on_word_boundary);
Box::new(collected_text.chars())
} else if !text_transform.is_none() {
// If `text-transform` is active, wrap the `WhitespaceCollapse` iterator in
// a `TextTransformation` iterator.
Box::new(TextTransformation::new(collapsed, text_transform))
} else {
Box::new(collapsed)
};
let mut next_byte_index = 0;
let text = char_iterator
.map(|character| {
let current_byte_index = next_byte_index;
next_byte_index += character.len_utf8();
*last_inline_box_ended_with_white_space = character.is_whitespace();
*on_word_boundary = *last_inline_box_ended_with_white_space;
let prevents_soft_wrap_opportunity =
char_prevents_soft_wrap_opportunity_when_before_or_after_atomic(character);
if current_byte_index == 0 && prevents_soft_wrap_opportunity {
self.prevent_soft_wrap_opportunity_at_start = true;
}
self.prevent_soft_wrap_opportunity_at_end = prevents_soft_wrap_opportunity;
if char_does_not_change_font(character) {
return character;
}
let font = match font_group
.borrow_mut()
.find_by_codepoint(font_context, character)
{
Some(font) => font,
None => return character,
};
// If the existing segment is compatible with the character, keep going.
let script = Script::from(character);
if let Some(current) = current.as_mut() {
if current.0.update_if_compatible(&font, script, font_cache) {
return character;
}
}
let font_index = add_or_get_font(&font, font_cache);
// Add the new segment and finish the existing one, if we had one. If the first
// characters in the run were control characters we may be creating the first
// segment in the middle of the run (ie the start should be 0).
let start_byte_index = match current {
Some(_) => ByteIndex(current_byte_index as isize),
None => ByteIndex(0_isize),
};
let new = (
TextRunSegment::new(font_index, script, start_byte_index),
font,
);
if let Some(mut finished) = current.replace(new) {
finished.0.range.extend_to(start_byte_index);
results.push(finished);
}
character
})
.collect();
let _ = std::mem::replace(&mut self.text, text);
// Either we have a current segment or we only had control character and whitespace. In both
// of those cases, just use the first font.
if current.is_none() {
current = font_group.borrow_mut().first(font_context).map(|font| {
let font_index = add_or_get_font(&font, font_cache);
(
TextRunSegment::new(font_index, Script::Common, ByteIndex(0)),
font,
)
})
}
// Extend the last segment to the end of the string and add it to the results.
if let Some(mut last_segment) = current.take() {
last_segment
.0
.range
.extend_to(ByteIndex(self.text.len() as isize));
results.push(last_segment);
}
results
}
pub(super) fn layout_into_line_items(&self, ifc: &mut InlineFormattingContextState) {
if self.text.is_empty() {
return;
}
// If we are following replaced content, we should have a soft wrap opportunity, unless the
// first character of this `TextRun` prevents that soft wrap opportunity. If we see such a
// character it should also override the LineBreaker's indication to break at the start.
let have_deferred_soft_wrap_opportunity =
mem::replace(&mut ifc.have_deferred_soft_wrap_opportunity, false);
let mut soft_wrap_policy = match self.prevent_soft_wrap_opportunity_at_start {
true => SegmentStartSoftWrapPolicy::Prevent,
false if have_deferred_soft_wrap_opportunity => SegmentStartSoftWrapPolicy::Force,
false => SegmentStartSoftWrapPolicy::FollowLinebreaker,
};
for segment in self.shaped_text.iter() {
segment.layout_into_line_items(self, soft_wrap_policy, ifc);
soft_wrap_policy = SegmentStartSoftWrapPolicy::FollowLinebreaker;
}
ifc.prevent_soft_wrap_opportunity_before_next_atomic =
self.prevent_soft_wrap_opportunity_at_end;
}
pub(super) fn glyph_run_is_preserved_newline(&self, run: &GlyphRun) -> bool {
if !run.glyph_store.is_whitespace() || run.range.length() != ByteIndex(1) {
return false;
}
if !self
.parent_style
.get_inherited_text()
.white_space
.preserve_newlines()
{
return false;
}
let byte = self.text.as_bytes().get(run.range.begin().to_usize());
byte == Some(&b'\n')
}
}
/// Whether or not this character will rpevent a soft wrap opportunity when it
/// comes before or after an atomic inline element.
///
/// From <https://www.w3.org/TR/css-text-3/#line-break-details>:
///
/// > For Web-compatibility there is a soft wrap opportunity before and after each
/// > replaced element or other atomic inline, even when adjacent to a character that
/// > would normally suppress them, including U+00A0 NO-BREAK SPACE. However, with
/// > the exception of U+00A0 NO-BREAK SPACE, there must be no soft wrap opportunity
/// > between atomic inlines and adjacent characters belonging to the Unicode GL, WJ,
/// > or ZWJ line breaking classes.
fn char_prevents_soft_wrap_opportunity_when_before_or_after_atomic(character: char) -> bool {
if character == '\u{00A0}' {
return false;
}
let class = linebreak_property(character);
class == XI_LINE_BREAKING_CLASS_GL ||
class == XI_LINE_BREAKING_CLASS_WJ ||
class == XI_LINE_BREAKING_CLASS_ZWJ
}
/// Whether or not this character should be able to change the font during segmentation. Certain
/// character are not rendered at all, so it doesn't matter what font we use to render them. They
/// should just be added to the current segment.
fn char_does_not_change_font(character: char) -> bool {
if character.is_whitespace() || character.is_control() {
return true;
}
if character == '\u{00A0}' {
return true;
}
let class = linebreak_property(character);
class == XI_LINE_BREAKING_CLASS_CM ||
class == XI_LINE_BREAKING_CLASS_GL ||
class == XI_LINE_BREAKING_CLASS_ZW ||
class == XI_LINE_BREAKING_CLASS_WJ ||
class == XI_LINE_BREAKING_CLASS_ZWJ
}
pub(super) fn add_or_get_font(font: &FontRef, ifc_fonts: &mut Vec<FontKeyAndMetrics>) -> usize {
let font = font.borrow();
for (index, ifc_font_info) in ifc_fonts.iter().enumerate() {
if ifc_font_info.key == font.font_key && ifc_font_info.pt_size == font.descriptor.pt_size {
return index;
}
}
ifc_fonts.push(FontKeyAndMetrics {
metrics: font.metrics.clone(),
key: font.font_key,
pt_size: font.descriptor.pt_size,
});
ifc_fonts.len() - 1
}
pub(super) fn get_font_for_first_font_for_style(
style: &ComputedValues,
font_context: &mut FontContext<FontCacheThread>,
) -> Option<FontRef> {
let font = font_context
.font_group(style.clone_font())
.borrow_mut()
.first(font_context);
if font.is_none() {
warn!("Could not find font for style: {:?}", style.clone_font());
}
font
}
fn preserve_segment_break() -> bool {
true
}
pub struct WhitespaceCollapse<InputIterator> {
char_iterator: InputIterator,
white_space: WhiteSpace,
/// Whether or not we should collapse white space completely at the start of the string.
/// This is true when the last character handled in our owning [`super::InlineFormattingContext`]
/// was collapsible white space.
remove_collapsible_white_space_at_start: bool,
/// Whether or not the last character produced was newline. There is special behavior
/// we do after each newline.
following_newline: bool,
/// Whether or not we have seen any non-white space characters, indicating that we are not
/// in a collapsible white space section at the beginning of the string.
have_seen_non_white_space_characters: bool,
/// Whether the last character that we processed was a non-newline white space character. When
/// collapsing white space we need to wait until the next non-white space character or the end
/// of the string to push a single white space.
inside_white_space: bool,
/// When we enter a collapsible white space region, we may need to wait to produce a single
/// white space character as soon as we encounter a non-white space character. When that
/// happens we queue up the non-white space character for the next iterator call.
character_pending_to_return: Option<char>,
}
impl<InputIterator> WhitespaceCollapse<InputIterator> {
pub fn new(
char_iterator: InputIterator,
white_space: WhiteSpace,
trim_beginning_white_space: bool,
) -> Self {
Self {
char_iterator,
white_space,
remove_collapsible_white_space_at_start: trim_beginning_white_space,
inside_white_space: false,
following_newline: false,
have_seen_non_white_space_characters: false,
character_pending_to_return: None,
}
}
fn is_leading_trimmed_white_space(&self) -> bool {
!self.have_seen_non_white_space_characters && self.remove_collapsible_white_space_at_start
}
/// Whether or not we need to produce a space character if the next character is not a newline
/// and not white space. This happens when we are exiting a section of white space and we
/// waited to produce a single space character for the entire section of white space (but
/// not following or preceding a newline).
fn need_to_produce_space_character_after_white_space(&self) -> bool {
self.inside_white_space && !self.following_newline && !self.is_leading_trimmed_white_space()
}
}
impl<InputIterator> Iterator for WhitespaceCollapse<InputIterator>
where
InputIterator: Iterator<Item = char>,
{
type Item = char;
fn next(&mut self) -> Option<Self::Item> {
// Point 4.1.1 first bullet:
// > If white-space is set to normal, nowrap, or pre-line, whitespace
// > characters are considered collapsible
// If whitespace is not considered collapsible, it is preserved entirely, which
// means that we can simply return the input string exactly.
if self.white_space.preserve_spaces() {
return self.char_iterator.next();
}
if let Some(character) = self.character_pending_to_return.take() {
self.inside_white_space = false;
self.have_seen_non_white_space_characters = true;
self.following_newline = false;
return Some(character);
}
while let Some(character) = self.char_iterator.next() {
// Don't push non-newline whitespace immediately. Instead wait to push it until we
// know that it isn't followed by a newline. See `push_pending_whitespace_if_needed`
// above.
if character.is_ascii_whitespace() && character != '\n' {
self.inside_white_space = true;
continue;
}
// Point 4.1.1:
// > 2. Collapsible segment breaks are transformed for rendering according to the
// > segment break transformation rules.
if character == '\n' {
// From <https://drafts.csswg.org/css-text-3/#line-break-transform>
// (4.1.3 -- the segment break transformation rules):
//
// > When white-space is pre, pre-wrap, or pre-line, segment breaks are not
// > collapsible and are instead transformed into a preserved line feed"
if self.white_space == WhiteSpace::PreLine {
self.inside_white_space = false;
self.following_newline = true;
return Some(character);
// Point 4.1.3:
// > 1. First, any collapsible segment break immediately following another
// > collapsible segment break is removed.
// > 2. Then any remaining segment break is either transformed into a space (U+0020)
// > or removed depending on the context before and after the break.
} else if !self.following_newline &&
preserve_segment_break() &&
!self.is_leading_trimmed_white_space()
{
self.inside_white_space = false;
self.following_newline = true;
return Some(' ');
} else {
self.following_newline = true;
continue;
}
}
// Point 4.1.1:
// > 2. Any sequence of collapsible spaces and tabs immediately preceding or
// > following a segment break is removed.
// > 3. Every collapsible tab is converted to a collapsible space (U+0020).
// > 4. Any collapsible space immediately following another collapsible space—even
// > one outside the boundary of the inline containing that space, provided both
// > spaces are within the same inline formatting context—is collapsed to have zero
// > advance width.
if self.need_to_produce_space_character_after_white_space() {
self.inside_white_space = false;
self.character_pending_to_return = Some(character);
return Some(' ');
}
self.inside_white_space = false;
self.have_seen_non_white_space_characters = true;
self.following_newline = false;
return Some(character);
}
if self.need_to_produce_space_character_after_white_space() {
self.inside_white_space = false;
return Some(' ');
}
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.char_iterator.size_hint()
}
fn count(self) -> usize
where
Self: Sized,
{
self.char_iterator.count()
}
}
enum PendingCaseConversionResult {
Uppercase(ToUppercase),
Lowercase(ToLowercase),
}
impl PendingCaseConversionResult {
fn next(&mut self) -> Option<char> {
match self {
PendingCaseConversionResult::Uppercase(to_uppercase) => to_uppercase.next(),
PendingCaseConversionResult::Lowercase(to_lowercase) => to_lowercase.next(),
}
}
}
/// This is an interator that consumes a char iterator and produces character transformed
/// by the given CSS `text-transform` value. It currently does not support
/// `text-transform: capitalize` because Unicode segmentation libraries do not support
/// streaming input one character at a time.
pub struct TextTransformation<InputIterator> {
/// The input character iterator.
char_iterator: InputIterator,
/// The `text-transform` value to use.
text_transform: TextTransform,
/// If an uppercasing or lowercasing produces more than one character, this
/// caches them so that they can be returned in subsequent iterator calls.
pending_case_conversion_result: Option<PendingCaseConversionResult>,
}
impl<InputIterator> TextTransformation<InputIterator> {
pub fn new(char_iterator: InputIterator, text_transform: TextTransform) -> Self {
Self {
char_iterator,
text_transform,
pending_case_conversion_result: None,
}
}
}
impl<InputIterator> Iterator for TextTransformation<InputIterator>
where
InputIterator: Iterator<Item = char>,
{
type Item = char;
fn next(&mut self) -> Option<Self::Item> {
if let Some(character) = self
.pending_case_conversion_result
.as_mut()
.and_then(|result| result.next())
{
return Some(character);
}
self.pending_case_conversion_result = None;
for character in self.char_iterator.by_ref() {
match self.text_transform.case_ {
TextTransformCase::None => return Some(character),
TextTransformCase::Uppercase => {
let mut pending_result =
PendingCaseConversionResult::Uppercase(character.to_uppercase());
if let Some(character) = pending_result.next() {
self.pending_case_conversion_result = Some(pending_result);
return Some(character);
}
},
TextTransformCase::Lowercase => {
let mut pending_result =
PendingCaseConversionResult::Lowercase(character.to_lowercase());
if let Some(character) = pending_result.next() {
self.pending_case_conversion_result = Some(pending_result);
return Some(character);
}
},
// `text-transform: capitalize` currently cannot work on a per-character basis,
// so must be handled outside of this iterator.
// TODO: Add support for `full-width` and `full-size-kana`.
_ => return Some(character),
}
}
None
}
}
/// Given a string and whether the start of the string represents a word boundary, create a copy of
/// the string with letters after word boundaries capitalized.
fn capitalize_string(string: &str, allow_word_at_start: bool) -> String {
let mut output_string = String::new();
output_string.reserve(string.len());
let mut bounds = string.unicode_word_indices().peekable();
let mut byte_index = 0;
for character in string.chars() {
let current_byte_index = byte_index;
byte_index += character.len_utf8();
if let Some((next_index, _)) = bounds.peek() {
if *next_index == current_byte_index {
bounds.next();
if current_byte_index != 0 || allow_word_at_start {
output_string.extend(character.to_uppercase());
continue;
}
}
}
output_string.push(character);
}
output_string
}