servo/components/style/rule_tree/mod.rs
2017-03-07 23:37:32 +01:00

877 lines
29 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#![allow(unsafe_code)]
#![deny(missing_docs)]
//! The rule tree.
use arc_ptr_eq;
#[cfg(feature = "servo")]
use heapsize::HeapSizeOf;
use owning_handle::OwningHandle;
use parking_lot::{RwLock, RwLockReadGuard};
use properties::{Importance, PropertyDeclarationBlock};
use std::io::{self, Write};
use std::ptr;
use std::sync::Arc;
use std::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
use stylesheets::StyleRule;
use thread_state;
/// The rule tree, the structure servo uses to preserve the results of selector
/// matching.
///
/// This is organized as a tree of rules. When a node matches a set of rules,
/// they're inserted in order in the tree, starting with the less specific one.
///
/// When a rule is inserted in the tree, other elements may share the path up to
/// a given rule. If that's the case, we don't duplicate child nodes, but share
/// them.
///
/// When the rule node refcount drops to zero, it doesn't get freed. It gets
/// instead put into a free list, and it is potentially GC'd after a while in a
/// single-threaded fashion.
///
/// That way, a rule node that represents a likely-to-match-again rule (like a
/// :hover rule) can be reused if we haven't GC'd it yet.
#[derive(Debug)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct RuleTree {
root: StrongRuleNode,
}
/// A style source for the rule node. It can either be a CSS style rule or a
/// declaration block.
///
/// Note that, even though the declaration block from inside the style rule
/// could be enough to implement the rule tree, keeping the whole rule provides
/// more debuggability, and also the ability of show those selectors to
/// devtools.
#[derive(Debug, Clone)]
pub enum StyleSource {
/// A style rule stable pointer.
Style(Arc<RwLock<StyleRule>>),
/// A declaration block stable pointer.
Declarations(Arc<RwLock<PropertyDeclarationBlock>>),
}
type StyleSourceGuardHandle<'a> =
OwningHandle<
RwLockReadGuard<'a, StyleRule>,
RwLockReadGuard<'a, PropertyDeclarationBlock>>;
/// A guard for a given style source.
pub enum StyleSourceGuard<'a> {
/// A guard for a style rule.
Style(StyleSourceGuardHandle<'a>),
/// A guard for a declaration block.
Declarations(RwLockReadGuard<'a, PropertyDeclarationBlock>),
}
impl<'a> ::std::ops::Deref for StyleSourceGuard<'a> {
type Target = PropertyDeclarationBlock;
fn deref(&self) -> &Self::Target {
match *self {
StyleSourceGuard::Declarations(ref block) => &*block,
StyleSourceGuard::Style(ref handle) => &*handle,
}
}
}
impl StyleSource {
#[inline]
fn ptr_equals(&self, other: &Self) -> bool {
use self::StyleSource::*;
match (self, other) {
(&Style(ref one), &Style(ref other)) => arc_ptr_eq(one, other),
(&Declarations(ref one), &Declarations(ref other)) => arc_ptr_eq(one, other),
_ => false,
}
}
fn dump<W: Write>(&self, writer: &mut W) {
use self::StyleSource::*;
if let Style(ref rule) = *self {
let _ = write!(writer, "{:?}", rule.read().selectors);
}
let _ = write!(writer, " -> {:?}", self.read().declarations());
}
/// Read the style source guard, and obtain thus read access to the
/// underlying property declaration block.
#[inline]
pub fn read<'a>(&'a self) -> StyleSourceGuard<'a> {
use self::StyleSource::*;
match *self {
Style(ref rule) => {
let owning_ref = OwningHandle::new(rule.read(), |r| unsafe { &*r }.block.read());
StyleSourceGuard::Style(owning_ref)
}
Declarations(ref block) => StyleSourceGuard::Declarations(block.read()),
}
}
}
/// This value exists here so a node that pushes itself to the list can know
/// that is in the free list by looking at is next pointer, and comparing it
/// with null.
///
/// The root node doesn't have a null pointer in the free list, but this value.
const FREE_LIST_SENTINEL: *mut RuleNode = 0x01 as *mut RuleNode;
impl RuleTree {
/// Construct a new rule tree.
pub fn new() -> Self {
RuleTree {
root: StrongRuleNode::new(Box::new(RuleNode::root())),
}
}
/// Get the root rule node.
pub fn root(&self) -> StrongRuleNode {
self.root.clone()
}
fn dump<W: Write>(&self, writer: &mut W) {
let _ = writeln!(writer, " + RuleTree");
self.root.get().dump(writer, 0);
}
/// Dump the rule tree to stdout.
pub fn dump_stdout(&self) {
let mut stdout = io::stdout();
self.dump(&mut stdout);
}
/// Insert the given rules, that must be in proper order by specifity, and
/// return the corresponding rule node representing the last inserted one.
pub fn insert_ordered_rules<'a, I>(&self, iter: I) -> StrongRuleNode
where I: Iterator<Item=(StyleSource, CascadeLevel)>,
{
self.insert_ordered_rules_from(self.root.clone(), iter)
}
fn insert_ordered_rules_from<'a, I>(&self,
from: StrongRuleNode,
iter: I) -> StrongRuleNode
where I: Iterator<Item=(StyleSource, CascadeLevel)>,
{
let mut current = from;
let mut last_level = current.get().level;
for (source, level) in iter {
debug_assert!(last_level <= level, "Not really ordered");
current = current.ensure_child(self.root.downgrade(), source, level);
last_level = level;
}
current
}
/// This can only be called when no other threads is accessing this tree.
pub unsafe fn gc(&self) {
self.root.gc();
}
/// This can only be called when no other threads is accessing this tree.
pub unsafe fn maybe_gc(&self) {
self.root.maybe_gc();
}
/// Replaces a rule in a given level (if present) for another rule.
///
/// Returns the resulting node that represents the new path, or None if
/// the old path is still valid.
pub fn update_rule_at_level(&self,
level: CascadeLevel,
pdb: Option<&Arc<RwLock<PropertyDeclarationBlock>>>,
path: &StrongRuleNode)
-> Option<StrongRuleNode> {
debug_assert!(level.is_unique_per_element());
// TODO(emilio): Being smarter with lifetimes we could avoid a bit of
// the refcount churn.
let mut current = path.clone();
// First walk up until the first less-or-equally specific rule.
let mut children = vec![];
while current.get().level > level {
children.push((current.get().source.clone().unwrap(), current.get().level));
current = current.parent().unwrap().clone();
}
// Then remove the one at the level we want to replace, if any.
//
// NOTE: Here we assume that only one rule can be at the level we're
// replacing.
//
// This is certainly true for HTML style attribute rules, animations and
// transitions, but could not be so for SMIL animations, which we'd need
// to special-case (isn't hard, it's just about removing the `if` and
// special cases, and replacing them for a `while` loop, avoiding the
// optimizations).
if current.get().level == level {
if let Some(pdb) = pdb {
// If the only rule at the level we're replacing is exactly the
// same as `pdb`, we're done, and `path` is still valid.
//
// TODO(emilio): Another potential optimization is the one where
// we can just replace the rule at that level for `pdb`, and
// then we don't need to re-create the children, and `path` is
// also equally valid. This is less likely, and would require an
// in-place mutation of the source, which is, at best, fiddly,
// so let's skip it for now.
let is_here_already = match current.get().source.as_ref() {
Some(&StyleSource::Declarations(ref already_here)) => {
arc_ptr_eq(pdb, already_here)
},
_ => unreachable!("Replacing non-declarations style?"),
};
if is_here_already {
debug!("Picking the fast path in rule replacement");
return None;
}
}
current = current.parent().unwrap().clone();
}
debug_assert!(current.get().level != level,
"Multiple rules should've been replaced?");
// Insert the rule if it's relevant at this level in the cascade.
//
// These optimizations are likely to be important, because the levels
// where replacements apply (style and animations) tend to trigger
// pretty bad styling cases already.
if let Some(pdb) = pdb {
if level.is_important() {
if pdb.read().any_important() {
current = current.ensure_child(self.root.downgrade(),
StyleSource::Declarations(pdb.clone()),
level);
}
} else {
if pdb.read().any_normal() {
current = current.ensure_child(self.root.downgrade(),
StyleSource::Declarations(pdb.clone()),
level);
}
}
}
// Now the rule is in the relevant place, push the children as
// necessary.
Some(self.insert_ordered_rules_from(current, children.into_iter().rev()))
}
}
/// The number of RuleNodes added to the free list before we will consider
/// doing a GC when calling maybe_gc(). (The value is copied from Gecko,
/// where it likely did not result from a rigorous performance analysis.)
const RULE_TREE_GC_INTERVAL: usize = 300;
/// The cascade level these rules are relevant at, as per[1].
///
/// The order of variants declared here is significant, and must be in
/// _ascending_ order of precedence.
///
/// [1]: https://drafts.csswg.org/css-cascade/#cascade-origin
#[repr(u8)]
#[derive(Eq, PartialEq, Copy, Clone, Debug, PartialOrd)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub enum CascadeLevel {
/// Normal User-Agent rules.
UANormal = 0,
/// Presentational hints.
PresHints,
/// User normal rules.
UserNormal,
/// Author normal rules.
AuthorNormal,
/// Style attribute normal rules.
StyleAttributeNormal,
/// CSS animations and script-generated animations.
Animations,
/// Author-supplied important rules.
AuthorImportant,
/// Style attribute important rules.
StyleAttributeImportant,
/// User important rules.
UserImportant,
/// User-agent important rules.
UAImportant,
/// Transitions
Transitions,
}
impl CascadeLevel {
/// Returns whether this cascade level is unique per element, in which case
/// we can replace the path in the cascade without fear.
pub fn is_unique_per_element(&self) -> bool {
match *self {
CascadeLevel::Transitions |
CascadeLevel::Animations |
CascadeLevel::StyleAttributeNormal |
CascadeLevel::StyleAttributeImportant => true,
_ => false,
}
}
/// Returns whether this cascade level represents important rules of some
/// sort.
#[inline]
pub fn is_important(&self) -> bool {
match *self {
CascadeLevel::AuthorImportant |
CascadeLevel::StyleAttributeImportant |
CascadeLevel::UserImportant |
CascadeLevel::UAImportant => true,
_ => false,
}
}
/// Returns the importance relevant for this rule. Pretty similar to
/// `is_important`.
#[inline]
pub fn importance(&self) -> Importance {
if self.is_important() {
Importance::Important
} else {
Importance::Normal
}
}
}
struct RuleNode {
/// The root node. Only the root has no root pointer, for obvious reasons.
root: Option<WeakRuleNode>,
/// The parent rule node. Only the root has no parent.
parent: Option<StrongRuleNode>,
/// The actual style source, either coming from a selector in a StyleRule,
/// or a raw property declaration block (like the style attribute).
source: Option<StyleSource>,
/// The cascade level this rule is positioned at.
level: CascadeLevel,
refcount: AtomicUsize,
first_child: AtomicPtr<RuleNode>,
next_sibling: AtomicPtr<RuleNode>,
prev_sibling: AtomicPtr<RuleNode>,
/// The next item in the rule tree free list, that starts on the root node.
next_free: AtomicPtr<RuleNode>,
/// Number of RuleNodes we have added to the free list since the last GC.
/// (We don't update this if we rescue a RuleNode from the free list. It's
/// just used as a heuristic to decide when to run GC.)
///
/// Only used on the root RuleNode. (We could probably re-use one of the
/// sibling pointers to save space.)
free_count: AtomicUsize,
}
unsafe impl Sync for RuleTree {}
unsafe impl Send for RuleTree {}
impl RuleNode {
fn new(root: WeakRuleNode,
parent: StrongRuleNode,
source: StyleSource,
level: CascadeLevel) -> Self {
debug_assert!(root.upgrade().parent().is_none());
RuleNode {
root: Some(root),
parent: Some(parent),
source: Some(source),
level: level,
refcount: AtomicUsize::new(1),
first_child: AtomicPtr::new(ptr::null_mut()),
next_sibling: AtomicPtr::new(ptr::null_mut()),
prev_sibling: AtomicPtr::new(ptr::null_mut()),
next_free: AtomicPtr::new(ptr::null_mut()),
free_count: AtomicUsize::new(0),
}
}
fn root() -> Self {
RuleNode {
root: None,
parent: None,
source: None,
level: CascadeLevel::UANormal,
refcount: AtomicUsize::new(1),
first_child: AtomicPtr::new(ptr::null_mut()),
next_sibling: AtomicPtr::new(ptr::null_mut()),
prev_sibling: AtomicPtr::new(ptr::null_mut()),
next_free: AtomicPtr::new(FREE_LIST_SENTINEL),
free_count: AtomicUsize::new(0),
}
}
fn is_root(&self) -> bool {
self.parent.is_none()
}
/// Remove this rule node from the child list.
///
/// This method doesn't use proper synchronization, and it's expected to be
/// called in a single-threaded fashion, thus the unsafety.
///
/// This is expected to be called before freeing the node from the free
/// list.
unsafe fn remove_from_child_list(&self) {
debug!("Remove from child list: {:?}, parent: {:?}",
self as *const RuleNode, self.parent.as_ref().map(|p| p.ptr()));
// NB: The other siblings we use in this function can also be dead, so
// we can't use `get` here, since it asserts.
let prev_sibling = self.prev_sibling.swap(ptr::null_mut(), Ordering::Relaxed);
let next_sibling = self.next_sibling.swap(ptr::null_mut(), Ordering::Relaxed);
// Store the `next` pointer as appropriate, either in the previous
// sibling, or in the parent otherwise.
if prev_sibling == ptr::null_mut() {
let parent = self.parent.as_ref().unwrap();
parent.get().first_child.store(next_sibling, Ordering::Relaxed);
} else {
let previous = &*prev_sibling;
previous.next_sibling.store(next_sibling, Ordering::Relaxed);
}
// Store the previous sibling pointer in the next sibling if present,
// otherwise we're done.
if next_sibling != ptr::null_mut() {
let next = &*next_sibling;
next.prev_sibling.store(prev_sibling, Ordering::Relaxed);
}
}
fn dump<W: Write>(&self, writer: &mut W, indent: usize) {
const INDENT_INCREMENT: usize = 4;
for _ in 0..indent {
let _ = write!(writer, " ");
}
let _ = writeln!(writer, " - {:?} (ref: {:?}, parent: {:?})",
self as *const _, self.refcount.load(Ordering::SeqCst),
self.parent.as_ref().map(|p| p.ptr()));
for _ in 0..indent {
let _ = write!(writer, " ");
}
match self.source {
Some(ref source) => {
source.dump(writer);
}
None => {
if indent != 0 {
warn!("How has this happened?");
}
let _ = write!(writer, "(root)");
}
}
let _ = write!(writer, "\n");
for child in self.iter_children() {
child.get().dump(writer, indent + INDENT_INCREMENT);
}
}
fn iter_children(&self) -> RuleChildrenListIter {
// FIXME(emilio): Fiddle with memory orderings.
let first_child = self.first_child.load(Ordering::SeqCst);
RuleChildrenListIter {
current: if first_child.is_null() {
None
} else {
Some(WeakRuleNode { ptr: first_child })
}
}
}
}
#[derive(Clone)]
struct WeakRuleNode {
ptr: *mut RuleNode,
}
/// A strong reference to a rule node.
#[derive(Debug, PartialEq)]
pub struct StrongRuleNode {
ptr: *mut RuleNode,
}
#[cfg(feature = "servo")]
impl HeapSizeOf for StrongRuleNode {
fn heap_size_of_children(&self) -> usize { 0 }
}
impl StrongRuleNode {
fn new(n: Box<RuleNode>) -> Self {
debug_assert!(n.parent.is_none() == n.source.is_none());
let ptr = Box::into_raw(n);
debug!("Creating rule node: {:p}", ptr);
StrongRuleNode {
ptr: ptr,
}
}
fn downgrade(&self) -> WeakRuleNode {
WeakRuleNode {
ptr: self.ptr,
}
}
fn next_sibling(&self) -> Option<WeakRuleNode> {
// FIXME(emilio): Investigate what ordering can we achieve without
// messing things up.
let ptr = self.get().next_sibling.load(Ordering::SeqCst);
if ptr.is_null() {
None
} else {
Some(WeakRuleNode {
ptr: ptr
})
}
}
fn parent(&self) -> Option<&StrongRuleNode> {
self.get().parent.as_ref()
}
fn ensure_child(&self,
root: WeakRuleNode,
source: StyleSource,
level: CascadeLevel) -> StrongRuleNode {
let mut last = None;
for child in self.get().iter_children() {
if child .get().level == level &&
child.get().source.as_ref().unwrap().ptr_equals(&source) {
return child;
}
last = Some(child);
}
let mut node = Box::new(RuleNode::new(root,
self.clone(),
source.clone(),
level));
let new_ptr: *mut RuleNode = &mut *node;
loop {
let strong;
{
let next_sibling_ptr = match last {
Some(ref l) => &l.get().next_sibling,
None => &self.get().first_child,
};
let existing =
next_sibling_ptr.compare_and_swap(ptr::null_mut(),
new_ptr,
Ordering::SeqCst);
if existing == ptr::null_mut() {
// Now we know we're in the correct position in the child list,
// we can set the back pointer, knowing that this will only be
// accessed again in a single-threaded manner when we're
// sweeping possibly dead nodes.
if let Some(ref l) = last {
node.prev_sibling.store(l.ptr(), Ordering::Relaxed);
}
return StrongRuleNode::new(node);
}
// Existing is not null: some thread insert a child node since we accessed `last`.
strong = WeakRuleNode { ptr: existing }.upgrade();
if strong.get().source.as_ref().unwrap().ptr_equals(&source) {
// That node happens to be for the same style source, use that.
return strong;
}
}
// Try again inserting after the new last child.
last = Some(strong);
}
}
fn ptr(&self) -> *mut RuleNode {
self.ptr
}
fn get(&self) -> &RuleNode {
if cfg!(debug_assertions) {
let node = unsafe { &*self.ptr };
assert!(node.refcount.load(Ordering::SeqCst) > 0);
}
unsafe { &*self.ptr }
}
/// Get the style source corresponding to this rule node. May return `None`
/// if it's the root node, which means that the node hasn't matched any
/// rules.
pub fn style_source(&self) -> Option<&StyleSource> {
self.get().source.as_ref()
}
/// Get the importance that this rule node represents.
pub fn importance(&self) -> Importance {
self.get().level.importance()
}
/// Get an iterator for this rule node and its ancestors.
pub fn self_and_ancestors(&self) -> SelfAndAncestors {
SelfAndAncestors {
current: Some(self)
}
}
unsafe fn pop_from_free_list(&self) -> Option<WeakRuleNode> {
// NB: This can run from the root node destructor, so we can't use
// `get()`, since it asserts the refcount is bigger than zero.
let me = &*self.ptr;
debug_assert!(me.is_root());
// FIXME(#14213): Apparently the layout data can be gone from script.
//
// That's... suspicious, but it's fine if it happens for the rule tree
// case, so just don't crash in the case we're doing the final GC in
// script.
if !cfg!(feature = "testing") {
debug_assert!(!thread_state::get().is_worker() &&
(thread_state::get().is_layout() ||
thread_state::get().is_script()));
}
let current = me.next_free.load(Ordering::SeqCst);
if current == FREE_LIST_SENTINEL {
return None;
}
debug_assert!(!current.is_null(),
"Multiple threads are operating on the free list at the \
same time?");
debug_assert!(current != self.ptr,
"How did the root end up in the free list?");
let next = (*current).next_free.swap(ptr::null_mut(), Ordering::SeqCst);
debug_assert!(!next.is_null(),
"How did a null pointer end up in the free list?");
me.next_free.store(next, Ordering::SeqCst);
debug!("Popping from free list: cur: {:?}, next: {:?}", current, next);
Some(WeakRuleNode { ptr: current })
}
unsafe fn assert_free_list_has_no_duplicates_or_null(&self) {
assert!(cfg!(debug_assertions), "This is an expensive check!");
use std::collections::HashSet;
let me = &*self.ptr;
assert!(me.is_root());
let mut current = self.ptr;
let mut seen = HashSet::new();
while current != FREE_LIST_SENTINEL {
let next = (*current).next_free.load(Ordering::SeqCst);
assert!(!next.is_null());
assert!(!seen.contains(&next));
seen.insert(next);
current = next;
}
}
unsafe fn gc(&self) {
if cfg!(debug_assertions) {
self.assert_free_list_has_no_duplicates_or_null();
}
// NB: This can run from the root node destructor, so we can't use
// `get()`, since it asserts the refcount is bigger than zero.
let me = &*self.ptr;
debug_assert!(me.is_root(), "Can't call GC on a non-root node!");
while let Some(weak) = self.pop_from_free_list() {
let needs_drop = {
let node = &*weak.ptr();
if node.refcount.load(Ordering::SeqCst) == 0 {
node.remove_from_child_list();
true
} else {
false
}
};
debug!("GC'ing {:?}: {}", weak.ptr(), needs_drop);
if needs_drop {
let _ = Box::from_raw(weak.ptr());
}
}
me.free_count.store(0, Ordering::SeqCst);
debug_assert!(me.next_free.load(Ordering::SeqCst) == FREE_LIST_SENTINEL);
}
unsafe fn maybe_gc(&self) {
debug_assert!(self.get().is_root(), "Can't call GC on a non-root node!");
if self.get().free_count.load(Ordering::SeqCst) > RULE_TREE_GC_INTERVAL {
self.gc();
}
}
}
/// An iterator over a rule node and its ancestors.
#[derive(Clone)]
pub struct SelfAndAncestors<'a> {
current: Option<&'a StrongRuleNode>,
}
impl<'a> Iterator for SelfAndAncestors<'a> {
type Item = &'a StrongRuleNode;
fn next(&mut self) -> Option<Self::Item> {
self.current.map(|node| {
self.current = node.parent();
node
})
}
}
impl Clone for StrongRuleNode {
fn clone(&self) -> Self {
debug!("{:?}: {:?}+", self.ptr(), self.get().refcount.load(Ordering::SeqCst));
debug_assert!(self.get().refcount.load(Ordering::SeqCst) > 0);
self.get().refcount.fetch_add(1, Ordering::SeqCst);
StrongRuleNode {
ptr: self.ptr,
}
}
}
impl Drop for StrongRuleNode {
fn drop(&mut self) {
let node = unsafe { &*self.ptr };
debug!("{:?}: {:?}-", self.ptr(), node.refcount.load(Ordering::SeqCst));
debug!("Dropping node: {:?}, root: {:?}, parent: {:?}",
self.ptr,
node.root.as_ref().map(|r| r.ptr()),
node.parent.as_ref().map(|p| p.ptr()));
let should_drop = {
debug_assert!(node.refcount.load(Ordering::SeqCst) > 0);
node.refcount.fetch_sub(1, Ordering::SeqCst) == 1
};
if !should_drop {
return
}
debug_assert_eq!(node.first_child.load(Ordering::SeqCst),
ptr::null_mut());
if node.parent.is_none() {
debug!("Dropping root node!");
// NOTE: Calling this is fine, because the rule tree root
// destructor needs to happen from the layout thread, where the
// stylist, and hence, the rule tree, is held.
unsafe { self.gc() };
let _ = unsafe { Box::from_raw(self.ptr()) };
return;
}
let root = unsafe { &*node.root.as_ref().unwrap().ptr() };
let free_list = &root.next_free;
// We're sure we're already in the free list, don't spinloop.
if node.next_free.load(Ordering::SeqCst) != ptr::null_mut() {
return;
}
// Ensure we "lock" the free list head swapping it with a null pointer.
let mut old_head = free_list.load(Ordering::SeqCst);
loop {
match free_list.compare_exchange_weak(old_head,
ptr::null_mut(),
Ordering::SeqCst,
Ordering::Relaxed) {
Ok(..) => {
if old_head != ptr::null_mut() {
break;
}
},
Err(new) => old_head = new,
}
}
// If other thread has raced with use while using the same rule node,
// just store the old head again, we're done.
if node.next_free.load(Ordering::SeqCst) != ptr::null_mut() {
free_list.store(old_head, Ordering::SeqCst);
return;
}
// Else store the old head as the next pointer, and store ourselves as
// the new head of the free list.
node.next_free.store(old_head, Ordering::SeqCst);
free_list.store(self.ptr(), Ordering::SeqCst);
}
}
impl<'a> From<&'a StrongRuleNode> for WeakRuleNode {
fn from(node: &'a StrongRuleNode) -> Self {
WeakRuleNode {
ptr: node.ptr(),
}
}
}
impl WeakRuleNode {
fn upgrade(&self) -> StrongRuleNode {
debug!("Upgrading weak node: {:p}", self.ptr());
let node = unsafe { &*self.ptr };
node.refcount.fetch_add(1, Ordering::SeqCst);
StrongRuleNode {
ptr: self.ptr,
}
}
fn ptr(&self) -> *mut RuleNode {
self.ptr
}
}
struct RuleChildrenListIter {
current: Option<WeakRuleNode>,
}
impl Iterator for RuleChildrenListIter {
type Item = StrongRuleNode;
fn next(&mut self) -> Option<Self::Item> {
self.current.take().map(|current| {
let current = current.upgrade();
self.current = current.next_sibling();
current
})
}
}