mirror of
https://github.com/servo/servo.git
synced 2025-07-10 08:53:41 +01:00
This may or may not be part of the plan to get rid of nsCSSValue ;) Option is not usable via FFI, and they should not be needed (we should be following the shortest serialization principle instead). These patches also do that, which matches the other transform properties. I think that slight change is fine, if we can make it work, and consistent with other properties. Alternative is adding more TransformOperation variants or such, which I rather not do. Differential Revision: https://phabricator.services.mozilla.com/D21862
1471 lines
58 KiB
Rust
1471 lines
58 KiB
Rust
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
|
|
|
|
//! Animated types for transform.
|
|
// There are still some implementation on Matrix3D in animated_properties.mako.rs
|
|
// because they still need mako to generate the code.
|
|
|
|
use super::animate_multiplicative_factor;
|
|
use super::{Animate, Procedure, ToAnimatedZero};
|
|
use crate::properties::animated_properties::ListAnimation;
|
|
use crate::values::computed::transform::Rotate as ComputedRotate;
|
|
use crate::values::computed::transform::Scale as ComputedScale;
|
|
use crate::values::computed::transform::Transform as ComputedTransform;
|
|
use crate::values::computed::transform::TransformOperation as ComputedTransformOperation;
|
|
use crate::values::computed::transform::Translate as ComputedTranslate;
|
|
use crate::values::computed::transform::{DirectionVector, Matrix, Matrix3D};
|
|
use crate::values::computed::Angle;
|
|
use crate::values::computed::{Length, LengthPercentage};
|
|
use crate::values::computed::{Number, Percentage};
|
|
use crate::values::distance::{ComputeSquaredDistance, SquaredDistance};
|
|
use crate::values::generics::transform::{self, Transform, TransformOperation};
|
|
use crate::values::generics::transform::{Rotate, Scale, Translate};
|
|
use crate::values::CSSFloat;
|
|
use crate::Zero;
|
|
use std::cmp;
|
|
|
|
// ------------------------------------
|
|
// Animations for Matrix/Matrix3D.
|
|
// ------------------------------------
|
|
/// A 2d matrix for interpolation.
|
|
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
#[allow(missing_docs)]
|
|
// FIXME: We use custom derive for ComputeSquaredDistance. However, If possible, we should convert
|
|
// the InnerMatrix2D into types with physical meaning. This custom derive computes the squared
|
|
// distance from each matrix item, and this makes the result different from that in Gecko if we
|
|
// have skew factor in the Matrix3D.
|
|
pub struct InnerMatrix2D {
|
|
pub m11: CSSFloat,
|
|
pub m12: CSSFloat,
|
|
pub m21: CSSFloat,
|
|
pub m22: CSSFloat,
|
|
}
|
|
|
|
impl Animate for InnerMatrix2D {
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
Ok(InnerMatrix2D {
|
|
m11: animate_multiplicative_factor(self.m11, other.m11, procedure)?,
|
|
m12: self.m12.animate(&other.m12, procedure)?,
|
|
m21: self.m21.animate(&other.m21, procedure)?,
|
|
m22: animate_multiplicative_factor(self.m22, other.m22, procedure)?,
|
|
})
|
|
}
|
|
}
|
|
|
|
/// A 2d translation function.
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
#[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug)]
|
|
pub struct Translate2D(f32, f32);
|
|
|
|
/// A 2d scale function.
|
|
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
pub struct Scale2D(f32, f32);
|
|
|
|
impl Animate for Scale2D {
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
Ok(Scale2D(
|
|
animate_multiplicative_factor(self.0, other.0, procedure)?,
|
|
animate_multiplicative_factor(self.1, other.1, procedure)?,
|
|
))
|
|
}
|
|
}
|
|
|
|
/// A decomposed 2d matrix.
|
|
#[derive(Clone, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
pub struct MatrixDecomposed2D {
|
|
/// The translation function.
|
|
pub translate: Translate2D,
|
|
/// The scale function.
|
|
pub scale: Scale2D,
|
|
/// The rotation angle.
|
|
pub angle: f32,
|
|
/// The inner matrix.
|
|
pub matrix: InnerMatrix2D,
|
|
}
|
|
|
|
impl Animate for MatrixDecomposed2D {
|
|
/// <https://drafts.csswg.org/css-transforms/#interpolation-of-decomposed-2d-matrix-values>
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
// If x-axis of one is flipped, and y-axis of the other,
|
|
// convert to an unflipped rotation.
|
|
let mut scale = self.scale;
|
|
let mut angle = self.angle;
|
|
let mut other_angle = other.angle;
|
|
if (scale.0 < 0.0 && other.scale.1 < 0.0) || (scale.1 < 0.0 && other.scale.0 < 0.0) {
|
|
scale.0 = -scale.0;
|
|
scale.1 = -scale.1;
|
|
angle += if angle < 0.0 { 180. } else { -180. };
|
|
}
|
|
|
|
// Don't rotate the long way around.
|
|
if angle == 0.0 {
|
|
angle = 360.
|
|
}
|
|
if other_angle == 0.0 {
|
|
other_angle = 360.
|
|
}
|
|
|
|
if (angle - other_angle).abs() > 180. {
|
|
if angle > other_angle {
|
|
angle -= 360.
|
|
} else {
|
|
other_angle -= 360.
|
|
}
|
|
}
|
|
|
|
// Interpolate all values.
|
|
let translate = self.translate.animate(&other.translate, procedure)?;
|
|
let scale = scale.animate(&other.scale, procedure)?;
|
|
let angle = angle.animate(&other_angle, procedure)?;
|
|
let matrix = self.matrix.animate(&other.matrix, procedure)?;
|
|
|
|
Ok(MatrixDecomposed2D {
|
|
translate,
|
|
scale,
|
|
angle,
|
|
matrix,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl ComputeSquaredDistance for MatrixDecomposed2D {
|
|
#[inline]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
// Use Radian to compute the distance.
|
|
const RAD_PER_DEG: f64 = std::f64::consts::PI / 180.0;
|
|
let angle1 = self.angle as f64 * RAD_PER_DEG;
|
|
let angle2 = other.angle as f64 * RAD_PER_DEG;
|
|
Ok(self.translate.compute_squared_distance(&other.translate)? +
|
|
self.scale.compute_squared_distance(&other.scale)? +
|
|
angle1.compute_squared_distance(&angle2)? +
|
|
self.matrix.compute_squared_distance(&other.matrix)?)
|
|
}
|
|
}
|
|
|
|
impl From<Matrix3D> for MatrixDecomposed2D {
|
|
/// Decompose a 2D matrix.
|
|
/// <https://drafts.csswg.org/css-transforms/#decomposing-a-2d-matrix>
|
|
fn from(matrix: Matrix3D) -> MatrixDecomposed2D {
|
|
let mut row0x = matrix.m11;
|
|
let mut row0y = matrix.m12;
|
|
let mut row1x = matrix.m21;
|
|
let mut row1y = matrix.m22;
|
|
|
|
let translate = Translate2D(matrix.m41, matrix.m42);
|
|
let mut scale = Scale2D(
|
|
(row0x * row0x + row0y * row0y).sqrt(),
|
|
(row1x * row1x + row1y * row1y).sqrt(),
|
|
);
|
|
|
|
// If determinant is negative, one axis was flipped.
|
|
let determinant = row0x * row1y - row0y * row1x;
|
|
if determinant < 0. {
|
|
if row0x < row1y {
|
|
scale.0 = -scale.0;
|
|
} else {
|
|
scale.1 = -scale.1;
|
|
}
|
|
}
|
|
|
|
// Renormalize matrix to remove scale.
|
|
if scale.0 != 0.0 {
|
|
row0x *= 1. / scale.0;
|
|
row0y *= 1. / scale.0;
|
|
}
|
|
if scale.1 != 0.0 {
|
|
row1x *= 1. / scale.1;
|
|
row1y *= 1. / scale.1;
|
|
}
|
|
|
|
// Compute rotation and renormalize matrix.
|
|
let mut angle = row0y.atan2(row0x);
|
|
if angle != 0.0 {
|
|
let sn = -row0y;
|
|
let cs = row0x;
|
|
let m11 = row0x;
|
|
let m12 = row0y;
|
|
let m21 = row1x;
|
|
let m22 = row1y;
|
|
row0x = cs * m11 + sn * m21;
|
|
row0y = cs * m12 + sn * m22;
|
|
row1x = -sn * m11 + cs * m21;
|
|
row1y = -sn * m12 + cs * m22;
|
|
}
|
|
|
|
let m = InnerMatrix2D {
|
|
m11: row0x,
|
|
m12: row0y,
|
|
m21: row1x,
|
|
m22: row1y,
|
|
};
|
|
|
|
// Convert into degrees because our rotation functions expect it.
|
|
angle = angle.to_degrees();
|
|
MatrixDecomposed2D {
|
|
translate: translate,
|
|
scale: scale,
|
|
angle: angle,
|
|
matrix: m,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<MatrixDecomposed2D> for Matrix3D {
|
|
/// Recompose a 2D matrix.
|
|
/// <https://drafts.csswg.org/css-transforms/#recomposing-to-a-2d-matrix>
|
|
fn from(decomposed: MatrixDecomposed2D) -> Matrix3D {
|
|
let mut computed_matrix = Matrix3D::identity();
|
|
computed_matrix.m11 = decomposed.matrix.m11;
|
|
computed_matrix.m12 = decomposed.matrix.m12;
|
|
computed_matrix.m21 = decomposed.matrix.m21;
|
|
computed_matrix.m22 = decomposed.matrix.m22;
|
|
|
|
// Translate matrix.
|
|
computed_matrix.m41 = decomposed.translate.0;
|
|
computed_matrix.m42 = decomposed.translate.1;
|
|
|
|
// Rotate matrix.
|
|
let angle = decomposed.angle.to_radians();
|
|
let cos_angle = angle.cos();
|
|
let sin_angle = angle.sin();
|
|
|
|
let mut rotate_matrix = Matrix3D::identity();
|
|
rotate_matrix.m11 = cos_angle;
|
|
rotate_matrix.m12 = sin_angle;
|
|
rotate_matrix.m21 = -sin_angle;
|
|
rotate_matrix.m22 = cos_angle;
|
|
|
|
// Multiplication of computed_matrix and rotate_matrix
|
|
computed_matrix = rotate_matrix.multiply(&computed_matrix);
|
|
|
|
// Scale matrix.
|
|
computed_matrix.m11 *= decomposed.scale.0;
|
|
computed_matrix.m12 *= decomposed.scale.0;
|
|
computed_matrix.m21 *= decomposed.scale.1;
|
|
computed_matrix.m22 *= decomposed.scale.1;
|
|
computed_matrix
|
|
}
|
|
}
|
|
|
|
impl Animate for Matrix {
|
|
#[cfg(feature = "servo")]
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
let this = Matrix3D::from(*self);
|
|
let other = Matrix3D::from(*other);
|
|
let this = MatrixDecomposed2D::from(this);
|
|
let other = MatrixDecomposed2D::from(other);
|
|
Ok(Matrix3D::from(this.animate(&other, procedure)?).into_2d()?)
|
|
}
|
|
|
|
#[cfg(feature = "gecko")]
|
|
// Gecko doesn't exactly follow the spec here; we use a different procedure
|
|
// to match it
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
let from = decompose_2d_matrix(&(*self).into());
|
|
let to = decompose_2d_matrix(&(*other).into());
|
|
match (from, to) {
|
|
(Ok(from), Ok(to)) => Matrix3D::from(from.animate(&to, procedure)?).into_2d(),
|
|
// Matrices can be undecomposable due to couple reasons, e.g.,
|
|
// non-invertible matrices. In this case, we should report Err here,
|
|
// and let the caller do the fallback procedure.
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A 3d translation.
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
#[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug)]
|
|
pub struct Translate3D(pub f32, pub f32, pub f32);
|
|
|
|
/// A 3d scale function.
|
|
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
pub struct Scale3D(pub f32, pub f32, pub f32);
|
|
|
|
impl Scale3D {
|
|
/// Negate self.
|
|
fn negate(&mut self) {
|
|
self.0 *= -1.0;
|
|
self.1 *= -1.0;
|
|
self.2 *= -1.0;
|
|
}
|
|
}
|
|
|
|
impl Animate for Scale3D {
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
Ok(Scale3D(
|
|
animate_multiplicative_factor(self.0, other.0, procedure)?,
|
|
animate_multiplicative_factor(self.1, other.1, procedure)?,
|
|
animate_multiplicative_factor(self.2, other.2, procedure)?,
|
|
))
|
|
}
|
|
}
|
|
|
|
/// A 3d skew function.
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
#[derive(Animate, Clone, Copy, Debug)]
|
|
pub struct Skew(f32, f32, f32);
|
|
|
|
impl ComputeSquaredDistance for Skew {
|
|
// We have to use atan() to convert the skew factors into skew angles, so implement
|
|
// ComputeSquaredDistance manually.
|
|
#[inline]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
Ok(self.0.atan().compute_squared_distance(&other.0.atan())? +
|
|
self.1.atan().compute_squared_distance(&other.1.atan())? +
|
|
self.2.atan().compute_squared_distance(&other.2.atan())?)
|
|
}
|
|
}
|
|
|
|
/// A 3d perspective transformation.
|
|
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
pub struct Perspective(pub f32, pub f32, pub f32, pub f32);
|
|
|
|
impl Animate for Perspective {
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
Ok(Perspective(
|
|
self.0.animate(&other.0, procedure)?,
|
|
self.1.animate(&other.1, procedure)?,
|
|
self.2.animate(&other.2, procedure)?,
|
|
animate_multiplicative_factor(self.3, other.3, procedure)?,
|
|
))
|
|
}
|
|
}
|
|
|
|
/// A quaternion used to represent a rotation.
|
|
#[derive(Clone, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
pub struct Quaternion(f64, f64, f64, f64);
|
|
|
|
impl Quaternion {
|
|
/// Return a quaternion from a unit direction vector and angle (unit: radian).
|
|
#[inline]
|
|
fn from_direction_and_angle(vector: &DirectionVector, angle: f64) -> Self {
|
|
debug_assert!(
|
|
(vector.length() - 1.).abs() < 0.0001,
|
|
"Only accept an unit direction vector to create a quaternion"
|
|
);
|
|
// Reference:
|
|
// https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
|
|
//
|
|
// if the direction axis is (x, y, z) = xi + yj + zk,
|
|
// and the angle is |theta|, this formula can be done using
|
|
// an extension of Euler's formula:
|
|
// q = cos(theta/2) + (xi + yj + zk)(sin(theta/2))
|
|
// = cos(theta/2) +
|
|
// x*sin(theta/2)i + y*sin(theta/2)j + z*sin(theta/2)k
|
|
Quaternion(
|
|
vector.x as f64 * (angle / 2.).sin(),
|
|
vector.y as f64 * (angle / 2.).sin(),
|
|
vector.z as f64 * (angle / 2.).sin(),
|
|
(angle / 2.).cos(),
|
|
)
|
|
}
|
|
|
|
/// Calculate the dot product.
|
|
#[inline]
|
|
fn dot(&self, other: &Self) -> f64 {
|
|
self.0 * other.0 + self.1 * other.1 + self.2 * other.2 + self.3 * other.3
|
|
}
|
|
|
|
/// Return the scaled quaternion by a factor.
|
|
#[inline]
|
|
fn scale(&self, factor: f64) -> Self {
|
|
Quaternion(
|
|
self.0 * factor,
|
|
self.1 * factor,
|
|
self.2 * factor,
|
|
self.3 * factor,
|
|
)
|
|
}
|
|
}
|
|
|
|
impl Animate for Quaternion {
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
use std::f64;
|
|
|
|
let (this_weight, other_weight) = procedure.weights();
|
|
debug_assert!(
|
|
// Doule EPSILON since both this_weight and other_weght have calculation errors
|
|
// which are approximately equal to EPSILON.
|
|
(this_weight + other_weight - 1.0f64).abs() <= f64::EPSILON * 2.0 ||
|
|
other_weight == 1.0f64 ||
|
|
other_weight == 0.0f64,
|
|
"animate should only be used for interpolating or accumulating transforms"
|
|
);
|
|
|
|
// We take a specialized code path for accumulation (where other_weight
|
|
// is 1).
|
|
if let Procedure::Accumulate { .. } = procedure {
|
|
debug_assert_eq!(other_weight, 1.0);
|
|
if this_weight == 0.0 {
|
|
return Ok(*other);
|
|
}
|
|
|
|
let clamped_w = self.3.min(1.0).max(-1.0);
|
|
|
|
// Determine the scale factor.
|
|
let mut theta = clamped_w.acos();
|
|
let mut scale = if theta == 0.0 { 0.0 } else { 1.0 / theta.sin() };
|
|
theta *= this_weight;
|
|
scale *= theta.sin();
|
|
|
|
// Scale the self matrix by this_weight.
|
|
let mut scaled_self = *self;
|
|
scaled_self.0 *= scale;
|
|
scaled_self.1 *= scale;
|
|
scaled_self.2 *= scale;
|
|
scaled_self.3 = theta.cos();
|
|
|
|
// Multiply scaled-self by other.
|
|
let a = &scaled_self;
|
|
let b = other;
|
|
return Ok(Quaternion(
|
|
a.3 * b.0 + a.0 * b.3 + a.1 * b.2 - a.2 * b.1,
|
|
a.3 * b.1 - a.0 * b.2 + a.1 * b.3 + a.2 * b.0,
|
|
a.3 * b.2 + a.0 * b.1 - a.1 * b.0 + a.2 * b.3,
|
|
a.3 * b.3 - a.0 * b.0 - a.1 * b.1 - a.2 * b.2,
|
|
));
|
|
}
|
|
|
|
// Straight from gfxQuaternion::Slerp.
|
|
//
|
|
// Dot product, clamped between -1 and 1.
|
|
let dot = (self.0 * other.0 + self.1 * other.1 + self.2 * other.2 + self.3 * other.3)
|
|
.min(1.0)
|
|
.max(-1.0);
|
|
|
|
if dot.abs() == 1.0 {
|
|
return Ok(*self);
|
|
}
|
|
|
|
let theta = dot.acos();
|
|
let rsintheta = 1.0 / (1.0 - dot * dot).sqrt();
|
|
|
|
let right_weight = (other_weight * theta).sin() * rsintheta;
|
|
let left_weight = (other_weight * theta).cos() - dot * right_weight;
|
|
|
|
let left = self.scale(left_weight);
|
|
let right = other.scale(right_weight);
|
|
|
|
Ok(Quaternion(
|
|
left.0 + right.0,
|
|
left.1 + right.1,
|
|
left.2 + right.2,
|
|
left.3 + right.3,
|
|
))
|
|
}
|
|
}
|
|
|
|
impl ComputeSquaredDistance for Quaternion {
|
|
#[inline]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
// Use quaternion vectors to get the angle difference. Both q1 and q2 are unit vectors,
|
|
// so we can get their angle difference by:
|
|
// cos(theta/2) = (q1 dot q2) / (|q1| * |q2|) = q1 dot q2.
|
|
let distance = self.dot(other).max(-1.0).min(1.0).acos() * 2.0;
|
|
Ok(SquaredDistance::from_sqrt(distance))
|
|
}
|
|
}
|
|
|
|
/// A decomposed 3d matrix.
|
|
#[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug)]
|
|
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
|
|
pub struct MatrixDecomposed3D {
|
|
/// A translation function.
|
|
pub translate: Translate3D,
|
|
/// A scale function.
|
|
pub scale: Scale3D,
|
|
/// The skew component of the transformation.
|
|
pub skew: Skew,
|
|
/// The perspective component of the transformation.
|
|
pub perspective: Perspective,
|
|
/// The quaternion used to represent the rotation.
|
|
pub quaternion: Quaternion,
|
|
}
|
|
|
|
impl From<MatrixDecomposed3D> for Matrix3D {
|
|
/// Recompose a 3D matrix.
|
|
/// <https://drafts.csswg.org/css-transforms/#recomposing-to-a-3d-matrix>
|
|
fn from(decomposed: MatrixDecomposed3D) -> Matrix3D {
|
|
let mut matrix = Matrix3D::identity();
|
|
|
|
// Apply perspective
|
|
matrix.set_perspective(&decomposed.perspective);
|
|
|
|
// Apply translation
|
|
matrix.apply_translate(&decomposed.translate);
|
|
|
|
// Apply rotation
|
|
{
|
|
let x = decomposed.quaternion.0;
|
|
let y = decomposed.quaternion.1;
|
|
let z = decomposed.quaternion.2;
|
|
let w = decomposed.quaternion.3;
|
|
|
|
// Construct a composite rotation matrix from the quaternion values
|
|
// rotationMatrix is a identity 4x4 matrix initially
|
|
let mut rotation_matrix = Matrix3D::identity();
|
|
rotation_matrix.m11 = 1.0 - 2.0 * (y * y + z * z) as f32;
|
|
rotation_matrix.m12 = 2.0 * (x * y + z * w) as f32;
|
|
rotation_matrix.m13 = 2.0 * (x * z - y * w) as f32;
|
|
rotation_matrix.m21 = 2.0 * (x * y - z * w) as f32;
|
|
rotation_matrix.m22 = 1.0 - 2.0 * (x * x + z * z) as f32;
|
|
rotation_matrix.m23 = 2.0 * (y * z + x * w) as f32;
|
|
rotation_matrix.m31 = 2.0 * (x * z + y * w) as f32;
|
|
rotation_matrix.m32 = 2.0 * (y * z - x * w) as f32;
|
|
rotation_matrix.m33 = 1.0 - 2.0 * (x * x + y * y) as f32;
|
|
|
|
matrix = rotation_matrix.multiply(&matrix);
|
|
}
|
|
|
|
// Apply skew
|
|
{
|
|
let mut temp = Matrix3D::identity();
|
|
if decomposed.skew.2 != 0.0 {
|
|
temp.m32 = decomposed.skew.2;
|
|
matrix = temp.multiply(&matrix);
|
|
temp.m32 = 0.0;
|
|
}
|
|
|
|
if decomposed.skew.1 != 0.0 {
|
|
temp.m31 = decomposed.skew.1;
|
|
matrix = temp.multiply(&matrix);
|
|
temp.m31 = 0.0;
|
|
}
|
|
|
|
if decomposed.skew.0 != 0.0 {
|
|
temp.m21 = decomposed.skew.0;
|
|
matrix = temp.multiply(&matrix);
|
|
}
|
|
}
|
|
|
|
// Apply scale
|
|
matrix.apply_scale(&decomposed.scale);
|
|
|
|
matrix
|
|
}
|
|
}
|
|
|
|
/// Decompose a 3D matrix.
|
|
/// https://drafts.csswg.org/css-transforms-2/#decomposing-a-3d-matrix
|
|
/// http://www.realtimerendering.com/resources/GraphicsGems/gemsii/unmatrix.c
|
|
fn decompose_3d_matrix(mut matrix: Matrix3D) -> Result<MatrixDecomposed3D, ()> {
|
|
// Combine 2 point.
|
|
let combine = |a: [f32; 3], b: [f32; 3], ascl: f32, bscl: f32| {
|
|
[
|
|
(ascl * a[0]) + (bscl * b[0]),
|
|
(ascl * a[1]) + (bscl * b[1]),
|
|
(ascl * a[2]) + (bscl * b[2]),
|
|
]
|
|
};
|
|
// Dot product.
|
|
let dot = |a: [f32; 3], b: [f32; 3]| a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
|
|
// Cross product.
|
|
let cross = |row1: [f32; 3], row2: [f32; 3]| {
|
|
[
|
|
row1[1] * row2[2] - row1[2] * row2[1],
|
|
row1[2] * row2[0] - row1[0] * row2[2],
|
|
row1[0] * row2[1] - row1[1] * row2[0],
|
|
]
|
|
};
|
|
|
|
if matrix.m44 == 0.0 {
|
|
return Err(());
|
|
}
|
|
|
|
let scaling_factor = matrix.m44;
|
|
|
|
// Normalize the matrix.
|
|
matrix.scale_by_factor(1.0 / scaling_factor);
|
|
|
|
// perspective_matrix is used to solve for perspective, but it also provides
|
|
// an easy way to test for singularity of the upper 3x3 component.
|
|
let mut perspective_matrix = matrix;
|
|
|
|
perspective_matrix.m14 = 0.0;
|
|
perspective_matrix.m24 = 0.0;
|
|
perspective_matrix.m34 = 0.0;
|
|
perspective_matrix.m44 = 1.0;
|
|
|
|
if perspective_matrix.determinant() == 0.0 {
|
|
return Err(());
|
|
}
|
|
|
|
// First, isolate perspective.
|
|
let perspective = if matrix.m14 != 0.0 || matrix.m24 != 0.0 || matrix.m34 != 0.0 {
|
|
let right_hand_side: [f32; 4] = [matrix.m14, matrix.m24, matrix.m34, matrix.m44];
|
|
|
|
perspective_matrix = perspective_matrix.inverse().unwrap().transpose();
|
|
let perspective = perspective_matrix.pre_mul_point4(&right_hand_side);
|
|
// NOTE(emilio): Even though the reference algorithm clears the
|
|
// fourth column here (matrix.m14..matrix.m44), they're not used below
|
|
// so it's not really needed.
|
|
Perspective(
|
|
perspective[0],
|
|
perspective[1],
|
|
perspective[2],
|
|
perspective[3],
|
|
)
|
|
} else {
|
|
Perspective(0.0, 0.0, 0.0, 1.0)
|
|
};
|
|
|
|
// Next take care of translation (easy).
|
|
let translate = Translate3D(matrix.m41, matrix.m42, matrix.m43);
|
|
|
|
// Now get scale and shear. 'row' is a 3 element array of 3 component vectors
|
|
let mut row = matrix.get_matrix_3x3_part();
|
|
|
|
// Compute X scale factor and normalize first row.
|
|
let row0len = (row[0][0] * row[0][0] + row[0][1] * row[0][1] + row[0][2] * row[0][2]).sqrt();
|
|
let mut scale = Scale3D(row0len, 0.0, 0.0);
|
|
row[0] = [
|
|
row[0][0] / row0len,
|
|
row[0][1] / row0len,
|
|
row[0][2] / row0len,
|
|
];
|
|
|
|
// Compute XY shear factor and make 2nd row orthogonal to 1st.
|
|
let mut skew = Skew(dot(row[0], row[1]), 0.0, 0.0);
|
|
row[1] = combine(row[1], row[0], 1.0, -skew.0);
|
|
|
|
// Now, compute Y scale and normalize 2nd row.
|
|
let row1len = (row[1][0] * row[1][0] + row[1][1] * row[1][1] + row[1][2] * row[1][2]).sqrt();
|
|
scale.1 = row1len;
|
|
row[1] = [
|
|
row[1][0] / row1len,
|
|
row[1][1] / row1len,
|
|
row[1][2] / row1len,
|
|
];
|
|
skew.0 /= scale.1;
|
|
|
|
// Compute XZ and YZ shears, orthogonalize 3rd row
|
|
skew.1 = dot(row[0], row[2]);
|
|
row[2] = combine(row[2], row[0], 1.0, -skew.1);
|
|
skew.2 = dot(row[1], row[2]);
|
|
row[2] = combine(row[2], row[1], 1.0, -skew.2);
|
|
|
|
// Next, get Z scale and normalize 3rd row.
|
|
let row2len = (row[2][0] * row[2][0] + row[2][1] * row[2][1] + row[2][2] * row[2][2]).sqrt();
|
|
scale.2 = row2len;
|
|
row[2] = [
|
|
row[2][0] / row2len,
|
|
row[2][1] / row2len,
|
|
row[2][2] / row2len,
|
|
];
|
|
skew.1 /= scale.2;
|
|
skew.2 /= scale.2;
|
|
|
|
// At this point, the matrix (in rows) is orthonormal.
|
|
// Check for a coordinate system flip. If the determinant
|
|
// is -1, then negate the matrix and the scaling factors.
|
|
if dot(row[0], cross(row[1], row[2])) < 0.0 {
|
|
scale.negate();
|
|
for i in 0..3 {
|
|
row[i][0] *= -1.0;
|
|
row[i][1] *= -1.0;
|
|
row[i][2] *= -1.0;
|
|
}
|
|
}
|
|
|
|
// Now, get the rotations out.
|
|
let mut quaternion = Quaternion(
|
|
0.5 * ((1.0 + row[0][0] - row[1][1] - row[2][2]).max(0.0) as f64).sqrt(),
|
|
0.5 * ((1.0 - row[0][0] + row[1][1] - row[2][2]).max(0.0) as f64).sqrt(),
|
|
0.5 * ((1.0 - row[0][0] - row[1][1] + row[2][2]).max(0.0) as f64).sqrt(),
|
|
0.5 * ((1.0 + row[0][0] + row[1][1] + row[2][2]).max(0.0) as f64).sqrt(),
|
|
);
|
|
|
|
if row[2][1] > row[1][2] {
|
|
quaternion.0 = -quaternion.0
|
|
}
|
|
if row[0][2] > row[2][0] {
|
|
quaternion.1 = -quaternion.1
|
|
}
|
|
if row[1][0] > row[0][1] {
|
|
quaternion.2 = -quaternion.2
|
|
}
|
|
|
|
Ok(MatrixDecomposed3D {
|
|
translate,
|
|
scale,
|
|
skew,
|
|
perspective,
|
|
quaternion,
|
|
})
|
|
}
|
|
|
|
/// Decompose a 2D matrix for Gecko.
|
|
// Use the algorithm from nsStyleTransformMatrix::Decompose2DMatrix() in Gecko.
|
|
#[cfg(feature = "gecko")]
|
|
fn decompose_2d_matrix(matrix: &Matrix3D) -> Result<MatrixDecomposed3D, ()> {
|
|
// The index is column-major, so the equivalent transform matrix is:
|
|
// | m11 m21 0 m41 | => | m11 m21 | and translate(m41, m42)
|
|
// | m12 m22 0 m42 | | m12 m22 |
|
|
// | 0 0 1 0 |
|
|
// | 0 0 0 1 |
|
|
let (mut m11, mut m12) = (matrix.m11, matrix.m12);
|
|
let (mut m21, mut m22) = (matrix.m21, matrix.m22);
|
|
// Check if this is a singular matrix.
|
|
if m11 * m22 == m12 * m21 {
|
|
return Err(());
|
|
}
|
|
|
|
let mut scale_x = (m11 * m11 + m12 * m12).sqrt();
|
|
m11 /= scale_x;
|
|
m12 /= scale_x;
|
|
|
|
let mut shear_xy = m11 * m21 + m12 * m22;
|
|
m21 -= m11 * shear_xy;
|
|
m22 -= m12 * shear_xy;
|
|
|
|
let scale_y = (m21 * m21 + m22 * m22).sqrt();
|
|
m21 /= scale_y;
|
|
m22 /= scale_y;
|
|
shear_xy /= scale_y;
|
|
|
|
let determinant = m11 * m22 - m12 * m21;
|
|
// Determinant should now be 1 or -1.
|
|
if 0.99 > determinant.abs() || determinant.abs() > 1.01 {
|
|
return Err(());
|
|
}
|
|
|
|
if determinant < 0. {
|
|
m11 = -m11;
|
|
m12 = -m12;
|
|
shear_xy = -shear_xy;
|
|
scale_x = -scale_x;
|
|
}
|
|
|
|
Ok(MatrixDecomposed3D {
|
|
translate: Translate3D(matrix.m41, matrix.m42, 0.),
|
|
scale: Scale3D(scale_x, scale_y, 1.),
|
|
skew: Skew(shear_xy, 0., 0.),
|
|
perspective: Perspective(0., 0., 0., 1.),
|
|
quaternion: Quaternion::from_direction_and_angle(
|
|
&DirectionVector::new(0., 0., 1.),
|
|
m12.atan2(m11) as f64,
|
|
),
|
|
})
|
|
}
|
|
|
|
impl Animate for Matrix3D {
|
|
#[cfg(feature = "servo")]
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
if self.is_3d() || other.is_3d() {
|
|
let decomposed_from = decompose_3d_matrix(*self);
|
|
let decomposed_to = decompose_3d_matrix(*other);
|
|
match (decomposed_from, decomposed_to) {
|
|
(Ok(this), Ok(other)) => Ok(Matrix3D::from(this.animate(&other, procedure)?)),
|
|
// Matrices can be undecomposable due to couple reasons, e.g.,
|
|
// non-invertible matrices. In this case, we should report Err
|
|
// here, and let the caller do the fallback procedure.
|
|
_ => Err(()),
|
|
}
|
|
} else {
|
|
let this = MatrixDecomposed2D::from(*self);
|
|
let other = MatrixDecomposed2D::from(*other);
|
|
Ok(Matrix3D::from(this.animate(&other, procedure)?))
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "gecko")]
|
|
// Gecko doesn't exactly follow the spec here; we use a different procedure
|
|
// to match it
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
let (from, to) = if self.is_3d() || other.is_3d() {
|
|
(decompose_3d_matrix(*self), decompose_3d_matrix(*other))
|
|
} else {
|
|
(decompose_2d_matrix(self), decompose_2d_matrix(other))
|
|
};
|
|
match (from, to) {
|
|
(Ok(from), Ok(to)) => Ok(Matrix3D::from(from.animate(&to, procedure)?)),
|
|
// Matrices can be undecomposable due to couple reasons, e.g.,
|
|
// non-invertible matrices. In this case, we should report Err here,
|
|
// and let the caller do the fallback procedure.
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ComputeSquaredDistance for Matrix3D {
|
|
#[inline]
|
|
#[cfg(feature = "servo")]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
if self.is_3d() || other.is_3d() {
|
|
let from = decompose_3d_matrix(*self)?;
|
|
let to = decompose_3d_matrix(*other)?;
|
|
from.compute_squared_distance(&to)
|
|
} else {
|
|
let from = MatrixDecomposed2D::from(*self);
|
|
let to = MatrixDecomposed2D::from(*other);
|
|
from.compute_squared_distance(&to)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
#[cfg(feature = "gecko")]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
let (from, to) = if self.is_3d() || other.is_3d() {
|
|
(decompose_3d_matrix(*self)?, decompose_3d_matrix(*other)?)
|
|
} else {
|
|
(decompose_2d_matrix(self)?, decompose_2d_matrix(other)?)
|
|
};
|
|
from.compute_squared_distance(&to)
|
|
}
|
|
}
|
|
|
|
// ------------------------------------
|
|
// Animation for Transform list.
|
|
// ------------------------------------
|
|
fn is_matched_operation(
|
|
first: &ComputedTransformOperation,
|
|
second: &ComputedTransformOperation,
|
|
) -> bool {
|
|
match (first, second) {
|
|
(&TransformOperation::Matrix(..), &TransformOperation::Matrix(..)) |
|
|
(&TransformOperation::Matrix3D(..), &TransformOperation::Matrix3D(..)) |
|
|
(&TransformOperation::Skew(..), &TransformOperation::Skew(..)) |
|
|
(&TransformOperation::SkewX(..), &TransformOperation::SkewX(..)) |
|
|
(&TransformOperation::SkewY(..), &TransformOperation::SkewY(..)) |
|
|
(&TransformOperation::Rotate(..), &TransformOperation::Rotate(..)) |
|
|
(&TransformOperation::Rotate3D(..), &TransformOperation::Rotate3D(..)) |
|
|
(&TransformOperation::RotateX(..), &TransformOperation::RotateX(..)) |
|
|
(&TransformOperation::RotateY(..), &TransformOperation::RotateY(..)) |
|
|
(&TransformOperation::RotateZ(..), &TransformOperation::RotateZ(..)) |
|
|
(&TransformOperation::Perspective(..), &TransformOperation::Perspective(..)) => true,
|
|
// Match functions that have the same primitive transform function
|
|
(a, b) if a.is_translate() && b.is_translate() => true,
|
|
(a, b) if a.is_scale() && b.is_scale() => true,
|
|
(a, b) if a.is_rotate() && b.is_rotate() => true,
|
|
// InterpolateMatrix and AccumulateMatrix are for mismatched transforms
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
/// <https://drafts.csswg.org/css-transforms/#interpolation-of-transforms>
|
|
impl Animate for ComputedTransform {
|
|
#[inline]
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
use std::borrow::Cow;
|
|
|
|
// Addition for transforms simply means appending to the list of
|
|
// transform functions. This is different to how we handle the other
|
|
// animation procedures so we treat it separately here rather than
|
|
// handling it in TransformOperation.
|
|
if procedure == Procedure::Add {
|
|
let result = self.0.iter().chain(&other.0).cloned().collect::<Vec<_>>();
|
|
return Ok(Transform(result));
|
|
}
|
|
|
|
let this = Cow::Borrowed(&self.0);
|
|
let other = Cow::Borrowed(&other.0);
|
|
|
|
// Interpolate the common prefix
|
|
let mut result = this
|
|
.iter()
|
|
.zip(other.iter())
|
|
.take_while(|(this, other)| is_matched_operation(this, other))
|
|
.map(|(this, other)| this.animate(other, procedure))
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
// Deal with the remainders
|
|
let this_remainder = if this.len() > result.len() {
|
|
Some(&this[result.len()..])
|
|
} else {
|
|
None
|
|
};
|
|
let other_remainder = if other.len() > result.len() {
|
|
Some(&other[result.len()..])
|
|
} else {
|
|
None
|
|
};
|
|
|
|
match (this_remainder, other_remainder) {
|
|
// If there is a remainder from *both* lists we must have had mismatched functions.
|
|
// => Add the remainders to a suitable ___Matrix function.
|
|
(Some(this_remainder), Some(other_remainder)) => match procedure {
|
|
Procedure::Add => {
|
|
debug_assert!(false, "Should have already dealt with add by the point");
|
|
return Err(());
|
|
},
|
|
Procedure::Interpolate { progress } => {
|
|
result.push(TransformOperation::InterpolateMatrix {
|
|
from_list: Transform(this_remainder.to_vec()),
|
|
to_list: Transform(other_remainder.to_vec()),
|
|
progress: Percentage(progress as f32),
|
|
});
|
|
},
|
|
Procedure::Accumulate { count } => {
|
|
result.push(TransformOperation::AccumulateMatrix {
|
|
from_list: Transform(this_remainder.to_vec()),
|
|
to_list: Transform(other_remainder.to_vec()),
|
|
count: cmp::min(count, i32::max_value() as u64) as i32,
|
|
});
|
|
},
|
|
},
|
|
// If there is a remainder from just one list, then one list must be shorter but
|
|
// completely match the type of the corresponding functions in the longer list.
|
|
// => Interpolate the remainder with identity transforms.
|
|
(Some(remainder), None) | (None, Some(remainder)) => {
|
|
let fill_right = this_remainder.is_some();
|
|
result.append(
|
|
&mut remainder
|
|
.iter()
|
|
.map(|transform| {
|
|
let identity = transform.to_animated_zero().unwrap();
|
|
|
|
match transform {
|
|
// We can't interpolate/accumulate ___Matrix types directly with a
|
|
// matrix. Instead we need to wrap it in another ___Matrix type.
|
|
TransformOperation::AccumulateMatrix { .. } |
|
|
TransformOperation::InterpolateMatrix { .. } => {
|
|
let transform_list = Transform(vec![transform.clone()]);
|
|
let identity_list = Transform(vec![identity]);
|
|
let (from_list, to_list) = if fill_right {
|
|
(transform_list, identity_list)
|
|
} else {
|
|
(identity_list, transform_list)
|
|
};
|
|
|
|
match procedure {
|
|
Procedure::Add => Err(()),
|
|
Procedure::Interpolate { progress } => {
|
|
Ok(TransformOperation::InterpolateMatrix {
|
|
from_list,
|
|
to_list,
|
|
progress: Percentage(progress as f32),
|
|
})
|
|
},
|
|
Procedure::Accumulate { count } => {
|
|
Ok(TransformOperation::AccumulateMatrix {
|
|
from_list,
|
|
to_list,
|
|
count: cmp::min(count, i32::max_value() as u64)
|
|
as i32,
|
|
})
|
|
},
|
|
}
|
|
},
|
|
_ => {
|
|
let (lhs, rhs) = if fill_right {
|
|
(transform, &identity)
|
|
} else {
|
|
(&identity, transform)
|
|
};
|
|
lhs.animate(rhs, procedure)
|
|
},
|
|
}
|
|
})
|
|
.collect::<Result<Vec<_>, _>>()?,
|
|
);
|
|
},
|
|
(None, None) => {},
|
|
}
|
|
|
|
Ok(Transform(result))
|
|
}
|
|
}
|
|
|
|
impl ComputeSquaredDistance for ComputedTransform {
|
|
#[inline]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
let squared_dist = self.0.squared_distance_with_zero(&other.0);
|
|
|
|
// Roll back to matrix interpolation if there is any Err(()) in the
|
|
// transform lists, such as mismatched transform functions.
|
|
if squared_dist.is_err() {
|
|
let matrix1: Matrix3D = self.to_transform_3d_matrix(None)?.0.into();
|
|
let matrix2: Matrix3D = other.to_transform_3d_matrix(None)?.0.into();
|
|
return matrix1.compute_squared_distance(&matrix2);
|
|
}
|
|
|
|
squared_dist
|
|
}
|
|
}
|
|
|
|
/// <http://dev.w3.org/csswg/css-transforms/#interpolation-of-transforms>
|
|
impl Animate for ComputedTransformOperation {
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
match (self, other) {
|
|
(&TransformOperation::Matrix3D(ref this), &TransformOperation::Matrix3D(ref other)) => {
|
|
Ok(TransformOperation::Matrix3D(
|
|
this.animate(other, procedure)?,
|
|
))
|
|
},
|
|
(&TransformOperation::Matrix(ref this), &TransformOperation::Matrix(ref other)) => {
|
|
Ok(TransformOperation::Matrix(this.animate(other, procedure)?))
|
|
},
|
|
(
|
|
&TransformOperation::Skew(ref fx, ref fy),
|
|
&TransformOperation::Skew(ref tx, ref ty),
|
|
) => Ok(TransformOperation::Skew(
|
|
fx.animate(tx, procedure)?,
|
|
fy.animate(ty, procedure)?,
|
|
)),
|
|
(&TransformOperation::SkewX(ref f), &TransformOperation::SkewX(ref t)) => {
|
|
Ok(TransformOperation::SkewX(f.animate(t, procedure)?))
|
|
},
|
|
(&TransformOperation::SkewY(ref f), &TransformOperation::SkewY(ref t)) => {
|
|
Ok(TransformOperation::SkewY(f.animate(t, procedure)?))
|
|
},
|
|
(
|
|
&TransformOperation::Translate3D(ref fx, ref fy, ref fz),
|
|
&TransformOperation::Translate3D(ref tx, ref ty, ref tz),
|
|
) => Ok(TransformOperation::Translate3D(
|
|
fx.animate(tx, procedure)?,
|
|
fy.animate(ty, procedure)?,
|
|
fz.animate(tz, procedure)?,
|
|
)),
|
|
(
|
|
&TransformOperation::Translate(ref fx, ref fy),
|
|
&TransformOperation::Translate(ref tx, ref ty),
|
|
) => Ok(TransformOperation::Translate(
|
|
fx.animate(tx, procedure)?,
|
|
fy.animate(ty, procedure)?,
|
|
)),
|
|
(&TransformOperation::TranslateX(ref f), &TransformOperation::TranslateX(ref t)) => {
|
|
Ok(TransformOperation::TranslateX(f.animate(t, procedure)?))
|
|
},
|
|
(&TransformOperation::TranslateY(ref f), &TransformOperation::TranslateY(ref t)) => {
|
|
Ok(TransformOperation::TranslateY(f.animate(t, procedure)?))
|
|
},
|
|
(&TransformOperation::TranslateZ(ref f), &TransformOperation::TranslateZ(ref t)) => {
|
|
Ok(TransformOperation::TranslateZ(f.animate(t, procedure)?))
|
|
},
|
|
(
|
|
&TransformOperation::Scale3D(ref fx, ref fy, ref fz),
|
|
&TransformOperation::Scale3D(ref tx, ref ty, ref tz),
|
|
) => Ok(TransformOperation::Scale3D(
|
|
animate_multiplicative_factor(*fx, *tx, procedure)?,
|
|
animate_multiplicative_factor(*fy, *ty, procedure)?,
|
|
animate_multiplicative_factor(*fz, *tz, procedure)?,
|
|
)),
|
|
(&TransformOperation::ScaleX(ref f), &TransformOperation::ScaleX(ref t)) => Ok(
|
|
TransformOperation::ScaleX(animate_multiplicative_factor(*f, *t, procedure)?),
|
|
),
|
|
(&TransformOperation::ScaleY(ref f), &TransformOperation::ScaleY(ref t)) => Ok(
|
|
TransformOperation::ScaleY(animate_multiplicative_factor(*f, *t, procedure)?),
|
|
),
|
|
(&TransformOperation::ScaleZ(ref f), &TransformOperation::ScaleZ(ref t)) => Ok(
|
|
TransformOperation::ScaleZ(animate_multiplicative_factor(*f, *t, procedure)?),
|
|
),
|
|
(
|
|
&TransformOperation::Scale(ref fx, ref fy),
|
|
&TransformOperation::Scale(ref tx, ref ty),
|
|
) => Ok(TransformOperation::Scale(
|
|
animate_multiplicative_factor(*fx, *tx, procedure)?,
|
|
animate_multiplicative_factor(*fy, *ty, procedure)?,
|
|
)),
|
|
(
|
|
&TransformOperation::Rotate3D(fx, fy, fz, fa),
|
|
&TransformOperation::Rotate3D(tx, ty, tz, ta),
|
|
) => {
|
|
let animated = Rotate::Rotate3D(fx, fy, fz, fa)
|
|
.animate(&Rotate::Rotate3D(tx, ty, tz, ta), procedure)?;
|
|
let (fx, fy, fz, fa) = ComputedRotate::resolve(&animated);
|
|
Ok(TransformOperation::Rotate3D(fx, fy, fz, fa))
|
|
},
|
|
(&TransformOperation::RotateX(fa), &TransformOperation::RotateX(ta)) => {
|
|
Ok(TransformOperation::RotateX(fa.animate(&ta, procedure)?))
|
|
},
|
|
(&TransformOperation::RotateY(fa), &TransformOperation::RotateY(ta)) => {
|
|
Ok(TransformOperation::RotateY(fa.animate(&ta, procedure)?))
|
|
},
|
|
(&TransformOperation::RotateZ(fa), &TransformOperation::RotateZ(ta)) => {
|
|
Ok(TransformOperation::RotateZ(fa.animate(&ta, procedure)?))
|
|
},
|
|
(&TransformOperation::Rotate(fa), &TransformOperation::Rotate(ta)) => {
|
|
Ok(TransformOperation::Rotate(fa.animate(&ta, procedure)?))
|
|
},
|
|
(&TransformOperation::Rotate(fa), &TransformOperation::RotateZ(ta)) => {
|
|
Ok(TransformOperation::Rotate(fa.animate(&ta, procedure)?))
|
|
},
|
|
(&TransformOperation::RotateZ(fa), &TransformOperation::Rotate(ta)) => {
|
|
Ok(TransformOperation::Rotate(fa.animate(&ta, procedure)?))
|
|
},
|
|
(
|
|
&TransformOperation::Perspective(ref fd),
|
|
&TransformOperation::Perspective(ref td),
|
|
) => {
|
|
use crate::values::computed::CSSPixelLength;
|
|
use crate::values::generics::transform::create_perspective_matrix;
|
|
|
|
// From https://drafts.csswg.org/css-transforms-2/#interpolation-of-transform-functions:
|
|
//
|
|
// The transform functions matrix(), matrix3d() and
|
|
// perspective() get converted into 4x4 matrices first and
|
|
// interpolated as defined in section Interpolation of
|
|
// Matrices afterwards.
|
|
//
|
|
let from = create_perspective_matrix(fd.px());
|
|
let to = create_perspective_matrix(td.px());
|
|
|
|
let interpolated = Matrix3D::from(from).animate(&Matrix3D::from(to), procedure)?;
|
|
|
|
let decomposed = decompose_3d_matrix(interpolated)?;
|
|
let perspective_z = decomposed.perspective.2;
|
|
let used_value = if perspective_z == 0. {
|
|
0.
|
|
} else {
|
|
-1. / perspective_z
|
|
};
|
|
Ok(TransformOperation::Perspective(CSSPixelLength::new(
|
|
used_value,
|
|
)))
|
|
},
|
|
_ if self.is_translate() && other.is_translate() => self
|
|
.to_translate_3d()
|
|
.animate(&other.to_translate_3d(), procedure),
|
|
_ if self.is_scale() && other.is_scale() => {
|
|
self.to_scale_3d().animate(&other.to_scale_3d(), procedure)
|
|
},
|
|
_ if self.is_rotate() && other.is_rotate() => self
|
|
.to_rotate_3d()
|
|
.animate(&other.to_rotate_3d(), procedure),
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
// This might not be the most useful definition of distance. It might be better, for example,
|
|
// to trace the distance travelled by a point as its transform is interpolated between the two
|
|
// lists. That, however, proves to be quite complicated so we take a simple approach for now.
|
|
// See https://bugzilla.mozilla.org/show_bug.cgi?id=1318591#c0.
|
|
impl ComputeSquaredDistance for ComputedTransformOperation {
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
match (self, other) {
|
|
(&TransformOperation::Matrix3D(ref this), &TransformOperation::Matrix3D(ref other)) => {
|
|
this.compute_squared_distance(other)
|
|
},
|
|
(&TransformOperation::Matrix(ref this), &TransformOperation::Matrix(ref other)) => {
|
|
let this: Matrix3D = (*this).into();
|
|
let other: Matrix3D = (*other).into();
|
|
this.compute_squared_distance(&other)
|
|
},
|
|
(
|
|
&TransformOperation::Skew(ref fx, ref fy),
|
|
&TransformOperation::Skew(ref tx, ref ty),
|
|
) => Ok(fx.compute_squared_distance(&tx)? + fy.compute_squared_distance(&ty)?),
|
|
(&TransformOperation::SkewX(ref f), &TransformOperation::SkewX(ref t)) |
|
|
(&TransformOperation::SkewY(ref f), &TransformOperation::SkewY(ref t)) => {
|
|
f.compute_squared_distance(&t)
|
|
},
|
|
(
|
|
&TransformOperation::Translate3D(ref fx, ref fy, ref fz),
|
|
&TransformOperation::Translate3D(ref tx, ref ty, ref tz),
|
|
) => {
|
|
// For translate, We don't want to require doing layout in order
|
|
// to calculate the result, so drop the percentage part.
|
|
//
|
|
// However, dropping percentage makes us impossible to compute
|
|
// the distance for the percentage-percentage case, but Gecko
|
|
// uses the same formula, so it's fine for now.
|
|
let fx = fx.length_component().px();
|
|
let fy = fy.length_component().px();
|
|
let tx = tx.length_component().px();
|
|
let ty = ty.length_component().px();
|
|
|
|
Ok(fx.compute_squared_distance(&tx)? +
|
|
fy.compute_squared_distance(&ty)? +
|
|
fz.compute_squared_distance(&tz)?)
|
|
},
|
|
(
|
|
&TransformOperation::Scale3D(ref fx, ref fy, ref fz),
|
|
&TransformOperation::Scale3D(ref tx, ref ty, ref tz),
|
|
) => Ok(fx.compute_squared_distance(&tx)? +
|
|
fy.compute_squared_distance(&ty)? +
|
|
fz.compute_squared_distance(&tz)?),
|
|
(
|
|
&TransformOperation::Rotate3D(fx, fy, fz, fa),
|
|
&TransformOperation::Rotate3D(tx, ty, tz, ta),
|
|
) => Rotate::Rotate3D(fx, fy, fz, fa)
|
|
.compute_squared_distance(&Rotate::Rotate3D(tx, ty, tz, ta)),
|
|
(&TransformOperation::RotateX(fa), &TransformOperation::RotateX(ta)) |
|
|
(&TransformOperation::RotateY(fa), &TransformOperation::RotateY(ta)) |
|
|
(&TransformOperation::RotateZ(fa), &TransformOperation::RotateZ(ta)) |
|
|
(&TransformOperation::Rotate(fa), &TransformOperation::Rotate(ta)) => {
|
|
fa.compute_squared_distance(&ta)
|
|
},
|
|
(
|
|
&TransformOperation::Perspective(ref fd),
|
|
&TransformOperation::Perspective(ref td),
|
|
) => fd.compute_squared_distance(td),
|
|
(&TransformOperation::Perspective(ref p), &TransformOperation::Matrix3D(ref m)) |
|
|
(&TransformOperation::Matrix3D(ref m), &TransformOperation::Perspective(ref p)) => {
|
|
// FIXME(emilio): Is this right? Why interpolating this with
|
|
// Perspective but not with anything else?
|
|
let mut p_matrix = Matrix3D::identity();
|
|
if p.px() > 0. {
|
|
p_matrix.m34 = -1. / p.px();
|
|
}
|
|
p_matrix.compute_squared_distance(&m)
|
|
},
|
|
// Gecko cross-interpolates amongst all translate and all scale
|
|
// functions (See ToPrimitive in layout/style/StyleAnimationValue.cpp)
|
|
// without falling back to InterpolateMatrix
|
|
_ if self.is_translate() && other.is_translate() => self
|
|
.to_translate_3d()
|
|
.compute_squared_distance(&other.to_translate_3d()),
|
|
_ if self.is_scale() && other.is_scale() => self
|
|
.to_scale_3d()
|
|
.compute_squared_distance(&other.to_scale_3d()),
|
|
_ if self.is_rotate() && other.is_rotate() => self
|
|
.to_rotate_3d()
|
|
.compute_squared_distance(&other.to_rotate_3d()),
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------
|
|
// Individual transforms.
|
|
// ------------------------------------
|
|
/// <https://drafts.csswg.org/css-transforms-2/#propdef-rotate>
|
|
impl ComputedRotate {
|
|
fn resolve(&self) -> (Number, Number, Number, Angle) {
|
|
// According to the spec:
|
|
// https://drafts.csswg.org/css-transforms-2/#individual-transforms
|
|
//
|
|
// If the axis is unspecified, it defaults to "0 0 1"
|
|
match *self {
|
|
Rotate::None => (0., 0., 1., Angle::zero()),
|
|
Rotate::Rotate3D(rx, ry, rz, angle) => (rx, ry, rz, angle),
|
|
Rotate::Rotate(angle) => (0., 0., 1., angle),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Animate for ComputedRotate {
|
|
#[inline]
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
match (self, other) {
|
|
(&Rotate::None, &Rotate::None) => Ok(Rotate::None),
|
|
(&Rotate::Rotate3D(fx, fy, fz, fa), &Rotate::None) => {
|
|
// No need to normalize `none`, so animate angle directly.
|
|
Ok(Rotate::Rotate3D(
|
|
fx,
|
|
fy,
|
|
fz,
|
|
fa.animate(&Angle::zero(), procedure)?,
|
|
))
|
|
},
|
|
(&Rotate::None, &Rotate::Rotate3D(tx, ty, tz, ta)) => {
|
|
// No need to normalize `none`, so animate angle directly.
|
|
Ok(Rotate::Rotate3D(
|
|
tx,
|
|
ty,
|
|
tz,
|
|
Angle::zero().animate(&ta, procedure)?,
|
|
))
|
|
},
|
|
(&Rotate::Rotate3D(_, ..), _) | (_, &Rotate::Rotate3D(_, ..)) => {
|
|
let (from, to) = (self.resolve(), other.resolve());
|
|
let (mut fx, mut fy, mut fz, fa) =
|
|
transform::get_normalized_vector_and_angle(from.0, from.1, from.2, from.3);
|
|
let (mut tx, mut ty, mut tz, ta) =
|
|
transform::get_normalized_vector_and_angle(to.0, to.1, to.2, to.3);
|
|
|
|
if fa == Angle::from_degrees(0.) {
|
|
fx = tx;
|
|
fy = ty;
|
|
fz = tz;
|
|
} else if ta == Angle::from_degrees(0.) {
|
|
tx = fx;
|
|
ty = fy;
|
|
tz = fz;
|
|
}
|
|
|
|
if (fx, fy, fz) == (tx, ty, tz) {
|
|
return Ok(Rotate::Rotate3D(fx, fy, fz, fa.animate(&ta, procedure)?));
|
|
}
|
|
|
|
let fv = DirectionVector::new(fx, fy, fz);
|
|
let tv = DirectionVector::new(tx, ty, tz);
|
|
let fq = Quaternion::from_direction_and_angle(&fv, fa.radians64());
|
|
let tq = Quaternion::from_direction_and_angle(&tv, ta.radians64());
|
|
|
|
let rq = Quaternion::animate(&fq, &tq, procedure)?;
|
|
let (x, y, z, angle) = transform::get_normalized_vector_and_angle(
|
|
rq.0 as f32,
|
|
rq.1 as f32,
|
|
rq.2 as f32,
|
|
rq.3.acos() as f32 * 2.0,
|
|
);
|
|
|
|
Ok(Rotate::Rotate3D(x, y, z, Angle::from_radians(angle)))
|
|
},
|
|
(&Rotate::Rotate(_), _) | (_, &Rotate::Rotate(_)) => {
|
|
// If this is a 2D rotation, we just animate the <angle>
|
|
let (from, to) = (self.resolve().3, other.resolve().3);
|
|
Ok(Rotate::Rotate(from.animate(&to, procedure)?))
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ComputeSquaredDistance for ComputedRotate {
|
|
#[inline]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
match (self, other) {
|
|
(&Rotate::None, &Rotate::None) => Ok(SquaredDistance::from_sqrt(0.)),
|
|
(&Rotate::Rotate3D(_, _, _, a), &Rotate::None) |
|
|
(&Rotate::None, &Rotate::Rotate3D(_, _, _, a)) => {
|
|
a.compute_squared_distance(&Angle::zero())
|
|
},
|
|
(&Rotate::Rotate3D(_, ..), _) | (_, &Rotate::Rotate3D(_, ..)) => {
|
|
let (from, to) = (self.resolve(), other.resolve());
|
|
let (mut fx, mut fy, mut fz, angle1) =
|
|
transform::get_normalized_vector_and_angle(from.0, from.1, from.2, from.3);
|
|
let (mut tx, mut ty, mut tz, angle2) =
|
|
transform::get_normalized_vector_and_angle(to.0, to.1, to.2, to.3);
|
|
|
|
if angle1 == Angle::zero() {
|
|
fx = tx;
|
|
fy = ty;
|
|
fz = tz;
|
|
} else if angle2 == Angle::zero() {
|
|
tx = fx;
|
|
ty = fy;
|
|
tz = fz;
|
|
}
|
|
|
|
if (fx, fy, fz) == (tx, ty, tz) {
|
|
angle1.compute_squared_distance(&angle2)
|
|
} else {
|
|
let v1 = DirectionVector::new(fx, fy, fz);
|
|
let v2 = DirectionVector::new(tx, ty, tz);
|
|
let q1 = Quaternion::from_direction_and_angle(&v1, angle1.radians64());
|
|
let q2 = Quaternion::from_direction_and_angle(&v2, angle2.radians64());
|
|
q1.compute_squared_distance(&q2)
|
|
}
|
|
},
|
|
(&Rotate::Rotate(_), _) | (_, &Rotate::Rotate(_)) => self
|
|
.resolve()
|
|
.3
|
|
.compute_squared_distance(&other.resolve().3),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <https://drafts.csswg.org/css-transforms-2/#propdef-translate>
|
|
impl ComputedTranslate {
|
|
fn resolve(&self) -> (LengthPercentage, LengthPercentage, Length) {
|
|
// According to the spec:
|
|
// https://drafts.csswg.org/css-transforms-2/#individual-transforms
|
|
//
|
|
// Unspecified translations default to 0px
|
|
match *self {
|
|
Translate::None => (
|
|
LengthPercentage::zero(),
|
|
LengthPercentage::zero(),
|
|
Length::zero(),
|
|
),
|
|
Translate::Translate3D(tx, ty, tz) => (tx, ty, tz),
|
|
Translate::Translate(tx, ty) => (tx, ty, Length::zero()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Animate for ComputedTranslate {
|
|
#[inline]
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
match (self, other) {
|
|
(&Translate::None, &Translate::None) => Ok(Translate::None),
|
|
(&Translate::Translate3D(_, ..), _) | (_, &Translate::Translate3D(_, ..)) => {
|
|
let (from, to) = (self.resolve(), other.resolve());
|
|
Ok(Translate::Translate3D(
|
|
from.0.animate(&to.0, procedure)?,
|
|
from.1.animate(&to.1, procedure)?,
|
|
from.2.animate(&to.2, procedure)?,
|
|
))
|
|
},
|
|
(&Translate::Translate(_, ..), _) | (_, &Translate::Translate(_, ..)) => {
|
|
let (from, to) = (self.resolve(), other.resolve());
|
|
Ok(Translate::Translate(
|
|
from.0.animate(&to.0, procedure)?,
|
|
from.1.animate(&to.1, procedure)?,
|
|
))
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ComputeSquaredDistance for ComputedTranslate {
|
|
#[inline]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
let (from, to) = (self.resolve(), other.resolve());
|
|
Ok(from.0.compute_squared_distance(&to.0)? +
|
|
from.1.compute_squared_distance(&to.1)? +
|
|
from.2.compute_squared_distance(&to.2)?)
|
|
}
|
|
}
|
|
|
|
/// <https://drafts.csswg.org/css-transforms-2/#propdef-scale>
|
|
impl ComputedScale {
|
|
fn resolve(&self) -> (Number, Number, Number) {
|
|
// According to the spec:
|
|
// https://drafts.csswg.org/css-transforms-2/#individual-transforms
|
|
//
|
|
// Unspecified scales default to 1
|
|
match *self {
|
|
Scale::None => (1.0, 1.0, 1.0),
|
|
Scale::Scale3D(sx, sy, sz) => (sx, sy, sz),
|
|
Scale::Scale(sx, sy) => (sx, sy, 1.),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Animate for ComputedScale {
|
|
#[inline]
|
|
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
|
|
match (self, other) {
|
|
(&Scale::None, &Scale::None) => Ok(Scale::None),
|
|
(&Scale::Scale3D(_, ..), _) | (_, &Scale::Scale3D(_, ..)) => {
|
|
let (from, to) = (self.resolve(), other.resolve());
|
|
// For transform lists, we add by appending to the list of
|
|
// transform functions. However, ComputedScale cannot be
|
|
// simply concatenated, so we have to calculate the additive
|
|
// result here.
|
|
if procedure == Procedure::Add {
|
|
// scale(x1,y1,z1)*scale(x2,y2,z2) = scale(x1*x2, y1*y2, z1*z2)
|
|
return Ok(Scale::Scale3D(from.0 * to.0, from.1 * to.1, from.2 * to.2));
|
|
}
|
|
Ok(Scale::Scale3D(
|
|
animate_multiplicative_factor(from.0, to.0, procedure)?,
|
|
animate_multiplicative_factor(from.1, to.1, procedure)?,
|
|
animate_multiplicative_factor(from.2, to.2, procedure)?,
|
|
))
|
|
},
|
|
(&Scale::Scale(_, ..), _) | (_, &Scale::Scale(_, ..)) => {
|
|
let (from, to) = (self.resolve(), other.resolve());
|
|
// As with Scale3D, addition needs special handling.
|
|
if procedure == Procedure::Add {
|
|
// scale(x1,y1)*scale(x2,y2) = scale(x1*x2, y1*y2)
|
|
return Ok(Scale::Scale(from.0 * to.0, from.1 * to.1));
|
|
}
|
|
Ok(Scale::Scale(
|
|
animate_multiplicative_factor(from.0, to.0, procedure)?,
|
|
animate_multiplicative_factor(from.1, to.1, procedure)?,
|
|
))
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ComputeSquaredDistance for ComputedScale {
|
|
#[inline]
|
|
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
|
let (from, to) = (self.resolve(), other.resolve());
|
|
Ok(from.0.compute_squared_distance(&to.0)? +
|
|
from.1.compute_squared_distance(&to.1)? +
|
|
from.2.compute_squared_distance(&to.2)?)
|
|
}
|
|
}
|