servo/components/layout/traversal.rs

223 lines
8.6 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Traversals over the DOM and flow trees, running the layout computations.
#![allow(unsafe_code)]
use construct::FlowConstructor;
use context::{LayoutContext, SharedLayoutContext};
use flow::{PostorderFlowTraversal, PreorderFlowTraversal};
use flow::{self, Flow};
use gfx::display_list::OpaqueNode;
use incremental::{BUBBLE_ISIZES, REFLOW, REFLOW_OUT_OF_FLOW, REPAINT, RestyleDamage};
use script::layout_interface::ReflowGoal;
use std::mem;
use style::context::StyleContext;
use style::matching::MatchMethods;
use style::traversal::{DomTraversalContext, STYLE_BLOOM};
use style::traversal::{put_task_local_bloom_filter, recalc_style_at};
use util::opts;
use util::tid::tid;
use wrapper::{LayoutNode, ThreadSafeLayoutNode};
pub struct RecalcStyleAndConstructFlows<'lc> {
context: LayoutContext<'lc>,
root: OpaqueNode,
}
impl<'lc, 'ln, N: LayoutNode<'ln>> DomTraversalContext<'ln, N> for RecalcStyleAndConstructFlows<'lc> {
type SharedContext = SharedLayoutContext;
fn new<'a>(shared: &'a Self::SharedContext, root: OpaqueNode) -> Self {
// FIXME(bholley): This transmutation from &'a to &'lc is very unfortunate, but I haven't
// found a way to avoid it despite spending several days on it (and consulting Manishearth,
// brson, and nmatsakis).
//
// The crux of the problem is that parameterizing DomTraversalContext on the lifetime of
// the SharedContext doesn't work for a variety of reasons [1]. However, the code in
// parallel.rs needs to be able to use the DomTraversalContext trait (or something similar)
// to stack-allocate a struct (a generalized LayoutContext<'a>) that holds a borrowed
// SharedContext, which means that the struct needs to be parameterized on a lifetime.
// Given the aforementioned constraint, the only way to accomplish this is to avoid
// propagating the borrow lifetime from the struct to the trait, but that means that the
// new() method on the trait cannot require the lifetime of its argument to match the
// lifetime of the Self object it creates.
//
// This could be solved with an associated type with an unbound lifetime parameter, but
// that would require higher-kinded types, which don't exist yet and probably aren't coming
// for a while.
//
// So we transmute. :-(
//
// [1] For example, the WorkQueue type needs to be parameterized on the concrete type of
// DomTraversalContext::SharedContext, and the WorkQueue lifetime is similar to that of the
// LayoutTask, generally much longer than that of a given SharedLayoutContext borrow.
let shared_lc: &'lc SharedLayoutContext = unsafe { mem::transmute(shared) };
RecalcStyleAndConstructFlows {
context: LayoutContext::new(shared_lc),
root: root,
}
}
fn process_preorder(&self, node: N) { recalc_style_at(&self.context, self.root, node); }
fn process_postorder(&self, node: N) { construct_flows_at(&self.context, self.root, node); }
}
/// A bottom-up, parallelizable traversal.
pub trait PostorderNodeMutTraversal<'ln, ConcreteThreadSafeLayoutNode: ThreadSafeLayoutNode<'ln>> {
/// The operation to perform. Return true to continue or false to stop.
fn process(&mut self, node: &ConcreteThreadSafeLayoutNode) -> bool;
}
/// The flow construction traversal, which builds flows for styled nodes.
#[inline]
#[allow(unsafe_code)]
fn construct_flows_at<'a, 'ln, N: LayoutNode<'ln>>(context: &'a LayoutContext<'a>, root: OpaqueNode, node: N) {
// Construct flows for this node.
{
let tnode = node.to_threadsafe();
// Always reconstruct if incremental layout is turned off.
let nonincremental_layout = opts::get().nonincremental_layout;
if nonincremental_layout || node.has_dirty_descendants() {
let mut flow_constructor = FlowConstructor::new(context);
if nonincremental_layout || !flow_constructor.repair_if_possible(&tnode) {
flow_constructor.process(&tnode);
debug!("Constructed flow for {:x}: {:x}",
tnode.debug_id(),
tnode.flow_debug_id());
}
}
// Reset the layout damage in this node. It's been propagated to the
// flow by the flow constructor.
tnode.set_restyle_damage(RestyleDamage::empty());
}
unsafe {
node.set_changed(false);
node.set_dirty(false);
node.set_dirty_descendants(false);
}
let unsafe_layout_node = node.to_unsafe();
let (mut bf, old_node, old_generation) =
STYLE_BLOOM.with(|style_bloom| {
mem::replace(&mut *style_bloom.borrow_mut(), None)
.expect("The bloom filter should have been set by style recalc.")
});
assert_eq!(old_node, unsafe_layout_node);
assert_eq!(old_generation, context.shared_context().generation);
match node.layout_parent_node(root) {
None => {
debug!("[{}] - {:X}, and deleting BF.", tid(), unsafe_layout_node.0);
// If this is the reflow root, eat the task-local bloom filter.
}
Some(parent) => {
// Otherwise, put it back, but remove this node.
node.remove_from_bloom_filter(&mut *bf);
let unsafe_parent = parent.to_unsafe();
put_task_local_bloom_filter(bf, &unsafe_parent, &context.shared_context());
},
};
}
/// The bubble-inline-sizes traversal, the first part of layout computation. This computes
/// preferred and intrinsic inline-sizes and bubbles them up the tree.
pub struct BubbleISizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for BubbleISizes<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
flow.bubble_inline_sizes();
flow::mut_base(flow).restyle_damage.remove(BUBBLE_ISIZES);
}
#[inline]
fn should_process(&self, flow: &mut Flow) -> bool {
flow::base(flow).restyle_damage.contains(BUBBLE_ISIZES)
}
}
/// The assign-inline-sizes traversal. In Gecko this corresponds to `Reflow`.
#[derive(Copy, Clone)]
pub struct AssignISizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PreorderFlowTraversal for AssignISizes<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
flow.assign_inline_sizes(self.layout_context);
}
#[inline]
fn should_process(&self, flow: &mut Flow) -> bool {
flow::base(flow).restyle_damage.intersects(REFLOW_OUT_OF_FLOW | REFLOW)
}
}
/// The assign-block-sizes-and-store-overflow traversal, the last (and most expensive) part of
/// layout computation. Determines the final block-sizes for all layout objects, computes
/// positions, and computes overflow regions. In Gecko this corresponds to `Reflow` and
/// `FinishAndStoreOverflow`.
#[derive(Copy, Clone)]
pub struct AssignBSizesAndStoreOverflow<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for AssignBSizesAndStoreOverflow<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
// Can't do anything with flows impacted by floats until we reach their inorder parent.
// NB: We must return without resetting the restyle bits for these, as we haven't actually
// reflowed anything!
if flow::base(flow).flags.impacted_by_floats() {
return
}
flow.assign_block_size(self.layout_context);
}
#[inline]
fn should_process(&self, flow: &mut Flow) -> bool {
flow::base(flow).restyle_damage.intersects(REFLOW_OUT_OF_FLOW | REFLOW)
}
}
#[derive(Copy, Clone)]
pub struct ComputeAbsolutePositions<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PreorderFlowTraversal for ComputeAbsolutePositions<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
flow.compute_absolute_position(self.layout_context);
flow.store_overflow(self.layout_context);
}
}
#[derive(Copy, Clone)]
pub struct BuildDisplayList<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for BuildDisplayList<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
flow.build_display_list(self.layout_context);
flow::mut_base(flow).restyle_damage.remove(REPAINT);
}
#[inline]
fn should_process(&self, _: &mut Flow) -> bool {
self.layout_context.shared_context().goal == ReflowGoal::ForDisplay
}
}