servo/components/script/dom/dommatrixreadonly.rs
2016-10-06 20:59:09 +02:00

641 lines
23 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use dom::bindings::cell::DOMRefCell;
use dom::bindings::codegen::Bindings::DOMMatrixBinding::{DOMMatrixInit, DOMMatrixMethods};
use dom::bindings::codegen::Bindings::DOMMatrixReadOnlyBinding::{DOMMatrixReadOnlyMethods, Wrap};
use dom::bindings::codegen::Bindings::DOMPointBinding::DOMPointInit;
use dom::bindings::error;
use dom::bindings::error::Fallible;
use dom::bindings::global::GlobalRef;
use dom::bindings::js::Root;
use dom::bindings::reflector::{reflect_dom_object, Reflectable, Reflector};
use dom::dommatrix::DOMMatrix;
use dom::dompoint::DOMPoint;
use dom::globalscope::GlobalScope;
use euclid::{Matrix4D, Point4D, Radians};
use std::cell::{Cell, Ref};
use std::f64;
#[dom_struct]
pub struct DOMMatrixReadOnly {
reflector_: Reflector,
matrix: DOMRefCell<Matrix4D<f64>>,
is2D: Cell<bool>,
}
impl DOMMatrixReadOnly {
#[allow(unrooted_must_root)]
pub fn new(global: &GlobalScope, is2D: bool, matrix: Matrix4D<f64>) -> Root<Self> {
let dommatrix = Self::new_inherited(is2D, matrix);
reflect_dom_object(box dommatrix, global, Wrap)
}
pub fn new_inherited(is2D: bool, matrix: Matrix4D<f64>) -> Self {
DOMMatrixReadOnly {
reflector_: Reflector::new(),
matrix: DOMRefCell::new(matrix),
is2D: Cell::new(is2D),
}
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-dommatrixreadonly
pub fn Constructor(global: GlobalRef) -> Fallible<Root<Self>> {
Ok(Self::new(global.as_global_scope(), true, Matrix4D::identity()))
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-dommatrixreadonly-numbersequence
pub fn Constructor_(global: GlobalRef, entries: Vec<f64>) -> Fallible<Root<Self>> {
entries_to_matrix(&entries[..])
.map(|(is2D, matrix)| {
Self::new(global.as_global_scope(), is2D, matrix)
})
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-frommatrix
pub fn FromMatrix(global: GlobalRef, other: &DOMMatrixInit) -> Fallible<Root<Self>> {
dommatrixinit_to_matrix(&other)
.map(|(is2D, matrix)| {
Self::new(global.as_global_scope(), is2D, matrix)
})
}
pub fn matrix(&self) -> Ref<Matrix4D<f64>> {
self.matrix.borrow()
}
pub fn is_2d(&self) -> bool {
self.is2D.get()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m11
pub fn set_m11(&self, value: f64) {
self.matrix.borrow_mut().m11 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m12
pub fn set_m12(&self, value: f64) {
self.matrix.borrow_mut().m12 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m13
pub fn set_m13(&self, value: f64) {
self.matrix.borrow_mut().m13 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m14
pub fn set_m14(&self, value: f64) {
self.matrix.borrow_mut().m14 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m21
pub fn set_m21(&self, value: f64) {
self.matrix.borrow_mut().m21 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m22
pub fn set_m22(&self, value: f64) {
self.matrix.borrow_mut().m22 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m23
pub fn set_m23(&self, value: f64) {
self.matrix.borrow_mut().m23 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m24
pub fn set_m24(&self, value: f64) {
self.matrix.borrow_mut().m24 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m31
pub fn set_m31(&self, value: f64) {
self.matrix.borrow_mut().m31 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m32
pub fn set_m32(&self, value: f64) {
self.matrix.borrow_mut().m32 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m33
pub fn set_m33(&self, value: f64) {
self.matrix.borrow_mut().m33 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m34
pub fn set_m34(&self, value: f64) {
self.matrix.borrow_mut().m34 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m41
pub fn set_m41(&self, value: f64) {
self.matrix.borrow_mut().m41 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m42
pub fn set_m42(&self, value: f64) {
self.matrix.borrow_mut().m42 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m43
pub fn set_m43(&self, value: f64) {
self.matrix.borrow_mut().m43 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m44
pub fn set_m44(&self, value: f64) {
self.matrix.borrow_mut().m44 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-multiplyself
pub fn multiply_self(&self, other: &DOMMatrixInit) -> Fallible<()> {
// Step 1.
dommatrixinit_to_matrix(&other).map(|(is2D, other_matrix)| {
// Step 2.
let mut matrix = self.matrix.borrow_mut();
*matrix = other_matrix.post_mul(&matrix);
// Step 3.
if !is2D {
self.is2D.set(false);
}
// Step 4 in DOMMatrix.MultiplySelf
})
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-premultiplyself
pub fn pre_multiply_self(&self, other: &DOMMatrixInit) -> Fallible<()> {
// Step 1.
dommatrixinit_to_matrix(&other).map(|(is2D, other_matrix)| {
// Step 2.
let mut matrix = self.matrix.borrow_mut();
*matrix = other_matrix.pre_mul(&matrix);
// Step 3.
if !is2D {
self.is2D.set(false);
}
// Step 4 in DOMMatrix.PreMultiplySelf
})
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-translateself
pub fn translate_self(&self, tx: f64, ty: f64, tz: f64) {
// Step 1.
let translation = Matrix4D::create_translation(tx, ty, tz);
let mut matrix = self.matrix.borrow_mut();
*matrix = translation.post_mul(&matrix);
// Step 2.
if tz != 0.0 {
self.is2D.set(false);
}
// Step 3 in DOMMatrix.TranslateSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-scaleself
pub fn scale_self(&self, scaleX: f64, scaleY: Option<f64>, scaleZ: f64,
mut originX: f64, mut originY: f64, mut originZ: f64) {
// Step 1.
self.translate_self(originX, originY, originZ);
// Step 2.
let scaleY = scaleY.unwrap_or(scaleX);
// Step 3.
{
let scale3D = Matrix4D::create_scale(scaleX, scaleY, scaleZ);
let mut matrix = self.matrix.borrow_mut();
*matrix = scale3D.post_mul(&matrix);
}
// Step 4.
originX = -originX;
originY = -originY;
originZ = -originZ;
// Step 5.
self.translate_self(originX, originY, originZ);
// Step 6.
if scaleZ != 1.0 || originZ != 0.0 {
self.is2D.set(false);
}
// Step 7 in DOMMatrix.ScaleSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-scale3dself
pub fn scale_3d_self(&self, scale: f64, originX: f64, originY: f64, originZ: f64) {
// Step 1.
self.translate_self(originX, originY, originZ);
// Step 2.
{
let scale3D = Matrix4D::create_scale(scale, scale, scale);
let mut matrix = self.matrix.borrow_mut();
*matrix = scale3D.post_mul(&matrix);
}
// Step 3.
self.translate_self(-originX, -originY, -originZ);
// Step 4.
if scale != 1.0 {
self.is2D.set(false);
}
// Step 5 in DOMMatrix.Scale3dSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-rotateself
pub fn rotate_self(&self, mut rotX: f64, mut rotY: Option<f64>, mut rotZ: Option<f64>) {
// Step 1.
if rotY.is_none() && rotZ.is_none() {
rotZ = Some(rotX);
rotX = 0.0;
rotY = Some(0.0);
}
// Step 2.
let rotY = rotY.unwrap_or(0.0);
// Step 3.
let rotZ = rotZ.unwrap_or(0.0);
// Step 4.
if rotX != 0.0 || rotY != 0.0 {
self.is2D.set(false);
}
if rotZ != 0.0 {
// Step 5.
let rotation = Matrix4D::create_rotation(0.0, 0.0, 1.0, Radians::new(rotZ.to_radians()));
let mut matrix = self.matrix.borrow_mut();
*matrix = rotation.post_mul(&matrix);
}
if rotY != 0.0 {
// Step 6.
let rotation = Matrix4D::create_rotation(0.0, 1.0, 0.0, Radians::new(rotY.to_radians()));
let mut matrix = self.matrix.borrow_mut();
*matrix = rotation.post_mul(&matrix);
}
if rotX != 0.0 {
// Step 7.
let rotation = Matrix4D::create_rotation(1.0, 0.0, 0.0, Radians::new(rotX.to_radians()));
let mut matrix = self.matrix.borrow_mut();
*matrix = rotation.post_mul(&matrix);
}
// Step 8 in DOMMatrix.RotateSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-rotatefromvectorself
pub fn rotate_from_vector_self(&self, x: f64, y: f64) {
// don't do anything when the rotation angle is zero or undefined
if y != 0.0 || x < 0.0 {
// Step 1.
let rotZ = Radians::new(f64::atan2(y, x));
let rotation = Matrix4D::create_rotation(0.0, 0.0, 1.0, rotZ);
let mut matrix = self.matrix.borrow_mut();
*matrix = rotation.post_mul(&matrix);
}
// Step 2 in DOMMatrix.RotateFromVectorSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-rotateaxisangleself
pub fn rotate_axis_angle_self(&self, x: f64, y: f64, z: f64, angle: f64) {
// Step 1.
let (norm_x, norm_y, norm_z) = normalize_point(x, y, z);
let rotation = Matrix4D::create_rotation(norm_x, norm_y, norm_z, Radians::new(angle.to_radians()));
let mut matrix = self.matrix.borrow_mut();
*matrix = rotation.post_mul(&matrix);
// Step 2.
if x != 0.0 || y != 0.0 {
self.is2D.set(false);
}
// Step 3 in DOMMatrix.RotateAxisAngleSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-skewxself
pub fn skew_x_self(&self, sx: f64) {
// Step 1.
let skew = Matrix4D::create_skew(Radians::new(sx.to_radians()), Radians::new(0.0));
let mut matrix = self.matrix.borrow_mut();
*matrix = skew.post_mul(&matrix);
// Step 2 in DOMMatrix.SkewXSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-skewyself
pub fn skew_y_self(&self, sy: f64) {
// Step 1.
let skew = Matrix4D::create_skew(Radians::new(0.0), Radians::new(sy.to_radians()));
let mut matrix = self.matrix.borrow_mut();
*matrix = skew.post_mul(&matrix);
// Step 2 in DOMMatrix.SkewYSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-invertself
pub fn invert_self(&self) {
let mut matrix = self.matrix.borrow_mut();
// Step 1.
*matrix = matrix.inverse().unwrap_or_else(|| {
// Step 2.
self.is2D.set(false);
Matrix4D::row_major(f64::NAN, f64::NAN, f64::NAN, f64::NAN,
f64::NAN, f64::NAN, f64::NAN, f64::NAN,
f64::NAN, f64::NAN, f64::NAN, f64::NAN,
f64::NAN, f64::NAN, f64::NAN, f64::NAN)
})
// Step 3 in DOMMatrix.InvertSelf
}
}
impl DOMMatrixReadOnlyMethods for DOMMatrixReadOnly {
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m11
fn M11(&self) -> f64 {
self.matrix.borrow().m11
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m12
fn M12(&self) -> f64 {
self.matrix.borrow().m12
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m13
fn M13(&self) -> f64 {
self.matrix.borrow().m13
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m14
fn M14(&self) -> f64 {
self.matrix.borrow().m14
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m21
fn M21(&self) -> f64 {
self.matrix.borrow().m21
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m22
fn M22(&self) -> f64 {
self.matrix.borrow().m22
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m23
fn M23(&self) -> f64 {
self.matrix.borrow().m23
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m24
fn M24(&self) -> f64 {
self.matrix.borrow().m24
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m31
fn M31(&self) -> f64 {
self.matrix.borrow().m31
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m32
fn M32(&self) -> f64 {
self.matrix.borrow().m32
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m33
fn M33(&self) -> f64 {
self.matrix.borrow().m33
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m34
fn M34(&self) -> f64 {
self.matrix.borrow().m34
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m41
fn M41(&self) -> f64 {
self.matrix.borrow().m41
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m42
fn M42(&self) -> f64 {
self.matrix.borrow().m42
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m43
fn M43(&self) -> f64 {
self.matrix.borrow().m43
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m44
fn M44(&self) -> f64 {
self.matrix.borrow().m44
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-a
fn A(&self) -> f64 {
self.M11()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-b
fn B(&self) -> f64 {
self.M12()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-c
fn C(&self) -> f64 {
self.M21()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-d
fn D(&self) -> f64 {
self.M22()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-e
fn E(&self) -> f64 {
self.M41()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-f
fn F(&self) -> f64 {
self.M42()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-is2d
fn Is2D(&self) -> bool {
self.is2D.get()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-isidentity
fn IsIdentity(&self) -> bool {
let matrix = self.matrix.borrow();
matrix.m12 == 0.0 && matrix.m13 == 0.0 && matrix.m14 == 0.0 && matrix.m21 == 0.0 &&
matrix.m23 == 0.0 && matrix.m24 == 0.0 && matrix.m31 == 0.0 && matrix.m32 == 0.0 &&
matrix.m34 == 0.0 && matrix.m41 == 0.0 && matrix.m42 == 0.0 && matrix.m43 == 0.0 &&
matrix.m11 == 1.0 && matrix.m22 == 1.0 && matrix.m33 == 1.0 && matrix.m44 == 1.0
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-translate
fn Translate(&self, tx: f64, ty: f64, tz: f64) -> Root<DOMMatrix> {
DOMMatrix::from_readonly(self.global().r().as_global_scope(), self).TranslateSelf(tx, ty, tz)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-scale
fn Scale(&self, scaleX: f64, scaleY: Option<f64>, scaleZ: f64,
originX: f64, originY: f64, originZ: f64) -> Root<DOMMatrix> {
DOMMatrix::from_readonly(self.global().r().as_global_scope(), self)
.ScaleSelf(scaleX, scaleY, scaleZ, originX, originY, originZ)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-scale3d
fn Scale3d(&self, scale: f64, originX: f64, originY: f64, originZ: f64) -> Root<DOMMatrix> {
DOMMatrix::from_readonly(self.global().r().as_global_scope(), self)
.Scale3dSelf(scale, originX, originY, originZ)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-rotate
fn Rotate(&self, rotX: f64, rotY: Option<f64>, rotZ: Option<f64>) -> Root<DOMMatrix> {
DOMMatrix::from_readonly(self.global().r().as_global_scope(), self).RotateSelf(rotX, rotY, rotZ)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-rotatefromvector
fn RotateFromVector(&self, x: f64, y: f64) -> Root<DOMMatrix> {
DOMMatrix::from_readonly(self.global().r().as_global_scope(), self).RotateFromVectorSelf(x, y)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-rotateaxisangle
fn RotateAxisAngle(&self, x: f64, y: f64, z: f64, angle: f64) -> Root<DOMMatrix> {
DOMMatrix::from_readonly(self.global().r().as_global_scope(), self).RotateAxisAngleSelf(x, y, z, angle)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-skewx
fn SkewX(&self, sx: f64) -> Root<DOMMatrix> {
DOMMatrix::from_readonly(self.global().r().as_global_scope(), self).SkewXSelf(sx)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-skewy
fn SkewY(&self, sy: f64) -> Root<DOMMatrix> {
DOMMatrix::from_readonly(self.global().r().as_global_scope(), self).SkewYSelf(sy)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-multiply
fn Multiply(&self, other: &DOMMatrixInit) -> Fallible<Root<DOMMatrix>> {
DOMMatrix::from_readonly(self.global().r().as_global_scope(), self).MultiplySelf(&other)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-flipx
fn FlipX(&self) -> Root<DOMMatrix> {
let is2D = self.is2D.get();
let flip = Matrix4D::row_major(-1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
let matrix = flip.post_mul(&self.matrix.borrow());
DOMMatrix::new(self.global().r().as_global_scope(), is2D, matrix)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-flipy
fn FlipY(&self) -> Root<DOMMatrix> {
let is2D = self.is2D.get();
let flip = Matrix4D::row_major(1.0, 0.0, 0.0, 0.0,
0.0, -1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
let matrix = flip.post_mul(&self.matrix.borrow());
DOMMatrix::new(self.global().r().as_global_scope(), is2D, matrix)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-inverse
fn Inverse(&self) -> Root<DOMMatrix> {
DOMMatrix::from_readonly(self.global().r().as_global_scope(), self).InvertSelf()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-transformpoint
fn TransformPoint(&self, point: &DOMPointInit) -> Root<DOMPoint> {
let matrix = self.matrix.borrow();
let result = matrix.transform_point4d(&Point4D::new(point.x, point.y, point.z, point.w));
DOMPoint::new(
self.global().r().as_global_scope(),
result.x as f64,
result.y as f64,
result.z as f64,
result.w as f64)
}
}
// https://drafts.fxtf.org/geometry-1/#create-a-2d-matrix
fn create_2d_matrix(entries: &[f64]) -> Matrix4D<f64> {
Matrix4D::row_major(entries[0], entries[1], 0.0, 0.0,
entries[2], entries[3], 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
entries[4], entries[5], 0.0, 1.0)
}
// https://drafts.fxtf.org/geometry-1/#create-a-3d-matrix
fn create_3d_matrix(entries: &[f64]) -> Matrix4D<f64> {
Matrix4D::row_major(entries[0], entries[1], entries[2], entries[3],
entries[4], entries[5], entries[6], entries[7],
entries[8], entries[9], entries[10], entries[11],
entries[12], entries[13], entries[14], entries[15])
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-dommatrixreadonly-numbersequence
pub fn entries_to_matrix(entries: &[f64]) -> Fallible<(bool, Matrix4D<f64>)> {
if entries.len() == 6 {
Ok((true, create_2d_matrix(&entries)))
} else if entries.len() == 16 {
Ok((false, create_3d_matrix(&entries)))
} else {
let err_msg = format!("Expected 6 or 16 entries, but found {}.", entries.len());
Err(error::Error::Type(err_msg.to_owned()))
}
}
// https://drafts.fxtf.org/geometry-1/#validate-and-fixup
pub fn dommatrixinit_to_matrix(dict: &DOMMatrixInit) -> Fallible<(bool, Matrix4D<f64>)> {
// Step 1.
if dict.a.is_some() && dict.m11.is_some() && dict.a.unwrap() != dict.m11.unwrap() ||
dict.b.is_some() && dict.m12.is_some() && dict.b.unwrap() != dict.m12.unwrap() ||
dict.c.is_some() && dict.m21.is_some() && dict.c.unwrap() != dict.m21.unwrap() ||
dict.d.is_some() && dict.m22.is_some() && dict.d.unwrap() != dict.m22.unwrap() ||
dict.e.is_some() && dict.m41.is_some() && dict.e.unwrap() != dict.m41.unwrap() ||
dict.f.is_some() && dict.m42.is_some() && dict.f.unwrap() != dict.m42.unwrap() ||
dict.is2D.is_some() && dict.is2D.unwrap() &&
(dict.m31 != 0.0 || dict.m32 != 0.0 || dict.m13 != 0.0 || dict.m23 != 0.0 ||
dict.m43 != 0.0 || dict.m14 != 0.0 || dict.m24 != 0.0 || dict.m34 != 0.0 ||
dict.m33 != 1.0 || dict.m44 != 1.0) {
Err(error::Error::Type("Invalid matrix initializer.".to_owned()))
} else {
let mut is2D = dict.is2D;
// Step 2.
let m11 = dict.m11.unwrap_or(dict.a.unwrap_or(1.0));
// Step 3.
let m12 = dict.m12.unwrap_or(dict.b.unwrap_or(0.0));
// Step 4.
let m21 = dict.m21.unwrap_or(dict.c.unwrap_or(0.0));
// Step 5.
let m22 = dict.m22.unwrap_or(dict.d.unwrap_or(1.0));
// Step 6.
let m41 = dict.m41.unwrap_or(dict.e.unwrap_or(0.0));
// Step 7.
let m42 = dict.m42.unwrap_or(dict.f.unwrap_or(0.0));
// Step 8.
if is2D.is_none() &&
(dict.m31 != 0.0 || dict.m32 != 0.0 || dict.m13 != 0.0 ||
dict.m23 != 0.0 || dict.m43 != 0.0 || dict.m14 != 0.0 ||
dict.m24 != 0.0 || dict.m34 != 0.0 ||
dict.m33 != 1.0 || dict.m44 != 1.0) {
is2D = Some(false);
}
// Step 9.
if is2D.is_none() {
is2D = Some(true);
}
let matrix = Matrix4D::row_major(m11, m12, dict.m13, dict.m14,
m21, m22, dict.m23, dict.m24,
dict.m31, dict.m32, dict.m33, dict.m34,
m41, m42, dict.m43, dict.m44);
Ok((is2D.unwrap(), matrix))
}
}
#[inline]
fn normalize_point(x: f64, y: f64, z: f64) -> (f64, f64, f64) {
let len = (x * x + y * y + z * z).sqrt();
if len == 0.0 {
(0.0, 0.0, 0.0)
} else {
(x / len, y / len, z / len)
}
}