style: Port bezier edge cases handling from C++ to Rust

Differential Revision: https://phabricator.services.mozilla.com/D150569
This commit is contained in:
David Shin 2022-07-09 17:33:58 +00:00 committed by Martin Robinson
parent 168c868330
commit bb0f857dfa
2 changed files with 68 additions and 13 deletions

View file

@ -23,15 +23,65 @@ pub struct Bezier {
}
impl Bezier {
/// Create a unit cubic Bézier curve from the two middle control points.
/// Calculate the output of a unit cubic Bézier curve from the two middle control points.
///
/// X coordinate is time, Y coordinate is function advancement.
/// The nominal range for both is 0 to 1.
///
/// The start and end points are always (0, 0) and (1, 1) so that a transition or animation
/// starts at 0% and ends at 100%.
pub fn calculate_bezier_output(
progress: f64,
epsilon: f64,
x1: f32,
y1: f32,
x2: f32,
y2: f32,
) -> f64 {
// Check for a linear curve.
if x1 == y1 && x2 == y2 {
return progress;
}
// Ensure that we return 0 or 1 on both edges.
if progress == 0.0 {
return 0.0;
}
if progress == 1.0 {
return 1.0;
}
// For negative values, try to extrapolate with tangent (p1 - p0) or,
// if p1 is coincident with p0, with (p2 - p0).
if progress < 0.0 {
if x1 > 0.0 {
return progress * y1 as f64 / x1 as f64;
}
if y1 == 0.0 && x2 > 0.0 {
return progress * y2 as f64 / x2 as f64;
}
// If we can't calculate a sensible tangent, don't extrapolate at all.
return 0.0;
}
// For values greater than 1, try to extrapolate with tangent (p2 - p3) or,
// if p2 is coincident with p3, with (p1 - p3).
if progress > 1.0 {
if x2 < 1.0 {
return 1.0 + (progress - 1.0) * (y2 as f64 - 1.0) / (x2 as f64 - 1.0);
}
if y2 == 1.0 && x1 < 1.0 {
return 1.0 + (progress - 1.0) * (y1 as f64 - 1.0) / (x1 as f64 - 1.0);
}
// If we can't calculate a sensible tangent, don't extrapolate at all.
return 1.0;
}
Bezier::new(x1, y1, x2, y2).solve(progress, epsilon)
}
#[inline]
pub fn new(x1: CSSFloat, y1: CSSFloat, x2: CSSFloat, y2: CSSFloat) -> Bezier {
fn new(x1: CSSFloat, y1: CSSFloat, x2: CSSFloat, y2: CSSFloat) -> Bezier {
let cx = 3. * x1 as f64;
let bx = 3. * (x2 as f64 - x1 as f64) - cx;
@ -109,7 +159,7 @@ impl Bezier {
/// Solve the bezier curve for a given `x` and an `epsilon`, that should be
/// between zero and one.
#[inline]
pub fn solve(&self, x: f64, epsilon: f64) -> f64 {
fn solve(&self, x: f64, epsilon: f64) -> f64 {
self.sample_curve_y(self.solve_curve_x(x, epsilon))
}
}

View file

@ -86,7 +86,7 @@ impl ComputedTimingFunction {
pub fn calculate_output(&self, progress: f64, before_flag: BeforeFlag, epsilon: f64) -> f64 {
match self {
TimingFunction::CubicBezier { x1, y1, x2, y2 } => {
Bezier::new(*x1, *y1, *x2, *y2).solve(progress, epsilon)
Bezier::calculate_bezier_output(progress, epsilon, *x1, *y1, *x2, *y2)
},
TimingFunction::Steps(steps, pos) => {
Self::calculate_step_output(*steps, *pos, progress, before_flag)
@ -102,15 +102,20 @@ impl ComputedTimingFunction {
.at(progress as f32)
.into()
},
TimingFunction::Keyword(keyword) => {
let bezier = match keyword {
TimingFunction::Keyword(keyword) => match keyword {
TimingKeyword::Linear => return progress,
TimingKeyword::Ease => Bezier::new(0.25, 0.1, 0.25, 1.),
TimingKeyword::EaseIn => Bezier::new(0.42, 0., 1., 1.),
TimingKeyword::EaseOut => Bezier::new(0., 0., 0.58, 1.),
TimingKeyword::EaseInOut => Bezier::new(0.42, 0., 0.58, 1.),
};
bezier.solve(progress, epsilon)
TimingKeyword::Ease => {
Bezier::calculate_bezier_output(progress, epsilon, 0.25, 0.1, 0.25, 1.)
},
TimingKeyword::EaseIn => {
Bezier::calculate_bezier_output(progress, epsilon, 0.42, 0., 1., 1.)
},
TimingKeyword::EaseOut => {
Bezier::calculate_bezier_output(progress, epsilon, 0., 0., 0.58, 1.)
},
TimingKeyword::EaseInOut => {
Bezier::calculate_bezier_output(progress, epsilon, 0.42, 0., 0.58, 1.)
},
},
}
}