mirror of
https://github.com/servo/servo.git
synced 2025-06-26 01:54:33 +01:00
698 lines
18 KiB
GLSL
698 lines
18 KiB
GLSL
#line 1
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#define PST_TOP_LEFT 0
|
|
#define PST_TOP 1
|
|
#define PST_TOP_RIGHT 2
|
|
#define PST_RIGHT 3
|
|
#define PST_BOTTOM_RIGHT 4
|
|
#define PST_BOTTOM 5
|
|
#define PST_BOTTOM_LEFT 6
|
|
#define PST_LEFT 7
|
|
|
|
#define BORDER_LEFT 0
|
|
#define BORDER_TOP 1
|
|
#define BORDER_RIGHT 2
|
|
#define BORDER_BOTTOM 3
|
|
|
|
#define UV_NORMALIZED uint(0)
|
|
#define UV_PIXEL uint(1)
|
|
|
|
// Border styles as defined in webrender_traits/types.rs
|
|
#define BORDER_STYLE_NONE 0
|
|
#define BORDER_STYLE_SOLID 1
|
|
#define BORDER_STYLE_DOUBLE 2
|
|
#define BORDER_STYLE_DOTTED 3
|
|
#define BORDER_STYLE_DASHED 4
|
|
#define BORDER_STYLE_HIDDEN 5
|
|
#define BORDER_STYLE_GROOVE 6
|
|
#define BORDER_STYLE_RIDGE 7
|
|
#define BORDER_STYLE_INSET 8
|
|
#define BORDER_STYLE_OUTSET 9
|
|
|
|
#define MAX_STOPS_PER_ANGLE_GRADIENT 8
|
|
|
|
uniform sampler2DArray sCache;
|
|
|
|
#ifdef WR_VERTEX_SHADER
|
|
|
|
#define VECS_PER_LAYER 13
|
|
#define VECS_PER_RENDER_TASK 2
|
|
#define VECS_PER_PRIM_GEOM 2
|
|
|
|
#define GRADIENT_HORIZONTAL 0
|
|
#define GRADIENT_VERTICAL 1
|
|
#define GRADIENT_ROTATED 2
|
|
|
|
uniform sampler2D sLayers;
|
|
uniform sampler2D sRenderTasks;
|
|
uniform sampler2D sPrimGeometry;
|
|
uniform sampler2D sClips;
|
|
|
|
uniform sampler2D sData16;
|
|
uniform sampler2D sData32;
|
|
uniform sampler2D sData64;
|
|
uniform sampler2D sData128;
|
|
|
|
ivec2 get_fetch_uv(int index, int vecs_per_item) {
|
|
int items_per_row = WR_MAX_VERTEX_TEXTURE_WIDTH / vecs_per_item;
|
|
int y = index / items_per_row;
|
|
int x = vecs_per_item * (index % items_per_row);
|
|
return ivec2(x, y);
|
|
}
|
|
|
|
ivec2 get_fetch_uv_1(int index) {
|
|
return get_fetch_uv(index, 1);
|
|
}
|
|
|
|
ivec2 get_fetch_uv_2(int index) {
|
|
return get_fetch_uv(index, 2);
|
|
}
|
|
|
|
ivec2 get_fetch_uv_4(int index) {
|
|
return get_fetch_uv(index, 4);
|
|
}
|
|
|
|
ivec2 get_fetch_uv_8(int index) {
|
|
return get_fetch_uv(index, 8);
|
|
}
|
|
|
|
struct Layer {
|
|
mat4 transform;
|
|
mat4 inv_transform;
|
|
vec4 local_clip_rect;
|
|
vec4 screen_vertices[4];
|
|
};
|
|
|
|
layout(std140) uniform Data {
|
|
ivec4 int_data[WR_MAX_UBO_VECTORS];
|
|
};
|
|
|
|
Layer fetch_layer(int index) {
|
|
Layer layer;
|
|
|
|
// Create a UV base coord for each 8 texels.
|
|
// This is required because trying to use an offset
|
|
// of more than 8 texels doesn't work on some versions
|
|
// of OSX.
|
|
ivec2 uv = get_fetch_uv(index, VECS_PER_LAYER);
|
|
ivec2 uv0 = ivec2(uv.x + 0, uv.y);
|
|
ivec2 uv1 = ivec2(uv.x + 8, uv.y);
|
|
|
|
layer.transform[0] = texelFetchOffset(sLayers, uv0, 0, ivec2(0, 0));
|
|
layer.transform[1] = texelFetchOffset(sLayers, uv0, 0, ivec2(1, 0));
|
|
layer.transform[2] = texelFetchOffset(sLayers, uv0, 0, ivec2(2, 0));
|
|
layer.transform[3] = texelFetchOffset(sLayers, uv0, 0, ivec2(3, 0));
|
|
|
|
layer.inv_transform[0] = texelFetchOffset(sLayers, uv0, 0, ivec2(4, 0));
|
|
layer.inv_transform[1] = texelFetchOffset(sLayers, uv0, 0, ivec2(5, 0));
|
|
layer.inv_transform[2] = texelFetchOffset(sLayers, uv0, 0, ivec2(6, 0));
|
|
layer.inv_transform[3] = texelFetchOffset(sLayers, uv0, 0, ivec2(7, 0));
|
|
|
|
layer.local_clip_rect = texelFetchOffset(sLayers, uv1, 0, ivec2(0, 0));
|
|
|
|
layer.screen_vertices[0] = texelFetchOffset(sLayers, uv1, 0, ivec2(1, 0));
|
|
layer.screen_vertices[1] = texelFetchOffset(sLayers, uv1, 0, ivec2(2, 0));
|
|
layer.screen_vertices[2] = texelFetchOffset(sLayers, uv1, 0, ivec2(3, 0));
|
|
layer.screen_vertices[3] = texelFetchOffset(sLayers, uv1, 0, ivec2(4, 0));
|
|
|
|
return layer;
|
|
}
|
|
|
|
struct RenderTaskData {
|
|
vec4 data0;
|
|
vec4 data1;
|
|
};
|
|
|
|
RenderTaskData fetch_render_task(int index) {
|
|
RenderTaskData task;
|
|
|
|
ivec2 uv = get_fetch_uv(index, VECS_PER_RENDER_TASK);
|
|
|
|
task.data0 = texelFetchOffset(sRenderTasks, uv, 0, ivec2(0, 0));
|
|
task.data1 = texelFetchOffset(sRenderTasks, uv, 0, ivec2(1, 0));
|
|
|
|
return task;
|
|
}
|
|
|
|
struct Tile {
|
|
vec4 screen_origin_task_origin;
|
|
vec4 size_target_index;
|
|
};
|
|
|
|
Tile fetch_tile(int index) {
|
|
RenderTaskData task = fetch_render_task(index);
|
|
|
|
Tile tile;
|
|
tile.screen_origin_task_origin = task.data0;
|
|
tile.size_target_index = task.data1;
|
|
|
|
return tile;
|
|
}
|
|
|
|
struct Gradient {
|
|
vec4 start_end_point;
|
|
vec4 kind;
|
|
};
|
|
|
|
Gradient fetch_gradient(int index) {
|
|
Gradient gradient;
|
|
|
|
ivec2 uv = get_fetch_uv_2(index);
|
|
|
|
gradient.start_end_point = texelFetchOffset(sData32, uv, 0, ivec2(0, 0));
|
|
gradient.kind = texelFetchOffset(sData32, uv, 0, ivec2(1, 0));
|
|
|
|
return gradient;
|
|
}
|
|
|
|
struct GradientStop {
|
|
vec4 color;
|
|
vec4 offset;
|
|
};
|
|
|
|
GradientStop fetch_gradient_stop(int index) {
|
|
GradientStop stop;
|
|
|
|
ivec2 uv = get_fetch_uv_2(index);
|
|
|
|
stop.color = texelFetchOffset(sData32, uv, 0, ivec2(0, 0));
|
|
stop.offset = texelFetchOffset(sData32, uv, 0, ivec2(1, 0));
|
|
|
|
return stop;
|
|
}
|
|
|
|
struct Glyph {
|
|
vec4 offset;
|
|
vec4 uv_rect;
|
|
};
|
|
|
|
Glyph fetch_glyph(int index) {
|
|
Glyph glyph;
|
|
|
|
ivec2 uv = get_fetch_uv_2(index);
|
|
|
|
glyph.offset = texelFetchOffset(sData32, uv, 0, ivec2(0, 0));
|
|
glyph.uv_rect = texelFetchOffset(sData32, uv, 0, ivec2(1, 0));
|
|
|
|
return glyph;
|
|
}
|
|
|
|
struct Border {
|
|
vec4 style;
|
|
vec4 widths;
|
|
vec4 colors[4];
|
|
vec4 radii[2];
|
|
};
|
|
|
|
Border fetch_border(int index) {
|
|
Border border;
|
|
|
|
ivec2 uv = get_fetch_uv_8(index);
|
|
|
|
border.style = texelFetchOffset(sData128, uv, 0, ivec2(0, 0));
|
|
border.widths = texelFetchOffset(sData128, uv, 0, ivec2(1, 0));
|
|
border.colors[0] = texelFetchOffset(sData128, uv, 0, ivec2(2, 0));
|
|
border.colors[1] = texelFetchOffset(sData128, uv, 0, ivec2(3, 0));
|
|
border.colors[2] = texelFetchOffset(sData128, uv, 0, ivec2(4, 0));
|
|
border.colors[3] = texelFetchOffset(sData128, uv, 0, ivec2(5, 0));
|
|
border.radii[0] = texelFetchOffset(sData128, uv, 0, ivec2(6, 0));
|
|
border.radii[1] = texelFetchOffset(sData128, uv, 0, ivec2(7, 0));
|
|
|
|
return border;
|
|
}
|
|
|
|
vec4 fetch_instance_geometry(int index) {
|
|
ivec2 uv = get_fetch_uv_1(index);
|
|
|
|
vec4 rect = texelFetchOffset(sData16, uv, 0, ivec2(0, 0));
|
|
|
|
return rect;
|
|
}
|
|
|
|
struct PrimitiveGeometry {
|
|
vec4 local_rect;
|
|
vec4 local_clip_rect;
|
|
};
|
|
|
|
PrimitiveGeometry fetch_prim_geometry(int index) {
|
|
PrimitiveGeometry pg;
|
|
|
|
ivec2 uv = get_fetch_uv(index, VECS_PER_PRIM_GEOM);
|
|
|
|
pg.local_rect = texelFetchOffset(sPrimGeometry, uv, 0, ivec2(0, 0));
|
|
pg.local_clip_rect = texelFetchOffset(sPrimGeometry, uv, 0, ivec2(1, 0));
|
|
|
|
return pg;
|
|
}
|
|
|
|
struct PrimitiveInstance {
|
|
int global_prim_index;
|
|
int specific_prim_index;
|
|
int render_task_index;
|
|
int layer_index;
|
|
int clip_address;
|
|
int sub_index;
|
|
ivec2 user_data;
|
|
};
|
|
|
|
PrimitiveInstance fetch_instance(int index) {
|
|
PrimitiveInstance pi;
|
|
|
|
int offset = index * 2;
|
|
|
|
ivec4 data0 = int_data[offset + 0];
|
|
ivec4 data1 = int_data[offset + 1];
|
|
|
|
pi.global_prim_index = data0.x;
|
|
pi.specific_prim_index = data0.y;
|
|
pi.render_task_index = data0.z;
|
|
pi.layer_index = data0.w;
|
|
pi.clip_address = data1.x;
|
|
pi.sub_index = data1.y;
|
|
pi.user_data = data1.zw;
|
|
|
|
return pi;
|
|
}
|
|
|
|
struct BlurCommand {
|
|
int task_id;
|
|
int src_task_id;
|
|
int dir;
|
|
};
|
|
|
|
BlurCommand fetch_blur(int index) {
|
|
BlurCommand blur;
|
|
|
|
int offset = index * 1;
|
|
|
|
ivec4 data0 = int_data[offset + 0];
|
|
|
|
blur.task_id = data0.x;
|
|
blur.src_task_id = data0.y;
|
|
blur.dir = data0.z;
|
|
|
|
return blur;
|
|
}
|
|
|
|
struct CachePrimitiveInstance {
|
|
int global_prim_index;
|
|
int specific_prim_index;
|
|
int render_task_index;
|
|
int sub_index;
|
|
};
|
|
|
|
CachePrimitiveInstance fetch_cache_instance(int index) {
|
|
CachePrimitiveInstance cpi;
|
|
|
|
int offset = index * 1;
|
|
|
|
ivec4 data0 = int_data[offset + 0];
|
|
|
|
cpi.global_prim_index = data0.x;
|
|
cpi.specific_prim_index = data0.y;
|
|
cpi.render_task_index = data0.z;
|
|
cpi.sub_index = data0.w;
|
|
|
|
return cpi;
|
|
}
|
|
|
|
struct Primitive {
|
|
Layer layer;
|
|
Tile tile;
|
|
vec4 local_rect;
|
|
vec4 local_clip_rect;
|
|
int prim_index;
|
|
int clip_index;
|
|
// when sending multiple primitives of the same type (e.g. border segments)
|
|
// this index allows the vertex shader to recognize the difference
|
|
int sub_index;
|
|
ivec2 user_data;
|
|
};
|
|
|
|
Primitive load_primitive(int index) {
|
|
Primitive prim;
|
|
|
|
PrimitiveInstance pi = fetch_instance(index);
|
|
|
|
prim.layer = fetch_layer(pi.layer_index);
|
|
prim.tile = fetch_tile(pi.render_task_index);
|
|
|
|
PrimitiveGeometry pg = fetch_prim_geometry(pi.global_prim_index);
|
|
prim.local_rect = pg.local_rect;
|
|
prim.local_clip_rect = pg.local_clip_rect;
|
|
|
|
prim.prim_index = pi.specific_prim_index;
|
|
prim.clip_index = pi.clip_address;
|
|
prim.sub_index = pi.sub_index;
|
|
prim.user_data = pi.user_data;
|
|
|
|
return prim;
|
|
}
|
|
|
|
struct ClipRect {
|
|
vec4 rect;
|
|
vec4 dummy;
|
|
};
|
|
|
|
ClipRect fetch_clip_rect(int index) {
|
|
ClipRect rect;
|
|
|
|
ivec2 uv = get_fetch_uv_2(index);
|
|
|
|
rect.rect = texelFetchOffset(sData32, uv, 0, ivec2(0, 0));
|
|
//rect.dummy = texelFetchOffset(sData32, uv, 0, ivec2(1, 0));
|
|
rect.dummy = vec4(0.0, 0.0, 0.0, 0.0);
|
|
|
|
return rect;
|
|
}
|
|
|
|
struct ImageMaskData {
|
|
vec4 uv_rect;
|
|
vec4 local_rect;
|
|
};
|
|
|
|
ImageMaskData fetch_mask_data(int index) {
|
|
ImageMaskData info;
|
|
|
|
ivec2 uv = get_fetch_uv_2(index);
|
|
|
|
info.uv_rect = texelFetchOffset(sData32, uv, 0, ivec2(0, 0));
|
|
info.local_rect = texelFetchOffset(sData32, uv, 0, ivec2(1, 0));
|
|
|
|
return info;
|
|
}
|
|
|
|
struct ClipCorner {
|
|
vec4 rect;
|
|
vec4 outer_inner_radius;
|
|
};
|
|
|
|
ClipCorner fetch_clip_corner(int index) {
|
|
ClipCorner corner;
|
|
|
|
ivec2 uv = get_fetch_uv_2(index);
|
|
|
|
corner.rect = texelFetchOffset(sData32, uv, 0, ivec2(0, 0));
|
|
corner.outer_inner_radius = texelFetchOffset(sData32, uv, 0, ivec2(1, 0));
|
|
|
|
return corner;
|
|
}
|
|
|
|
struct ClipData {
|
|
ClipRect rect;
|
|
ClipCorner top_left;
|
|
ClipCorner top_right;
|
|
ClipCorner bottom_left;
|
|
ClipCorner bottom_right;
|
|
ImageMaskData mask_data;
|
|
};
|
|
|
|
ClipData fetch_clip(int index) {
|
|
ClipData clip;
|
|
|
|
clip.rect = fetch_clip_rect(index + 0);
|
|
clip.top_left = fetch_clip_corner(index + 1);
|
|
clip.top_right = fetch_clip_corner(index + 2);
|
|
clip.bottom_left = fetch_clip_corner(index + 3);
|
|
clip.bottom_right = fetch_clip_corner(index + 4);
|
|
clip.mask_data = fetch_mask_data(index + 5);
|
|
|
|
return clip;
|
|
}
|
|
|
|
// Return the intersection of the plane (set up by "normal" and "point")
|
|
// with the ray (set up by "ray_origin" and "ray_dir"),
|
|
// writing the resulting scaler into "t".
|
|
bool ray_plane(vec3 normal, vec3 point, vec3 ray_origin, vec3 ray_dir, out float t)
|
|
{
|
|
float denom = dot(normal, ray_dir);
|
|
if (denom > 1e-6) {
|
|
vec3 d = point - ray_origin;
|
|
t = dot(d, normal) / denom;
|
|
return t >= 0.0;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Apply the inverse transform "inv_transform"
|
|
// to the reference point "ref" in CSS space,
|
|
// producing a local point on a layer plane,
|
|
// set by a base point "a" and a normal "n".
|
|
vec4 untransform(vec2 ref, vec3 n, vec3 a, mat4 inv_transform) {
|
|
vec3 p = vec3(ref, -10000.0);
|
|
vec3 d = vec3(0, 0, 1.0);
|
|
|
|
float t = 0.0;
|
|
// get an intersection of the layer plane with Z axis vector,
|
|
// originated from the "ref" point
|
|
ray_plane(n, a, p, d, t);
|
|
float z = p.z + d.z * t; // Z of the visible point on the layer
|
|
|
|
vec4 r = inv_transform * vec4(ref, z, 1.0);
|
|
return r;
|
|
}
|
|
|
|
// Given a CSS space position, transform it back into the layer space.
|
|
vec4 get_layer_pos(vec2 pos, Layer layer) {
|
|
// get 3 of the layer corners in CSS space
|
|
vec3 a = layer.screen_vertices[0].xyz / layer.screen_vertices[0].w;
|
|
vec3 b = layer.screen_vertices[3].xyz / layer.screen_vertices[3].w;
|
|
vec3 c = layer.screen_vertices[2].xyz / layer.screen_vertices[2].w;
|
|
// get the normal to the layer plane
|
|
vec3 n = normalize(cross(b-a, c-a));
|
|
return untransform(pos, n, a, layer.inv_transform);
|
|
}
|
|
|
|
vec2 clamp_rect(vec2 point, vec4 rect) {
|
|
return clamp(point, rect.xy, rect.xy + rect.zw);
|
|
}
|
|
|
|
struct Rect {
|
|
vec2 p0;
|
|
vec2 p1;
|
|
};
|
|
|
|
struct VertexInfo {
|
|
Rect local_rect;
|
|
vec2 local_clamped_pos;
|
|
vec2 global_clamped_pos;
|
|
};
|
|
|
|
VertexInfo write_vertex(vec4 instance_rect,
|
|
vec4 local_clip_rect,
|
|
Layer layer,
|
|
Tile tile) {
|
|
vec2 p0 = floor(0.5 + instance_rect.xy * uDevicePixelRatio) / uDevicePixelRatio;
|
|
vec2 p1 = floor(0.5 + (instance_rect.xy + instance_rect.zw) * uDevicePixelRatio) / uDevicePixelRatio;
|
|
|
|
vec2 local_pos = mix(p0, p1, aPosition.xy);
|
|
|
|
vec2 cp0 = floor(0.5 + local_clip_rect.xy * uDevicePixelRatio) / uDevicePixelRatio;
|
|
vec2 cp1 = floor(0.5 + (local_clip_rect.xy + local_clip_rect.zw) * uDevicePixelRatio) / uDevicePixelRatio;
|
|
local_pos = clamp(local_pos, cp0, cp1);
|
|
|
|
local_pos = clamp_rect(local_pos, layer.local_clip_rect);
|
|
|
|
vec4 world_pos = layer.transform * vec4(local_pos, 0, 1);
|
|
world_pos.xyz /= world_pos.w;
|
|
|
|
vec2 device_pos = world_pos.xy * uDevicePixelRatio;
|
|
|
|
vec2 clamped_pos = clamp(device_pos,
|
|
tile.screen_origin_task_origin.xy,
|
|
tile.screen_origin_task_origin.xy + tile.size_target_index.xy);
|
|
|
|
vec4 local_clamped_pos = layer.inv_transform * vec4(clamped_pos / uDevicePixelRatio, world_pos.z, 1);
|
|
local_clamped_pos.xyz /= local_clamped_pos.w;
|
|
|
|
vec2 final_pos = clamped_pos + tile.screen_origin_task_origin.zw - tile.screen_origin_task_origin.xy;
|
|
|
|
gl_Position = uTransform * vec4(final_pos, 0, 1);
|
|
|
|
VertexInfo vi = VertexInfo(Rect(p0, p1), local_clamped_pos.xy, clamped_pos.xy);
|
|
return vi;
|
|
}
|
|
|
|
#ifdef WR_FEATURE_TRANSFORM
|
|
|
|
struct TransformVertexInfo {
|
|
vec3 local_pos;
|
|
vec4 clipped_local_rect;
|
|
};
|
|
|
|
TransformVertexInfo write_transform_vertex(vec4 instance_rect,
|
|
vec4 local_clip_rect,
|
|
Layer layer,
|
|
Tile tile) {
|
|
vec2 lp0_base = instance_rect.xy;
|
|
vec2 lp1_base = instance_rect.xy + instance_rect.zw;
|
|
|
|
vec2 lp0 = clamp_rect(clamp_rect(lp0_base, local_clip_rect),
|
|
layer.local_clip_rect);
|
|
vec2 lp1 = clamp_rect(clamp_rect(lp1_base, local_clip_rect),
|
|
layer.local_clip_rect);
|
|
|
|
vec4 clipped_local_rect = vec4(lp0, lp1 - lp0);
|
|
|
|
vec2 p0 = lp0;
|
|
vec2 p1 = vec2(lp1.x, lp0.y);
|
|
vec2 p2 = vec2(lp0.x, lp1.y);
|
|
vec2 p3 = lp1;
|
|
|
|
vec4 t0 = layer.transform * vec4(p0, 0, 1);
|
|
vec4 t1 = layer.transform * vec4(p1, 0, 1);
|
|
vec4 t2 = layer.transform * vec4(p2, 0, 1);
|
|
vec4 t3 = layer.transform * vec4(p3, 0, 1);
|
|
|
|
vec2 tp0 = t0.xy / t0.w;
|
|
vec2 tp1 = t1.xy / t1.w;
|
|
vec2 tp2 = t2.xy / t2.w;
|
|
vec2 tp3 = t3.xy / t3.w;
|
|
|
|
// compute a CSS space aligned bounding box
|
|
vec2 min_pos = min(min(tp0.xy, tp1.xy), min(tp2.xy, tp3.xy));
|
|
vec2 max_pos = max(max(tp0.xy, tp1.xy), max(tp2.xy, tp3.xy));
|
|
|
|
// clamp to the tile boundaries, in device space
|
|
vec2 min_pos_clamped = clamp(min_pos * uDevicePixelRatio,
|
|
tile.screen_origin_task_origin.xy,
|
|
tile.screen_origin_task_origin.xy + tile.size_target_index.xy);
|
|
|
|
vec2 max_pos_clamped = clamp(max_pos * uDevicePixelRatio,
|
|
tile.screen_origin_task_origin.xy,
|
|
tile.screen_origin_task_origin.xy + tile.size_target_index.xy);
|
|
|
|
// compute the device space position of this vertex
|
|
vec2 clamped_pos = mix(min_pos_clamped,
|
|
max_pos_clamped,
|
|
aPosition.xy);
|
|
|
|
// compute the point position in side the layer, in CSS space
|
|
vec4 layer_pos = get_layer_pos(clamped_pos / uDevicePixelRatio, layer);
|
|
|
|
// apply the task offset
|
|
vec2 final_pos = clamped_pos + tile.screen_origin_task_origin.zw - tile.screen_origin_task_origin.xy;
|
|
|
|
gl_Position = uTransform * vec4(final_pos, 0, 1);
|
|
|
|
return TransformVertexInfo(layer_pos.xyw, clipped_local_rect);
|
|
}
|
|
|
|
#endif //WR_FEATURE_TRANSFORM
|
|
|
|
struct Rectangle {
|
|
vec4 color;
|
|
};
|
|
|
|
Rectangle fetch_rectangle(int index) {
|
|
Rectangle rect;
|
|
|
|
ivec2 uv = get_fetch_uv_1(index);
|
|
|
|
rect.color = texelFetchOffset(sData16, uv, 0, ivec2(0, 0));
|
|
|
|
return rect;
|
|
}
|
|
|
|
struct TextRun {
|
|
vec4 color;
|
|
};
|
|
|
|
TextRun fetch_text_run(int index) {
|
|
TextRun text;
|
|
|
|
ivec2 uv = get_fetch_uv_1(index);
|
|
|
|
text.color = texelFetchOffset(sData16, uv, 0, ivec2(0, 0));
|
|
|
|
return text;
|
|
}
|
|
|
|
struct Image {
|
|
vec4 st_rect; // Location of the image texture in the texture atlas.
|
|
vec4 stretch_size_and_tile_spacing; // Size of the actual image and amount of space between
|
|
// tiled instances of this image.
|
|
};
|
|
|
|
Image fetch_image(int index) {
|
|
Image image;
|
|
|
|
ivec2 uv = get_fetch_uv_2(index);
|
|
|
|
image.st_rect = texelFetchOffset(sData32, uv, 0, ivec2(0, 0));
|
|
image.stretch_size_and_tile_spacing = texelFetchOffset(sData32, uv, 0, ivec2(1, 0));
|
|
|
|
return image;
|
|
}
|
|
|
|
struct BoxShadow {
|
|
vec4 src_rect;
|
|
vec4 bs_rect;
|
|
vec4 color;
|
|
vec4 border_radius_edge_size_blur_radius_inverted;
|
|
};
|
|
|
|
BoxShadow fetch_boxshadow(int index) {
|
|
BoxShadow bs;
|
|
|
|
ivec2 uv = get_fetch_uv_4(index);
|
|
|
|
bs.src_rect = texelFetchOffset(sData64, uv, 0, ivec2(0, 0));
|
|
bs.bs_rect = texelFetchOffset(sData64, uv, 0, ivec2(1, 0));
|
|
bs.color = texelFetchOffset(sData64, uv, 0, ivec2(2, 0));
|
|
bs.border_radius_edge_size_blur_radius_inverted = texelFetchOffset(sData64, uv, 0, ivec2(3, 0));
|
|
|
|
return bs;
|
|
}
|
|
|
|
struct Blend {
|
|
ivec4 src_id_target_id_op_amount;
|
|
};
|
|
|
|
Blend fetch_blend(int index) {
|
|
Blend blend;
|
|
|
|
int offset = index * 1;
|
|
blend.src_id_target_id_op_amount = int_data[offset + 0];
|
|
|
|
return blend;
|
|
}
|
|
|
|
struct Composite {
|
|
ivec4 src0_src1_target_id_op;
|
|
};
|
|
|
|
Composite fetch_composite(int index) {
|
|
Composite composite;
|
|
|
|
int offset = index * 1;
|
|
|
|
composite.src0_src1_target_id_op = int_data[offset + 0];
|
|
|
|
return composite;
|
|
}
|
|
#endif
|
|
|
|
#ifdef WR_FRAGMENT_SHADER
|
|
float distance_from_rect(vec2 p, vec2 origin, vec2 size) {
|
|
vec2 clamped = clamp(p, origin, origin + size);
|
|
return distance(clamped, p);
|
|
}
|
|
|
|
vec2 init_transform_fs(vec3 local_pos, vec4 local_rect, out float fragment_alpha) {
|
|
fragment_alpha = 1.0;
|
|
vec2 pos = local_pos.xy / local_pos.z;
|
|
|
|
float border_distance = distance_from_rect(pos, local_rect.xy, local_rect.zw);
|
|
if (border_distance != 0.0) {
|
|
float delta = length(fwidth(local_pos.xy));
|
|
fragment_alpha = 1.0 - smoothstep(0.0, 1.0, border_distance / delta * 2.0);
|
|
}
|
|
|
|
return pos;
|
|
}
|
|
#endif
|