servo/resources/shaders/prim_shared.glsl

698 lines
18 KiB
GLSL

#line 1
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#define PST_TOP_LEFT 0
#define PST_TOP 1
#define PST_TOP_RIGHT 2
#define PST_RIGHT 3
#define PST_BOTTOM_RIGHT 4
#define PST_BOTTOM 5
#define PST_BOTTOM_LEFT 6
#define PST_LEFT 7
#define BORDER_LEFT 0
#define BORDER_TOP 1
#define BORDER_RIGHT 2
#define BORDER_BOTTOM 3
#define UV_NORMALIZED uint(0)
#define UV_PIXEL uint(1)
// Border styles as defined in webrender_traits/types.rs
#define BORDER_STYLE_NONE 0
#define BORDER_STYLE_SOLID 1
#define BORDER_STYLE_DOUBLE 2
#define BORDER_STYLE_DOTTED 3
#define BORDER_STYLE_DASHED 4
#define BORDER_STYLE_HIDDEN 5
#define BORDER_STYLE_GROOVE 6
#define BORDER_STYLE_RIDGE 7
#define BORDER_STYLE_INSET 8
#define BORDER_STYLE_OUTSET 9
#define MAX_STOPS_PER_ANGLE_GRADIENT 8
uniform sampler2DArray sCache;
#ifdef WR_VERTEX_SHADER
#define VECS_PER_LAYER 13
#define VECS_PER_RENDER_TASK 2
#define VECS_PER_PRIM_GEOM 2
#define GRADIENT_HORIZONTAL 0
#define GRADIENT_VERTICAL 1
#define GRADIENT_ROTATED 2
uniform sampler2D sLayers;
uniform sampler2D sRenderTasks;
uniform sampler2D sPrimGeometry;
uniform sampler2D sClips;
uniform sampler2D sData16;
uniform sampler2D sData32;
uniform sampler2D sData64;
uniform sampler2D sData128;
ivec2 get_fetch_uv(int index, int vecs_per_item) {
int items_per_row = WR_MAX_VERTEX_TEXTURE_WIDTH / vecs_per_item;
int y = index / items_per_row;
int x = vecs_per_item * (index % items_per_row);
return ivec2(x, y);
}
ivec2 get_fetch_uv_1(int index) {
return get_fetch_uv(index, 1);
}
ivec2 get_fetch_uv_2(int index) {
return get_fetch_uv(index, 2);
}
ivec2 get_fetch_uv_4(int index) {
return get_fetch_uv(index, 4);
}
ivec2 get_fetch_uv_8(int index) {
return get_fetch_uv(index, 8);
}
struct Layer {
mat4 transform;
mat4 inv_transform;
vec4 local_clip_rect;
vec4 screen_vertices[4];
};
layout(std140) uniform Data {
ivec4 int_data[WR_MAX_UBO_VECTORS];
};
Layer fetch_layer(int index) {
Layer layer;
// Create a UV base coord for each 8 texels.
// This is required because trying to use an offset
// of more than 8 texels doesn't work on some versions
// of OSX.
ivec2 uv = get_fetch_uv(index, VECS_PER_LAYER);
ivec2 uv0 = ivec2(uv.x + 0, uv.y);
ivec2 uv1 = ivec2(uv.x + 8, uv.y);
layer.transform[0] = texelFetchOffset(sLayers, uv0, 0, ivec2(0, 0));
layer.transform[1] = texelFetchOffset(sLayers, uv0, 0, ivec2(1, 0));
layer.transform[2] = texelFetchOffset(sLayers, uv0, 0, ivec2(2, 0));
layer.transform[3] = texelFetchOffset(sLayers, uv0, 0, ivec2(3, 0));
layer.inv_transform[0] = texelFetchOffset(sLayers, uv0, 0, ivec2(4, 0));
layer.inv_transform[1] = texelFetchOffset(sLayers, uv0, 0, ivec2(5, 0));
layer.inv_transform[2] = texelFetchOffset(sLayers, uv0, 0, ivec2(6, 0));
layer.inv_transform[3] = texelFetchOffset(sLayers, uv0, 0, ivec2(7, 0));
layer.local_clip_rect = texelFetchOffset(sLayers, uv1, 0, ivec2(0, 0));
layer.screen_vertices[0] = texelFetchOffset(sLayers, uv1, 0, ivec2(1, 0));
layer.screen_vertices[1] = texelFetchOffset(sLayers, uv1, 0, ivec2(2, 0));
layer.screen_vertices[2] = texelFetchOffset(sLayers, uv1, 0, ivec2(3, 0));
layer.screen_vertices[3] = texelFetchOffset(sLayers, uv1, 0, ivec2(4, 0));
return layer;
}
struct RenderTaskData {
vec4 data0;
vec4 data1;
};
RenderTaskData fetch_render_task(int index) {
RenderTaskData task;
ivec2 uv = get_fetch_uv(index, VECS_PER_RENDER_TASK);
task.data0 = texelFetchOffset(sRenderTasks, uv, 0, ivec2(0, 0));
task.data1 = texelFetchOffset(sRenderTasks, uv, 0, ivec2(1, 0));
return task;
}
struct Tile {
vec4 screen_origin_task_origin;
vec4 size_target_index;
};
Tile fetch_tile(int index) {
RenderTaskData task = fetch_render_task(index);
Tile tile;
tile.screen_origin_task_origin = task.data0;
tile.size_target_index = task.data1;
return tile;
}
struct Gradient {
vec4 start_end_point;
vec4 kind;
};
Gradient fetch_gradient(int index) {
Gradient gradient;
ivec2 uv = get_fetch_uv_2(index);
gradient.start_end_point = texelFetchOffset(sData32, uv, 0, ivec2(0, 0));
gradient.kind = texelFetchOffset(sData32, uv, 0, ivec2(1, 0));
return gradient;
}
struct GradientStop {
vec4 color;
vec4 offset;
};
GradientStop fetch_gradient_stop(int index) {
GradientStop stop;
ivec2 uv = get_fetch_uv_2(index);
stop.color = texelFetchOffset(sData32, uv, 0, ivec2(0, 0));
stop.offset = texelFetchOffset(sData32, uv, 0, ivec2(1, 0));
return stop;
}
struct Glyph {
vec4 offset;
vec4 uv_rect;
};
Glyph fetch_glyph(int index) {
Glyph glyph;
ivec2 uv = get_fetch_uv_2(index);
glyph.offset = texelFetchOffset(sData32, uv, 0, ivec2(0, 0));
glyph.uv_rect = texelFetchOffset(sData32, uv, 0, ivec2(1, 0));
return glyph;
}
struct Border {
vec4 style;
vec4 widths;
vec4 colors[4];
vec4 radii[2];
};
Border fetch_border(int index) {
Border border;
ivec2 uv = get_fetch_uv_8(index);
border.style = texelFetchOffset(sData128, uv, 0, ivec2(0, 0));
border.widths = texelFetchOffset(sData128, uv, 0, ivec2(1, 0));
border.colors[0] = texelFetchOffset(sData128, uv, 0, ivec2(2, 0));
border.colors[1] = texelFetchOffset(sData128, uv, 0, ivec2(3, 0));
border.colors[2] = texelFetchOffset(sData128, uv, 0, ivec2(4, 0));
border.colors[3] = texelFetchOffset(sData128, uv, 0, ivec2(5, 0));
border.radii[0] = texelFetchOffset(sData128, uv, 0, ivec2(6, 0));
border.radii[1] = texelFetchOffset(sData128, uv, 0, ivec2(7, 0));
return border;
}
vec4 fetch_instance_geometry(int index) {
ivec2 uv = get_fetch_uv_1(index);
vec4 rect = texelFetchOffset(sData16, uv, 0, ivec2(0, 0));
return rect;
}
struct PrimitiveGeometry {
vec4 local_rect;
vec4 local_clip_rect;
};
PrimitiveGeometry fetch_prim_geometry(int index) {
PrimitiveGeometry pg;
ivec2 uv = get_fetch_uv(index, VECS_PER_PRIM_GEOM);
pg.local_rect = texelFetchOffset(sPrimGeometry, uv, 0, ivec2(0, 0));
pg.local_clip_rect = texelFetchOffset(sPrimGeometry, uv, 0, ivec2(1, 0));
return pg;
}
struct PrimitiveInstance {
int global_prim_index;
int specific_prim_index;
int render_task_index;
int layer_index;
int clip_address;
int sub_index;
ivec2 user_data;
};
PrimitiveInstance fetch_instance(int index) {
PrimitiveInstance pi;
int offset = index * 2;
ivec4 data0 = int_data[offset + 0];
ivec4 data1 = int_data[offset + 1];
pi.global_prim_index = data0.x;
pi.specific_prim_index = data0.y;
pi.render_task_index = data0.z;
pi.layer_index = data0.w;
pi.clip_address = data1.x;
pi.sub_index = data1.y;
pi.user_data = data1.zw;
return pi;
}
struct BlurCommand {
int task_id;
int src_task_id;
int dir;
};
BlurCommand fetch_blur(int index) {
BlurCommand blur;
int offset = index * 1;
ivec4 data0 = int_data[offset + 0];
blur.task_id = data0.x;
blur.src_task_id = data0.y;
blur.dir = data0.z;
return blur;
}
struct CachePrimitiveInstance {
int global_prim_index;
int specific_prim_index;
int render_task_index;
int sub_index;
};
CachePrimitiveInstance fetch_cache_instance(int index) {
CachePrimitiveInstance cpi;
int offset = index * 1;
ivec4 data0 = int_data[offset + 0];
cpi.global_prim_index = data0.x;
cpi.specific_prim_index = data0.y;
cpi.render_task_index = data0.z;
cpi.sub_index = data0.w;
return cpi;
}
struct Primitive {
Layer layer;
Tile tile;
vec4 local_rect;
vec4 local_clip_rect;
int prim_index;
int clip_index;
// when sending multiple primitives of the same type (e.g. border segments)
// this index allows the vertex shader to recognize the difference
int sub_index;
ivec2 user_data;
};
Primitive load_primitive(int index) {
Primitive prim;
PrimitiveInstance pi = fetch_instance(index);
prim.layer = fetch_layer(pi.layer_index);
prim.tile = fetch_tile(pi.render_task_index);
PrimitiveGeometry pg = fetch_prim_geometry(pi.global_prim_index);
prim.local_rect = pg.local_rect;
prim.local_clip_rect = pg.local_clip_rect;
prim.prim_index = pi.specific_prim_index;
prim.clip_index = pi.clip_address;
prim.sub_index = pi.sub_index;
prim.user_data = pi.user_data;
return prim;
}
struct ClipRect {
vec4 rect;
vec4 dummy;
};
ClipRect fetch_clip_rect(int index) {
ClipRect rect;
ivec2 uv = get_fetch_uv_2(index);
rect.rect = texelFetchOffset(sData32, uv, 0, ivec2(0, 0));
//rect.dummy = texelFetchOffset(sData32, uv, 0, ivec2(1, 0));
rect.dummy = vec4(0.0, 0.0, 0.0, 0.0);
return rect;
}
struct ImageMaskData {
vec4 uv_rect;
vec4 local_rect;
};
ImageMaskData fetch_mask_data(int index) {
ImageMaskData info;
ivec2 uv = get_fetch_uv_2(index);
info.uv_rect = texelFetchOffset(sData32, uv, 0, ivec2(0, 0));
info.local_rect = texelFetchOffset(sData32, uv, 0, ivec2(1, 0));
return info;
}
struct ClipCorner {
vec4 rect;
vec4 outer_inner_radius;
};
ClipCorner fetch_clip_corner(int index) {
ClipCorner corner;
ivec2 uv = get_fetch_uv_2(index);
corner.rect = texelFetchOffset(sData32, uv, 0, ivec2(0, 0));
corner.outer_inner_radius = texelFetchOffset(sData32, uv, 0, ivec2(1, 0));
return corner;
}
struct ClipData {
ClipRect rect;
ClipCorner top_left;
ClipCorner top_right;
ClipCorner bottom_left;
ClipCorner bottom_right;
ImageMaskData mask_data;
};
ClipData fetch_clip(int index) {
ClipData clip;
clip.rect = fetch_clip_rect(index + 0);
clip.top_left = fetch_clip_corner(index + 1);
clip.top_right = fetch_clip_corner(index + 2);
clip.bottom_left = fetch_clip_corner(index + 3);
clip.bottom_right = fetch_clip_corner(index + 4);
clip.mask_data = fetch_mask_data(index + 5);
return clip;
}
// Return the intersection of the plane (set up by "normal" and "point")
// with the ray (set up by "ray_origin" and "ray_dir"),
// writing the resulting scaler into "t".
bool ray_plane(vec3 normal, vec3 point, vec3 ray_origin, vec3 ray_dir, out float t)
{
float denom = dot(normal, ray_dir);
if (denom > 1e-6) {
vec3 d = point - ray_origin;
t = dot(d, normal) / denom;
return t >= 0.0;
}
return false;
}
// Apply the inverse transform "inv_transform"
// to the reference point "ref" in CSS space,
// producing a local point on a layer plane,
// set by a base point "a" and a normal "n".
vec4 untransform(vec2 ref, vec3 n, vec3 a, mat4 inv_transform) {
vec3 p = vec3(ref, -10000.0);
vec3 d = vec3(0, 0, 1.0);
float t = 0.0;
// get an intersection of the layer plane with Z axis vector,
// originated from the "ref" point
ray_plane(n, a, p, d, t);
float z = p.z + d.z * t; // Z of the visible point on the layer
vec4 r = inv_transform * vec4(ref, z, 1.0);
return r;
}
// Given a CSS space position, transform it back into the layer space.
vec4 get_layer_pos(vec2 pos, Layer layer) {
// get 3 of the layer corners in CSS space
vec3 a = layer.screen_vertices[0].xyz / layer.screen_vertices[0].w;
vec3 b = layer.screen_vertices[3].xyz / layer.screen_vertices[3].w;
vec3 c = layer.screen_vertices[2].xyz / layer.screen_vertices[2].w;
// get the normal to the layer plane
vec3 n = normalize(cross(b-a, c-a));
return untransform(pos, n, a, layer.inv_transform);
}
vec2 clamp_rect(vec2 point, vec4 rect) {
return clamp(point, rect.xy, rect.xy + rect.zw);
}
struct Rect {
vec2 p0;
vec2 p1;
};
struct VertexInfo {
Rect local_rect;
vec2 local_clamped_pos;
vec2 global_clamped_pos;
};
VertexInfo write_vertex(vec4 instance_rect,
vec4 local_clip_rect,
Layer layer,
Tile tile) {
vec2 p0 = floor(0.5 + instance_rect.xy * uDevicePixelRatio) / uDevicePixelRatio;
vec2 p1 = floor(0.5 + (instance_rect.xy + instance_rect.zw) * uDevicePixelRatio) / uDevicePixelRatio;
vec2 local_pos = mix(p0, p1, aPosition.xy);
vec2 cp0 = floor(0.5 + local_clip_rect.xy * uDevicePixelRatio) / uDevicePixelRatio;
vec2 cp1 = floor(0.5 + (local_clip_rect.xy + local_clip_rect.zw) * uDevicePixelRatio) / uDevicePixelRatio;
local_pos = clamp(local_pos, cp0, cp1);
local_pos = clamp_rect(local_pos, layer.local_clip_rect);
vec4 world_pos = layer.transform * vec4(local_pos, 0, 1);
world_pos.xyz /= world_pos.w;
vec2 device_pos = world_pos.xy * uDevicePixelRatio;
vec2 clamped_pos = clamp(device_pos,
tile.screen_origin_task_origin.xy,
tile.screen_origin_task_origin.xy + tile.size_target_index.xy);
vec4 local_clamped_pos = layer.inv_transform * vec4(clamped_pos / uDevicePixelRatio, world_pos.z, 1);
local_clamped_pos.xyz /= local_clamped_pos.w;
vec2 final_pos = clamped_pos + tile.screen_origin_task_origin.zw - tile.screen_origin_task_origin.xy;
gl_Position = uTransform * vec4(final_pos, 0, 1);
VertexInfo vi = VertexInfo(Rect(p0, p1), local_clamped_pos.xy, clamped_pos.xy);
return vi;
}
#ifdef WR_FEATURE_TRANSFORM
struct TransformVertexInfo {
vec3 local_pos;
vec4 clipped_local_rect;
};
TransformVertexInfo write_transform_vertex(vec4 instance_rect,
vec4 local_clip_rect,
Layer layer,
Tile tile) {
vec2 lp0_base = instance_rect.xy;
vec2 lp1_base = instance_rect.xy + instance_rect.zw;
vec2 lp0 = clamp_rect(clamp_rect(lp0_base, local_clip_rect),
layer.local_clip_rect);
vec2 lp1 = clamp_rect(clamp_rect(lp1_base, local_clip_rect),
layer.local_clip_rect);
vec4 clipped_local_rect = vec4(lp0, lp1 - lp0);
vec2 p0 = lp0;
vec2 p1 = vec2(lp1.x, lp0.y);
vec2 p2 = vec2(lp0.x, lp1.y);
vec2 p3 = lp1;
vec4 t0 = layer.transform * vec4(p0, 0, 1);
vec4 t1 = layer.transform * vec4(p1, 0, 1);
vec4 t2 = layer.transform * vec4(p2, 0, 1);
vec4 t3 = layer.transform * vec4(p3, 0, 1);
vec2 tp0 = t0.xy / t0.w;
vec2 tp1 = t1.xy / t1.w;
vec2 tp2 = t2.xy / t2.w;
vec2 tp3 = t3.xy / t3.w;
// compute a CSS space aligned bounding box
vec2 min_pos = min(min(tp0.xy, tp1.xy), min(tp2.xy, tp3.xy));
vec2 max_pos = max(max(tp0.xy, tp1.xy), max(tp2.xy, tp3.xy));
// clamp to the tile boundaries, in device space
vec2 min_pos_clamped = clamp(min_pos * uDevicePixelRatio,
tile.screen_origin_task_origin.xy,
tile.screen_origin_task_origin.xy + tile.size_target_index.xy);
vec2 max_pos_clamped = clamp(max_pos * uDevicePixelRatio,
tile.screen_origin_task_origin.xy,
tile.screen_origin_task_origin.xy + tile.size_target_index.xy);
// compute the device space position of this vertex
vec2 clamped_pos = mix(min_pos_clamped,
max_pos_clamped,
aPosition.xy);
// compute the point position in side the layer, in CSS space
vec4 layer_pos = get_layer_pos(clamped_pos / uDevicePixelRatio, layer);
// apply the task offset
vec2 final_pos = clamped_pos + tile.screen_origin_task_origin.zw - tile.screen_origin_task_origin.xy;
gl_Position = uTransform * vec4(final_pos, 0, 1);
return TransformVertexInfo(layer_pos.xyw, clipped_local_rect);
}
#endif //WR_FEATURE_TRANSFORM
struct Rectangle {
vec4 color;
};
Rectangle fetch_rectangle(int index) {
Rectangle rect;
ivec2 uv = get_fetch_uv_1(index);
rect.color = texelFetchOffset(sData16, uv, 0, ivec2(0, 0));
return rect;
}
struct TextRun {
vec4 color;
};
TextRun fetch_text_run(int index) {
TextRun text;
ivec2 uv = get_fetch_uv_1(index);
text.color = texelFetchOffset(sData16, uv, 0, ivec2(0, 0));
return text;
}
struct Image {
vec4 st_rect; // Location of the image texture in the texture atlas.
vec4 stretch_size_and_tile_spacing; // Size of the actual image and amount of space between
// tiled instances of this image.
};
Image fetch_image(int index) {
Image image;
ivec2 uv = get_fetch_uv_2(index);
image.st_rect = texelFetchOffset(sData32, uv, 0, ivec2(0, 0));
image.stretch_size_and_tile_spacing = texelFetchOffset(sData32, uv, 0, ivec2(1, 0));
return image;
}
struct BoxShadow {
vec4 src_rect;
vec4 bs_rect;
vec4 color;
vec4 border_radius_edge_size_blur_radius_inverted;
};
BoxShadow fetch_boxshadow(int index) {
BoxShadow bs;
ivec2 uv = get_fetch_uv_4(index);
bs.src_rect = texelFetchOffset(sData64, uv, 0, ivec2(0, 0));
bs.bs_rect = texelFetchOffset(sData64, uv, 0, ivec2(1, 0));
bs.color = texelFetchOffset(sData64, uv, 0, ivec2(2, 0));
bs.border_radius_edge_size_blur_radius_inverted = texelFetchOffset(sData64, uv, 0, ivec2(3, 0));
return bs;
}
struct Blend {
ivec4 src_id_target_id_op_amount;
};
Blend fetch_blend(int index) {
Blend blend;
int offset = index * 1;
blend.src_id_target_id_op_amount = int_data[offset + 0];
return blend;
}
struct Composite {
ivec4 src0_src1_target_id_op;
};
Composite fetch_composite(int index) {
Composite composite;
int offset = index * 1;
composite.src0_src1_target_id_op = int_data[offset + 0];
return composite;
}
#endif
#ifdef WR_FRAGMENT_SHADER
float distance_from_rect(vec2 p, vec2 origin, vec2 size) {
vec2 clamped = clamp(p, origin, origin + size);
return distance(clamped, p);
}
vec2 init_transform_fs(vec3 local_pos, vec4 local_rect, out float fragment_alpha) {
fragment_alpha = 1.0;
vec2 pos = local_pos.xy / local_pos.z;
float border_distance = distance_from_rect(pos, local_rect.xy, local_rect.zw);
if (border_distance != 0.0) {
float delta = length(fwidth(local_pos.xy));
fragment_alpha = 1.0 - smoothstep(0.0, 1.0, border_distance / delta * 2.0);
}
return pos;
}
#endif