servo/components/gfx/text/glyph.rs
Martin Robinson 48ab8d8847
layout: Add a InlineFormattingContextBuilder (#32415)
The main change here is that collapsed and `text-transform`'d text is
computed as it's processed by DOM traversal. This single transformed
text is stored in the root of the `InlineFormattingContext`.

This will eventually allow performing linebreaking and shaping of the
entire inline formatting context at once. Allowing for intelligent
processing of linebreaking and also shaping across elements. This
matches more closely what LayoutNG does.

This shouldn't have any (or negligable) behavioral changes, but will
allow us to prevent linebreaking inside of clusters in a followup
change.

Co-authored-by: Rakhi Sharma <atbrakhi@igalia.com>
2024-06-03 14:46:53 +00:00

815 lines
26 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
use std::cmp::{Ordering, PartialOrd};
use std::sync::Arc;
use std::vec::Vec;
use std::{fmt, mem, u16};
use app_units::Au;
use euclid::default::Point2D;
pub use gfx_traits::ByteIndex;
use log::debug;
use malloc_size_of_derive::MallocSizeOf;
use range::{self, EachIndex, Range, RangeIndex};
use serde::{Deserialize, Serialize};
/// GlyphEntry is a port of Gecko's CompressedGlyph scheme for storing glyph data compactly.
///
/// In the common case (reasonable glyph advances, no offsets from the font em-box, and one glyph
/// per character), we pack glyph advance, glyph id, and some flags into a single u32.
///
/// In the uncommon case (multiple glyphs per unicode character, large glyph index/advance, or
/// glyph offsets), we pack the glyph count into GlyphEntry, and store the other glyph information
/// in DetailedGlyphStore.
#[derive(Clone, Copy, Debug, Deserialize, MallocSizeOf, PartialEq, Serialize)]
pub struct GlyphEntry {
value: u32,
}
impl GlyphEntry {
fn new(value: u32) -> GlyphEntry {
GlyphEntry { value }
}
fn initial() -> GlyphEntry {
GlyphEntry::new(0)
}
// Creates a GlyphEntry for the common case
fn simple(id: GlyphId, advance: Au) -> GlyphEntry {
assert!(is_simple_glyph_id(id));
assert!(is_simple_advance(advance));
let id_mask = id;
let Au(advance) = advance;
let advance_mask = (advance as u32) << GLYPH_ADVANCE_SHIFT;
GlyphEntry::new(id_mask | advance_mask | FLAG_IS_SIMPLE_GLYPH)
}
// Create a GlyphEntry for uncommon case; should be accompanied by
// initialization of the actual DetailedGlyph data in DetailedGlyphStore
fn complex(starts_cluster: bool, starts_ligature: bool, glyph_count: usize) -> GlyphEntry {
assert!(glyph_count <= u16::MAX as usize);
debug!(
"creating complex glyph entry: starts_cluster={}, starts_ligature={}, \
glyph_count={}",
starts_cluster, starts_ligature, glyph_count
);
GlyphEntry::new(glyph_count as u32)
}
fn is_initial(&self) -> bool {
*self == GlyphEntry::initial()
}
}
/// The id of a particular glyph within a font
pub type GlyphId = u32;
// TODO: make this more type-safe.
const FLAG_CHAR_IS_WORD_SEPARATOR: u32 = 0x40000000;
const FLAG_IS_SIMPLE_GLYPH: u32 = 0x80000000;
// glyph advance; in Au's.
const GLYPH_ADVANCE_MASK: u32 = 0x3FFF0000;
const GLYPH_ADVANCE_SHIFT: u32 = 16;
const GLYPH_ID_MASK: u32 = 0x0000FFFF;
// Non-simple glyphs (more than one glyph per char; missing glyph,
// newline, tab, large advance, or nonzero x/y offsets) may have one
// or more detailed glyphs associated with them. They are stored in a
// side array so that there is a 1:1 mapping of GlyphEntry to
// unicode char.
// The number of detailed glyphs for this char.
const GLYPH_COUNT_MASK: u32 = 0x0000FFFF;
fn is_simple_glyph_id(id: GlyphId) -> bool {
(id & GLYPH_ID_MASK) == id
}
fn is_simple_advance(advance: Au) -> bool {
advance >= Au(0) && {
let unsigned_au = advance.0 as u32;
(unsigned_au & (GLYPH_ADVANCE_MASK >> GLYPH_ADVANCE_SHIFT)) == unsigned_au
}
}
// Getters and setters for GlyphEntry. Setter methods are functional,
// because GlyphEntry is immutable and only a u32 in size.
impl GlyphEntry {
#[inline(always)]
fn advance(&self) -> Au {
Au::new(((self.value & GLYPH_ADVANCE_MASK) >> GLYPH_ADVANCE_SHIFT) as i32)
}
#[inline]
fn id(&self) -> GlyphId {
self.value & GLYPH_ID_MASK
}
/// True if the original character was a word separator. These include spaces
/// (U+0020), non-breaking spaces (U+00A0), and a few other characters
/// non-exhaustively listed in the specification. Other characters may map to the same
/// glyphs, but this function does not take mapping into account.
///
/// See <https://drafts.csswg.org/css-text/#word-separator>.
fn char_is_word_separator(&self) -> bool {
self.has_flag(FLAG_CHAR_IS_WORD_SEPARATOR)
}
#[inline(always)]
fn set_char_is_word_separator(&mut self) {
self.value |= FLAG_CHAR_IS_WORD_SEPARATOR;
}
fn glyph_count(&self) -> u16 {
assert!(!self.is_simple());
(self.value & GLYPH_COUNT_MASK) as u16
}
#[inline(always)]
fn is_simple(&self) -> bool {
self.has_flag(FLAG_IS_SIMPLE_GLYPH)
}
#[inline(always)]
fn has_flag(&self, flag: u32) -> bool {
(self.value & flag) != 0
}
}
// Stores data for a detailed glyph, in the case that several glyphs
// correspond to one character, or the glyph's data couldn't be packed.
#[derive(Clone, Copy, Debug, Deserialize, MallocSizeOf, Serialize)]
struct DetailedGlyph {
id: GlyphId,
// glyph's advance, in the text's direction (LTR or RTL)
advance: Au,
// glyph's offset from the font's em-box (from top-left)
offset: Point2D<Au>,
}
impl DetailedGlyph {
fn new(id: GlyphId, advance: Au, offset: Point2D<Au>) -> DetailedGlyph {
DetailedGlyph {
id,
advance,
offset,
}
}
}
#[derive(Clone, Copy, Debug, Deserialize, Eq, MallocSizeOf, PartialEq, Serialize)]
struct DetailedGlyphRecord {
// source string offset/GlyphEntry offset in the TextRun
entry_offset: ByteIndex,
// offset into the detailed glyphs buffer
detail_offset: usize,
}
impl Ord for DetailedGlyphRecord {
fn cmp(&self, other: &DetailedGlyphRecord) -> Ordering {
self.entry_offset.cmp(&other.entry_offset)
}
}
impl PartialOrd for DetailedGlyphRecord {
fn partial_cmp(&self, other: &DetailedGlyphRecord) -> Option<Ordering> {
Some(self.cmp(other))
}
}
// Manages the lookup table for detailed glyphs. Sorting is deferred
// until a lookup is actually performed; this matches the expected
// usage pattern of setting/appending all the detailed glyphs, and
// then querying without setting.
#[derive(Clone, Deserialize, MallocSizeOf, Serialize)]
struct DetailedGlyphStore {
// TODO(pcwalton): Allocation of this buffer is expensive. Consider a small-vector
// optimization.
detail_buffer: Vec<DetailedGlyph>,
// TODO(pcwalton): Allocation of this buffer is expensive. Consider a small-vector
// optimization.
detail_lookup: Vec<DetailedGlyphRecord>,
lookup_is_sorted: bool,
}
impl<'a> DetailedGlyphStore {
fn new() -> DetailedGlyphStore {
DetailedGlyphStore {
detail_buffer: vec![], // TODO: default size?
detail_lookup: vec![],
lookup_is_sorted: false,
}
}
fn add_detailed_glyphs_for_entry(&mut self, entry_offset: ByteIndex, glyphs: &[DetailedGlyph]) {
let entry = DetailedGlyphRecord {
entry_offset,
detail_offset: self.detail_buffer.len(),
};
debug!(
"Adding entry[off={:?}] for detailed glyphs: {:?}",
entry_offset, glyphs
);
debug_assert!(!self.detail_lookup.contains(&entry));
self.detail_lookup.push(entry);
self.detail_buffer.extend_from_slice(glyphs);
self.lookup_is_sorted = false;
}
fn detailed_glyphs_for_entry(
&'a self,
entry_offset: ByteIndex,
count: u16,
) -> &'a [DetailedGlyph] {
debug!(
"Requesting detailed glyphs[n={}] for entry[off={:?}]",
count, entry_offset
);
// FIXME: Is this right? --pcwalton
// TODO: should fix this somewhere else
if count == 0 {
return &self.detail_buffer[0..0];
}
assert!((count as usize) <= self.detail_buffer.len());
assert!(self.lookup_is_sorted);
let key = DetailedGlyphRecord {
entry_offset,
detail_offset: 0, // unused
};
let i = self
.detail_lookup
.binary_search(&key)
.expect("Invalid index not found in detailed glyph lookup table!");
let main_detail_offset = self.detail_lookup[i].detail_offset;
assert!(main_detail_offset + (count as usize) <= self.detail_buffer.len());
// return a slice into the buffer
&self.detail_buffer[main_detail_offset..main_detail_offset + count as usize]
}
fn detailed_glyph_with_index(
&'a self,
entry_offset: ByteIndex,
detail_offset: u16,
) -> &'a DetailedGlyph {
assert!((detail_offset as usize) <= self.detail_buffer.len());
assert!(self.lookup_is_sorted);
let key = DetailedGlyphRecord {
entry_offset,
detail_offset: 0, // unused
};
let i = self
.detail_lookup
.binary_search(&key)
.expect("Invalid index not found in detailed glyph lookup table!");
let main_detail_offset = self.detail_lookup[i].detail_offset;
assert!(main_detail_offset + (detail_offset as usize) < self.detail_buffer.len());
&self.detail_buffer[main_detail_offset + (detail_offset as usize)]
}
fn ensure_sorted(&mut self) {
if self.lookup_is_sorted {
return;
}
// Sorting a unique vector is surprisingly hard. The following
// code is a good argument for using DVecs, but they require
// immutable locations thus don't play well with freezing.
// Thar be dragons here. You have been warned. (Tips accepted.)
let mut unsorted_records: Vec<DetailedGlyphRecord> = vec![];
mem::swap(&mut self.detail_lookup, &mut unsorted_records);
let mut mut_records: Vec<DetailedGlyphRecord> = unsorted_records;
mut_records.sort_by(|a, b| {
if a < b {
Ordering::Less
} else {
Ordering::Greater
}
});
let mut sorted_records = mut_records;
mem::swap(&mut self.detail_lookup, &mut sorted_records);
self.lookup_is_sorted = true;
}
}
// This struct is used by GlyphStore clients to provide new glyph data.
// It should be allocated on the stack and passed by reference to GlyphStore.
#[derive(Clone, Copy)]
pub struct GlyphData {
id: GlyphId,
advance: Au,
offset: Point2D<Au>,
cluster_start: bool,
ligature_start: bool,
}
impl GlyphData {
/// Creates a new entry for one glyph.
pub fn new(
id: GlyphId,
advance: Au,
offset: Option<Point2D<Au>>,
cluster_start: bool,
ligature_start: bool,
) -> GlyphData {
GlyphData {
id,
advance,
offset: offset.unwrap_or(Point2D::zero()),
cluster_start,
ligature_start,
}
}
}
// This enum is a proxy that's provided to GlyphStore clients when iterating
// through glyphs (either for a particular TextRun offset, or all glyphs).
// Rather than eagerly assembling and copying glyph data, it only retrieves
// values as they are needed from the GlyphStore, using provided offsets.
#[derive(Clone, Copy)]
pub enum GlyphInfo<'a> {
Simple(&'a GlyphStore, ByteIndex),
Detail(&'a GlyphStore, ByteIndex, u16),
}
impl<'a> GlyphInfo<'a> {
pub fn id(self) -> GlyphId {
match self {
GlyphInfo::Simple(store, entry_i) => store.entry_buffer[entry_i.to_usize()].id(),
GlyphInfo::Detail(store, entry_i, detail_j) => {
store
.detail_store
.detailed_glyph_with_index(entry_i, detail_j)
.id
},
}
}
#[inline(always)]
// FIXME: Resolution conflicts with IteratorUtil trait so adding trailing _
pub fn advance(self) -> Au {
match self {
GlyphInfo::Simple(store, entry_i) => store.entry_buffer[entry_i.to_usize()].advance(),
GlyphInfo::Detail(store, entry_i, detail_j) => {
store
.detail_store
.detailed_glyph_with_index(entry_i, detail_j)
.advance
},
}
}
#[inline]
pub fn offset(self) -> Option<Point2D<Au>> {
match self {
GlyphInfo::Simple(_, _) => None,
GlyphInfo::Detail(store, entry_i, detail_j) => Some(
store
.detail_store
.detailed_glyph_with_index(entry_i, detail_j)
.offset,
),
}
}
pub fn char_is_word_separator(self) -> bool {
let (store, entry_i) = match self {
GlyphInfo::Simple(store, entry_i) => (store, entry_i),
GlyphInfo::Detail(store, entry_i, _) => (store, entry_i),
};
store.char_is_word_separator(entry_i)
}
}
/// Stores the glyph data belonging to a text run.
///
/// Simple glyphs are stored inline in the `entry_buffer`, detailed glyphs are
/// stored as pointers into the `detail_store`.
///
/// ~~~ascii
/// +- GlyphStore --------------------------------+
/// | +---+---+---+---+---+---+---+ |
/// | entry_buffer: | | s | | s | | s | s | | d = detailed
/// | +-|-+---+-|-+---+-|-+---+---+ | s = simple
/// | | | | |
/// | | +---+-------+ |
/// | | | |
/// | +-V-+-V-+ |
/// | detail_store: | d | d | |
/// | +---+---+ |
/// +---------------------------------------------+
/// ~~~
#[derive(Clone, Deserialize, MallocSizeOf, Serialize)]
pub struct GlyphStore {
// TODO(pcwalton): Allocation of this buffer is expensive. Consider a small-vector
// optimization.
/// A buffer of glyphs within the text run, in the order in which they
/// appear in the input text.
/// Any changes will also need to be reflected in
/// transmute_entry_buffer_to_u32_buffer().
entry_buffer: Vec<GlyphEntry>,
/// A store of the detailed glyph data. Detailed glyphs contained in the
/// `entry_buffer` point to locations in this data structure.
detail_store: DetailedGlyphStore,
/// A cache of the advance of the entire glyph store.
total_advance: Au,
/// A cache of the number of word separators in the entire glyph store.
/// See <https://drafts.csswg.org/css-text/#word-separator>.
total_word_separators: usize,
/// Used to check if fast path should be used in glyph iteration.
has_detailed_glyphs: bool,
/// Whether or not this glyph store contains only glyphs for whitespace.
is_whitespace: bool,
/// Whether or not this glyph store contains only a single glyph for a single
/// preserved newline.
is_single_preserved_newline: bool,
is_rtl: bool,
}
impl<'a> GlyphStore {
/// Initializes the glyph store, but doesn't actually shape anything.
///
/// Use the `add_*` methods to store glyph data.
pub fn new(
length: usize,
is_whitespace: bool,
is_single_preserved_newline: bool,
is_rtl: bool,
) -> GlyphStore {
assert!(length > 0);
GlyphStore {
entry_buffer: vec![GlyphEntry::initial(); length],
detail_store: DetailedGlyphStore::new(),
total_advance: Au(0),
total_word_separators: 0,
has_detailed_glyphs: false,
is_whitespace,
is_single_preserved_newline,
is_rtl,
}
}
#[inline]
pub fn total_advance(&self) -> Au {
self.total_advance
}
#[inline]
pub fn len(&self) -> ByteIndex {
ByteIndex(self.entry_buffer.len() as isize)
}
#[inline]
pub fn is_whitespace(&self) -> bool {
self.is_whitespace
}
#[inline]
pub fn total_word_separators(&self) -> usize {
self.total_word_separators
}
pub fn finalize_changes(&mut self) {
self.detail_store.ensure_sorted();
self.cache_total_advance_and_word_separators()
}
#[inline(never)]
fn cache_total_advance_and_word_separators(&mut self) {
let mut total_advance = Au(0);
let mut total_word_separators = 0;
for glyph in self.iter_glyphs_for_byte_range(&Range::new(ByteIndex(0), self.len())) {
total_advance += glyph.advance();
if glyph.char_is_word_separator() {
total_word_separators += 1;
}
}
self.total_advance = total_advance;
self.total_word_separators = total_word_separators;
}
/// Adds a single glyph.
pub fn add_glyph_for_byte_index(&mut self, i: ByteIndex, character: char, data: &GlyphData) {
let glyph_is_compressible = is_simple_glyph_id(data.id) &&
is_simple_advance(data.advance) &&
data.offset == Point2D::zero() &&
data.cluster_start; // others are stored in detail buffer
debug_assert!(data.ligature_start); // can't compress ligature continuation glyphs.
debug_assert!(i < self.len());
let mut entry = if glyph_is_compressible {
GlyphEntry::simple(data.id, data.advance)
} else {
let glyph = &[DetailedGlyph::new(data.id, data.advance, data.offset)];
self.has_detailed_glyphs = true;
self.detail_store.add_detailed_glyphs_for_entry(i, glyph);
GlyphEntry::complex(data.cluster_start, data.ligature_start, 1)
};
// This list is taken from the non-exhaustive list of word separator characters in
// the CSS Text Module Level 3 Spec:
// See https://drafts.csswg.org/css-text/#word-separator
if matches!(
character,
' ' |
'\u{00A0}' | // non-breaking space
'\u{1361}' | // Ethiopic word space
'\u{10100}' | // Aegean word separator
'\u{10101}' | // Aegean word separator
'\u{1039F}' | // Ugartic word divider
'\u{1091F}' // Phoenician word separator
) {
entry.set_char_is_word_separator();
}
self.entry_buffer[i.to_usize()] = entry;
}
pub fn add_glyphs_for_byte_index(&mut self, i: ByteIndex, data_for_glyphs: &[GlyphData]) {
assert!(i < self.len());
assert!(!data_for_glyphs.is_empty());
let glyph_count = data_for_glyphs.len();
let first_glyph_data = data_for_glyphs[0];
let glyphs_vec: Vec<DetailedGlyph> = (0..glyph_count)
.map(|i| {
DetailedGlyph::new(
data_for_glyphs[i].id,
data_for_glyphs[i].advance,
data_for_glyphs[i].offset,
)
})
.collect();
self.has_detailed_glyphs = true;
self.detail_store
.add_detailed_glyphs_for_entry(i, &glyphs_vec);
let entry = GlyphEntry::complex(
first_glyph_data.cluster_start,
first_glyph_data.ligature_start,
glyph_count,
);
debug!(
"Adding multiple glyphs[idx={:?}, count={}]: {:?}",
i, glyph_count, entry
);
self.entry_buffer[i.to_usize()] = entry;
}
#[inline]
pub fn iter_glyphs_for_byte_range(&'a self, range: &Range<ByteIndex>) -> GlyphIterator<'a> {
if range.begin() >= self.len() {
panic!("iter_glyphs_for_range: range.begin beyond length!");
}
if range.end() > self.len() {
panic!("iter_glyphs_for_range: range.end beyond length!");
}
GlyphIterator {
store: self,
byte_index: if self.is_rtl {
range.end()
} else {
range.begin() - ByteIndex(1)
},
byte_range: *range,
glyph_range: None,
}
}
// Scan the glyphs for a given range until we reach a given advance. Returns the index
// and advance of the glyph in the range at the given advance, if reached. Otherwise, returns the
// the number of glyphs and the advance for the given range.
#[inline]
pub fn range_index_of_advance(
&self,
range: &Range<ByteIndex>,
advance: Au,
extra_word_spacing: Au,
) -> (usize, Au) {
let mut index = 0;
let mut current_advance = Au(0);
for glyph in self.iter_glyphs_for_byte_range(range) {
if glyph.char_is_word_separator() {
current_advance += glyph.advance() + extra_word_spacing
} else {
current_advance += glyph.advance()
}
if current_advance > advance {
break;
}
index += 1;
}
(index, current_advance)
}
#[inline]
pub fn advance_for_byte_range(&self, range: &Range<ByteIndex>, extra_word_spacing: Au) -> Au {
if range.begin() == ByteIndex(0) && range.end() == self.len() {
self.total_advance + extra_word_spacing * (self.total_word_separators as i32)
} else {
self.advance_for_byte_range_simple_glyphs(range, extra_word_spacing)
}
}
#[inline]
pub fn advance_for_byte_range_simple_glyphs(
&self,
range: &Range<ByteIndex>,
extra_word_spacing: Au,
) -> Au {
self.iter_glyphs_for_byte_range(range)
.fold(Au(0), |advance, glyph| {
if glyph.char_is_word_separator() {
advance + glyph.advance() + extra_word_spacing
} else {
advance + glyph.advance()
}
})
}
pub fn char_is_word_separator(&self, i: ByteIndex) -> bool {
assert!(i < self.len());
self.entry_buffer[i.to_usize()].char_is_word_separator()
}
pub fn word_separator_count_in_range(&self, range: &Range<ByteIndex>) -> u32 {
let mut spaces = 0;
for index in range.each_index() {
if self.char_is_word_separator(index) {
spaces += 1
}
}
spaces
}
}
impl fmt::Debug for GlyphStore {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
writeln!(formatter, "GlyphStore:")?;
let mut detailed_buffer = self.detail_store.detail_buffer.iter();
for entry in self.entry_buffer.iter() {
if entry.is_simple() {
writeln!(
formatter,
" simple id={:?} advance={:?}",
entry.id(),
entry.advance()
)?;
continue;
}
if entry.is_initial() {
continue;
}
write!(formatter, " complex...")?;
if detailed_buffer.next().is_none() {
continue;
}
writeln!(
formatter,
" detailed id={:?} advance={:?}",
entry.id(),
entry.advance()
)?;
}
Ok(())
}
}
/// An iterator over the glyphs in a byte range in a `GlyphStore`.
pub struct GlyphIterator<'a> {
store: &'a GlyphStore,
byte_index: ByteIndex,
byte_range: Range<ByteIndex>,
glyph_range: Option<EachIndex<ByteIndex>>,
}
impl<'a> GlyphIterator<'a> {
// Slow path when there is a glyph range.
#[inline(never)]
fn next_glyph_range(&mut self) -> Option<GlyphInfo<'a>> {
match self.glyph_range.as_mut().unwrap().next() {
Some(j) => {
Some(GlyphInfo::Detail(
self.store,
self.byte_index,
j.get() as u16, /* ??? */
))
},
None => {
// No more glyphs for current character. Try to get another.
self.glyph_range = None;
self.next()
},
}
}
// Slow path when there is a complex glyph.
#[inline(never)]
fn next_complex_glyph(&mut self, entry: &GlyphEntry, i: ByteIndex) -> Option<GlyphInfo<'a>> {
let glyphs = self
.store
.detail_store
.detailed_glyphs_for_entry(i, entry.glyph_count());
self.glyph_range = Some(range::each_index(
ByteIndex(0),
ByteIndex(glyphs.len() as isize),
));
self.next()
}
}
impl<'a> Iterator for GlyphIterator<'a> {
type Item = GlyphInfo<'a>;
// I tried to start with something simpler and apply FlatMap, but the
// inability to store free variables in the FlatMap struct was problematic.
//
// This function consists of the fast path and is designed to be inlined into its caller. The
// slow paths, which should not be inlined, are `next_glyph_range()` and
// `next_complex_glyph()`.
#[inline(always)]
fn next(&mut self) -> Option<GlyphInfo<'a>> {
// Would use 'match' here but it borrows contents in a way that interferes with mutation.
if self.glyph_range.is_some() {
return self.next_glyph_range();
}
// No glyph range. Look at next byte.
self.byte_index = self.byte_index +
if self.store.is_rtl {
ByteIndex(-1)
} else {
ByteIndex(1)
};
let i = self.byte_index;
if !self.byte_range.contains(i) {
return None;
}
debug_assert!(i < self.store.len());
let entry = self.store.entry_buffer[i.to_usize()];
if entry.is_simple() {
Some(GlyphInfo::Simple(self.store, i))
} else {
// Fall back to the slow path.
self.next_complex_glyph(&entry, i)
}
}
}
/// A single series of glyphs within a text run.
#[derive(Clone, Debug, Deserialize, Serialize)]
pub struct GlyphRun {
/// The glyphs.
pub glyph_store: Arc<GlyphStore>,
/// The byte range of characters in the containing run.
pub range: Range<ByteIndex>,
}
impl GlyphRun {
pub fn compare(&self, key: &ByteIndex) -> Ordering {
if *key < self.range.begin() {
Ordering::Greater
} else if *key >= self.range.end() {
Ordering::Less
} else {
Ordering::Equal
}
}
#[inline]
pub fn is_single_preserved_newline(&self) -> bool {
self.glyph_store.is_single_preserved_newline
}
}